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Dynamic spectrum management (DSM) has been proposed to achieve next-generation rates on digital subscriber lines (DSL). Be-
cause the copper twisted-pair plant is an interference-constrained environment, the multiuser performance and spectral compati-
bility of DSM schemes are of primary concern in such systems. While the analysis of multiuser interference has been standardized
for current static spectrum-management (SSM) techniques, at present no corresponding standard DSM analysis has been estab-
lished. This paper examines a multiuser spectrum-allocation problem and formulates a lower bound to the achievable rate of a
DSL modem that is tight in the presence of the worst-case interference. A game-theoretic analysis shows that the rate-maximizing
strategy under the worst-case interference (WCI) in the DSM setting corresponds to a Nash equilibrium in pure strategies of a
certain strictly competitive game. A Nash equilibrium is shown to exist under very mild conditions, and the rate-adaptive waterfill-
ing algorithm is demonstrated to give the optimal strategy in response to the WCI under a frequency-division (FDM) condition.
Numerical results are presented for two important scenarios: an upstream VDSL deployment exhibiting the near-far effect, and an
ADSL RT deployment with long CO lines. The results show that the performance improvement of DSM over SSM techniques in
these channels can be preserved by appropriate distributed power control, even in worst-case interference environments.
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1. INTRODUCTION

In recent years, increased demands on data rates and compe-
tition from other services have led to the development of new
high-speed transmission standards for digital subscriber line
(DSL) modems. Dynamic spectrum management (DSM) is
emerging as a key component in next-generation DSL stan-
dards. In DSM, spectrum is allocated adaptively in response
to channel and interference conditions, allowing mitigation
of interference and best use of the channel. As multiuser in-
terference is the primary limiting factor to DSL performance,
the potential for rate improvement by exploiting its structure
is substantial.

DSM contrasts with current DSL practice, known as
static spectrum management (SSM). In SSM, masks are
imposed on transmit power spectrum densities (PSDs) to
bound the amount of crosstalk induced in other lines shar-
ing the same binder group [1]. As SSM masks are fixed for
all loop configurations, they can often be far from optimal or
even prudent spectrum usage in typical deployments. Stan-
dardized tests for “spectral compatibility” [1] assess “new
technology” by defining PSD masks and examining the im-
pact on standardized systems using the 99th-percentile cross-

talk scenario. Such methods are useful when a reasonable es-
timate of spectrum of all users can be assumed priori. How-
ever, if spectrum is instead allocated dynamically, not only is
this knowledge not available priori, but also because of loop
unbundling, other users’ spectrum may not even be known
even during operation. Spectral compatibility between dif-
ferent operators using DSM is a primary concern because
new pathologies may arise with adaptive operation. More-
over, it is not unreasonable to suspect that each competing
service provider sharing a binder would perform DSM in a
greedy fashion, at the possible expense of other providers’
users. However, in DSM, a worst-case interference analysis
based on maximum allowable PSDs is overly pessimistic, so
existing spectral compatibility techniques cannot be fruit-
fully employed. A new paradigm is needed to assess the im-
pact of DSM on multiuser performance of the overall system.

1.1. Priorresults

The capacity region of the AWGN interference channel (IC)
is in general unknown, even for the 2-user case [2]. Com-
munication in the presence of hostile interference has been
studied from a game-theoretic perspective in numerous
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Figure 1: [llustration of loop plant environment showing downstream FEXT and NEXT from user 1. The victim user is shown at the bottom.

applications, for example, [3, 4]. A simple and relevant IC
achievable region is that attained by treating interference as
noise [5]. Capacity results for frequency-selective interfer-
ence channels satistying the strong interference condition are
also known [6].

DSM algorithms have been proposed for the cases of dis-
tributed and centralized control scenarios. This paper con-
siders what has been termed “Level 0-2 DSM” [7], wherein
cooperation may be allowed to manage spectrum, but not
for multiuser encoding and decoding. A centralized DSM
center controlling multiple lines offers both higher poten-
tial performance and improved management capabilities [8].
Distributed DSM schemes based on the iterative waterfilling
(IW) algorithm [9] have been presented. IW has also been
studied from a game-theoretic viewpoint [10]. Numerous al-
gorithms for centralized DSM have been proposed. Reference
[11] presents a technique to maximize users’ weighted sum-
rate. Rate maximization subject to frequency-division and
fixed-rate proportions between users has been considered
[12]. Optimal [13] and suboptimal [14] algorithms to mini-
mize transmit power have been studied.

An extensive suite of literature on upstream power-
backoff techniques to mitigate the “near-far” problem has
been developed for static spectrum-management systems
[13, 15-17]. A power-backoff algorithm for DSM systems
implementing iterative waterfilling has been proposed [18].

In current DSL standards, upstream and downstream
transmissions use either distinct frequency bands or shared
bands. In the latter case, “echo” is created between upstream
and downstream transmissions [9]. As analog hybrid circuits
do not provide sufficient isolation, echo mitigation is essen-
tial in practical systems [19]. Numerous echo-cancellation
structures have been proposed for DSL transceivers [20-22].

1.2. Outline

This paper formulates the achievable rate of a single “victim”
modem in the presence of the worst-case interference from
other interfering lines in the same binder group. The perfor-
mance under the WCI is a guaranteed-achievable rate that
can be used, for example, in studying multiuser performance
of DSM strategies and establishing spectral compatibility of
DSM systems.

Section 2 defines the channel and system models. The
WCI problem is formalized and studied in Section 3 from

a game-theoretic viewpoint. Certain properties of the Nash
equilibrium of this game are explored. Section 4 considers
numerical examples in VDSL and ADSL systems. Conclud-
ing remarks are made in Section 5.

A word on notation: vectors are written in boldface,
where v, denotes the kth element of the vector v, and v > 0
denotes that each element is nonnegative. The notation v\
denotes a vector corresponding to tone #. For the symmetric
matrix X, X > 0 denotes that X is positive semidefinite. 1
is a column vector with each element equal to 1. int(X) de-
notes the (topological) interior, cl(X) the closure, and 0X the
boundary of the set X.

2. SYSTEM MODEL
2.1. Channel model

A copper twisted-pair DSL binder is modelled as a frequency-
selective multiuser Gaussian interference channel [9, 23].
The binder contains a total of L + 1 twisted pairs, with one
DSL line per twisted pair, as shown in Figure 1. The effect of
NEXT and FEXT interferences generated by L “interfering”
users that generate crosstalk into one “victim” user is consid-
ered. This coupling is illustrated for downstream transmis-
sion in Figure 1.

2.2. DSL modem model

2.2.1.  Modem architecture

The standardized [24] discrete-multitone (DMT)-based
modulation scheme is employed, so that transmission over
the frequency-selective channel may be decoupled into N in-
dependent subcarriers or tones. Both FDM and overlapping
bandplans are considered. As overlapping bandplans require
echo cancellation that is imperfect in practice, error that is
introduced acts as a form of interference and is of concern.
Echo-cancellation error is modelled presuming a prevalent
echo-cancellation structure utilizing a joint time-frequency
LMS algorithm [19] is employed.! Using the terminology
of [19], let y denote the LMS adaptive step size parameter.
The “excess MSE” for a given tone is modelled [25, equation

! Other models may be more applicable to different echo-cancellation
structures.
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(12.74)] as proportional to the product of the LMS adaptive
step size parameter y and the transmit power on that tone.

The constant of proportionality is absorbed by defining /§ as
the ratio of excess MSE to transmitted energy on a given tone.

2.2.2. Achievable rate region

This section discusses an achievable rate region for a DSL
modem based on the preceding channel and system model.
The following analysis applies to both upstream and down-
stream transmissions. For specificity, the following refers to
downstream transmission: first, consider the case where echo
cancellation is employed. Denote the victim modem’s down-
stream transmit power on tone n, n € {1,...,N}, as x,. Let
element [, [ € {1,...,L}, of the vector y"¥ € R?" denote the
downstream transmit power of interfering modem [ on tone
n. Similarly, let element [, [ € {L +1,...,2L}, of y denote
the upstream transmit power of interfering user / — L. Define
element [, [ € {l,...,L}, of the row vector h” € R2L as the
FEXT power gain from interfering user / on tone # (necessar-
ily, " > 0). Similarly, define element I,/ € {L +1,...,2L},
of h™ to be the NEXT power gain from interfering user / — L.
Let element 1 of h,, € RY denote the victim line’s insertion
gain on tone n (lNln > 0).

Independent AWGN (thermal noise) with power g2 > 0
is present on tone n. Let B; denote the echo-cancellation ra-
tio on tone 7 as described above. Echo-cancellation error is
treated as AWGN. Let I' denote the SNR gap-to-capacity [9].
Then the following bit loading? is achievable on tone n [9]:

h,x, ) o
T (hWy® + px, +02) )

b, =log <1+

Observe that if lNl,, = 0, then it is necessarily the case that
b, = 0, implying that tone n is never loaded. Thus, in the

sequel, h, > 0 forall n € {1,...,N} is considered without
loss of generality by removing those tones with zero direct

gain (h, = 0). Defining a,, = F/l~1n, Bn = Fﬁ;/l’;n, and N, =
To?/h,, and substituting

Xn
bu = log (1 T %R0y ™ 1 Boxn TN, ) @)

because I' > 1, it follows that o, > 0, 5, = 0, and N,, > 0.

2.2.3.  Achievable rate region for FDM

When an FDM scheme is employed, NEXT and echo can-
cellation are eliminated because transmission and reception
occur on distinct frequencies.® As a common configuration

2 The achieved data rate of a given modem is proportional to the number of
bits loaded (less overhead); this constant of proportionality is normalized
to 1 in the theoretical development.

3 Effects arising from implementation issues that may lead to crosstalk be-
tween upstream and downstream bands are not explicitly considered.

in ADSL and VDSL standards [9], this represents the impor-
tant special case of the preceding model, where 8, = 0 (due

to no echo cancellation) and h,") =0foralln,L+1<[<2L
(due to frequency division). Additional technical results will
be shown to hold in the FDM setting, as detailed in Section 3.

3. THE WORST-CASE INTERFERENCE
3.1. Game-theoretic characterization of the WCI

This section introduces and motivates the concept of the
worst-case interference (WCI). Suppose that a “victim” mo-
dem desires to keep its data rate at some level. Such a scenario
is commonplace as carriers widely offer DSL service at fixed
data rates. The objective is to bound the impact that mul-
tiuser interference can have on this victim modem, thereby
determining whether service may be guaranteed. To this end,
one considers interferences that are the most harmful in the
sense of minimizing the achievable rate of a “victim” modem.
However, it is not clear what form such interferences might
take, nor how they might be best responded to.

Examining this problem from the standpoint of game
theory leads to substantial insight. Consider a worst-case in-
terference game where one player jointly optimizes the spec-
trum of all the interfering modems, irrespective of the data
rate they achieve in doing so, to cause the most deleteri-
ous interference to the victim modem. Thus in this game,
all the interfering modems act as one player, while the vic-
tim modem acts as the other player, with the channel and
noise known to all. Although such an arrangement may ap-
pear pathological, it will be shown numerically that such a
situation is quite close to what occurs in certain loop topolo-
gies. Neither is assuming such coordination of the interferers
unreasonable in practice as under “Level 2” DSM [7, 8], each
collocated carrier may individually coordinate its own lines,
nor may collocated equipment be centrally controlled by a
competing carrier. Channels may be estimated in the field,
approximated by standardized models [9], and in the future,
potentially published by operators [26].

A Nash equilibrium in this game may be interpreted as
characterizing a worst-case interference as an optimal re-
sponse (power-allocation policy) to it. The structure of the
Nash equilibrium lends insight into the problem as well as
suggesting techniques that may be implemented in practical
systems.

3.2. Formalization of the WCl game

Consider the following two-player game: let Player 1 con-
trol the spectrum allocation of victim modem, and let Player
2 control the spectrum allocations of all the interfering
modems. Referring again to downstream transmission for
specificity, let the total (sum) downstream power of the vic-
tim modem >, X, be upper bounded by P*, where 0 < P* <
co. Player 1 is also subject to a positive power constraint
C* on each tone, so that x < C*. Note that this constraint
may be made redundant by setting, for example, C* > 1P*.
The requirement that C* > 0 is without loss of generality by
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disregarding all unusable tones # for which CI = 0. Similarly
for Player 2, consider per-line power constraints 0 < P/ < o,
where the total downstream power of the Ith interfering mo-
dem I € {I,...,L} is upper bounded by the /th element
of PY € RZ and the total upstream power of interfering
modem [ is upper bounded by element / + L of P”. Fur-
ther, consider positive power constraints C*" € R2L for
n = 1,...,N such that y(”) < M for each n; any such
power constraints equal to zero may be equivalently enforced
by zeroing respective element(s) of {h"}.

The strategy set of Player 1 is the set of all feasible
power allocations for the victim modem, §; = {x : 0 <
x < C5 1Tx < P*}, and the strategy set of Player 2 is
the set of all feasible power allocations for the interfering
modems, 8, = {[y,....,y™M] : 0 <y < CW, n =
L...,N,[y®,...,y™]1 < P?}. Define 8 = $; x 4,. This is
a strictly competitive or zero sum two-player game (41, $5,]),
where the objective function ] : § — R, is defined to be the
achievable data rate of the victim user:

N
W N7y — Xy
J(x [y",..,y™]) %log (1+txnh(”)y(”)+l3nxn+Nn)'
(3)

The game § = (41, 4,,]) is defined to be the worst-case
interference game.

3.3. Derivation of Nash equilibrium conditions

A Nash equilibrium in pure strategies in the WCI game § is
defined to be any saddle point (x, [y",...,y™]) € § satis-

fying
YD) =T [y, Ly ™)) (4)
J(% [§,. . 5N),  (5)

for all X € &, [yV,...,y™] € 8,. Condition (5) imme-
diately implies the claim that Player 1 rate at a Nash equi-
librium of § lower bounds the achievable rate with any other
feasible interference profile. This bound also extends to other
settings: in the noncooperative IW game [10], a (possibly
non-unique) Nash equilibrium is known to always exist in
pure strategies; condition (5) again yields a lower bound rate
at every Nash equilibrium of the IW game for the line corre-
sponding to Player 1.

It is now shown that a Nash equilibrium of § always ex-
ists due to certain properties of the objective and strategy
sets. First, the convex-concave structure of the objective is
established.

Theorem 1. Ifa > 0,8>0,y>0,h € R, and o, f3, y, h are
bounded, then the function g : Ry X R¥ — R, defined by
ty)=log 1+ —* (6)
gy =108 ahTy + Bx+y

is strictly concave in x and is convex iny.

Proof. Tt is first shown that f : Ry X Ry — Ry, f(x,7) =
log((1+ B8)x + an +y) — log(an + Bx + y) is convex in # and

strictly concave in x. It is sufficient [27] to show that for all
x = 0, it holds that 0% f/9y* > 0 on the interval (—€, «) for
some € > 0, and similarly for all # > 0 that 0% f/9x> < 0 on
the interval (—€, o) for some € > 0. By differentiating and

simplifying,

s T )
ox  (an+Bx+y)((B+x+an+y)’
f _ (an+y)2BB+1x+ 2B+ 1)(an+y)) <0, (8
ox? —(oc11-f—ﬂx+y)2(oa1+(/3+l)x-f—y)2 ’
g - (9)
on (an+px+y)(an+ (B+1)x+7y)’
*f _ o (2an+ 2B+ 1)x +2y)x _— (10)

on? (an +/5x+y)2(0c11+([3+l)x+y)2

where € = y/(48(8 + 1)) in (8), € = y/(2a) when « > 0,
and € = 1 when & = 0in (10). For all (x,y) € R; x R2, it
must be that hTy > 0. Thus g(x,y) = f(x, hTy). By the affine
mapping composition property [27], it follows that g(x,y) is
convex in y and strictly concave in x. O

Because the objective (3) is a sum of functions that are
strictly concave in x, and convex in y, ] is strictly concave
in x and convex in [y",...,y®™].

Theorem 2. The WCI game 4 has a Nash equilibrium existing
in pure strategies, and a value R*.

Proof. Because 8; C RN and 4, C RN are closed and
bounded, by the Heine-Borel theorem, they are both com-
pact. Also, the objective is a composition of continuous func-
tions, hence continuous, and ] is strictly concave in x and
convex in [y1,...,y®™]. The conditions of [28, Theorem
4.4] are thus satisfied, and therefore a pure-strategy saddle
point exists. Note that the saddle point need not be unique,
in general. Because a saddle point exists in pure strategies, the
game has a value [28, Theorem 4.1], which will be denoted as
R*. Thus,

max min ] = min max] = R*. (11)
x€4 [yD,.,yM]es, [yD,...,yM]es, xe$
O

3.4. Structure of the worst-case interference

The previous section showed that under very general condi-
tions, a Nash equilibrium exists. However, it is not immedi-
ately clear whether there exists a unique Nash equilibrium,
or whether Nash equilibria of the WCI game might possess
any simplifying structure.

The former question may be addressed by considering
the following example: N = 2, L = 2, h¥ = h® =
1100,PF=1,P =1 1]T,N; =N, >0, 0, = otz = 1,
I' = 1, and suppose that the FDM condition is satisfied and
the per-tone power constraints are redundant. Then it may
be readily verified by symmetry arguments that with x =
(1/2 1/2]T, both y» = [1 0 0 0]7,y® = [0 1 0 0]T
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and y = y@® = [1/2 1/2 0 0]T (and convex combina-
tions thereof) form saddle points (x, [y" y?]). Thus,
Player 2 may have an uncountably infinite number of opti-
mal strategies even under the FDM condition, and hence the
saddle point need not to be unique in general.

Given that the Nash equilibrium is not generally unique,
its structure is explored in the following results. Some ba-
sic intuition is first established showing that “waterfilling” is
Player 1 optimal strategy in response to the interference in-
duced at a given Nash equilibrium where the FDM condition
holds and the individual-tone constraints are inactive.

Theorem 3. Let (%, [yV,...,y™]) be a Nash equilibrium of
the WCI game §. If the FDM condition holds for § and C}; =
P* for all n, then the Nash equilibrium strategy of Player 1
(namely, X) is given by “waterfilling” against the combined
noise and interference a,, A"y + N, from Player 2.

Proof. Let (%,[yV,...,y"]) be any saddle point of J. The
condition C¥ > 1P* ensures that the per-tone constraints
are trivially satisfied whenever the power constraint (P¥) is.
Evaluating the right-hand side of (11), if 8, = 0 (from FDM
assumption), then

N A~
* _ X
R* = max > log (1 g T Nn)' (12)

xe51n:1

The optimization problem (12) is seen to be precisely the
same as single-user rate maximization with parallel Gaussian
channels [23], and hence the (modified) waterfilling spec-
trum is optimal and unique (for fixed [yV,...,y"™]). In par-
ticular, the modified AWGN noise level on tone 7 is seen to
be (xnh(”)f’(") +N,,. This is the same modified noise level used
in the rate-adaptive IW algorithm [9]. O

Considering the structure of the general WCI game §,
it is possible to establish uniqueness of Player 1 optimal
strategy and strong properties of Player 2 optimal strategy.
Henceforth, the set of all Nash equilibria of § is denoted by
P.

Theorem 4. The Nash equilibrium strategy of Player 1 is
unique; that is, there exists some X € & such that for
each (%, [y\V,...,y™]) € P, it is the case that X = X.
Moreover, for Player 2, the induced “active” interference at
each Nash equilibria is unique; in particular, (X, [V(l),...,
VD, & [FD,..., ¥V € P imply that a,h®Wy™ =
a,h™y™ foreach n € 1,...,N satisfying X, > 0.

Proof. To show that Player 1 optimal strategy is identical for
all Nash equilibria, consider the saddle points (%, [y",...,
y™¥]) € Pand X, [y,...,y™]) € P, which are not nec-
essarily distinct. By Theorem 1 and separability over tones,
the objective (3) is strictly concave in x, and therefore
has a unique maximizer [27], namely X, when one fixes
yV,...,y™M] = [§D,...,§™]. Observe that (%, [yV,...,
¥™1) € P by the exchangeability property of saddle points

[28]. Consequently, X is also the unique maximizer of (3)

for [yl",...,yM] = [y1,...,¥™]. This implies that X = X.
Taking X = X establishes the result.
To show the second claim, define I = {i : X; > 0},

where X is the unique Nash equilibrium strategy of Player
1 as per the first claim, and suppose that there exists a
nonempty set D = {n € I : a,h®™y"™ £ o hMFm}
Consider (%, [yV,...,¥¥]) € P and % [JV,...,.§N]) €
P, where X = X = X. Define 4, > [yV,...,y™V] =
(172)[FY,..., ¥ + (1/2)[FD,...,§NV]. The function g :
RY — R. defined by

y .
_ o X
g([n,...,lN])—%10g<1+in+ﬁn§n+Nn> )

is convex in each variable i, and strictly convex in each
variable i, for which n € I due to (10). By the fact that
@ # D c I and the convexity properties, it follows
that g([a,hM§D, ..., a, ANy ]) < (1/2)g([a,h VD, ..,
a,h ™My N+ (1/2)g([a,hWFD, . L, hNFNT]) and con-
sequently that

J(&, [ah D50, . a, h®M5])
1 X v —
< E](X’ [a,h V50, . a,h g ) "

1 X o] ~
+ EI(X’ [a,hDFD) L a, hMFN]) = R*,

which contradicts (5). Therefore D = &. UJ

As a corollary, Theorem 4 implies that the “interference
profile” a,,h™y(™ + B, x,, + N, is invariant on each active tone
{n : (x, > 0)} at every Nash equilibrium. Even though the
Nash equilibrium need not be unique, one therefore has a
strong sense in which to speak of a worst-case interference
profile that is most deleterious to Player 1. It is possible to
strengthen Theorem 4 by restricting attention to the FDM
setting: in Theorem 5, it is shown that in this case the struc-
ture of P is polyhedral. Moreover, once one has obtained a
single Nash equilibrium point, the set of all Nash equilibria
may be readily deduced. This implies that the set of worst-
interference profiles may be explicitly computed by practi-
tioners for use in offline system design or dynamic operation.

Theorem 5. If the FDM condition is satisfied, then the set P of
all Nash equilibria of the WCI game §, is a polytope.*

Proof. The result is proven by constructing a polytope, Q
and subsequently showing that P = Q. To construct Q,
take any (X, [y",...,y™]) € P (such a point must exist by
Theorem 2). DefineD = {n:x, =0},E= {n:0<Xx, <C:},
F={n:x,=C},and I = E U F. Equation (4) holds that

4 Different definitions of polytopes exist in the literature; this paper defines
a polytope as the bounded intersection of a finite number of half-spaces
[27].
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X must be an optimum solution of the convex optimization
problem:

N
mfxngllog <l+m>, (15)
subjecttox >0, n=1,...,N, (16)
> x, < P%, (17)

"
C =x (18)

Associate Lagrangian dual variables A € R and v € RN with
constraints (17) and (18), respectively. Because the objective
is concave in x and Slater’s constraint qualification condi-
tion is satisfied [27], the Karush-Kuhn-Tucker (KKT) con-
ditions are necessary and sufficient for optimality (for fixed

YD, y™] = [0, 5™)):
: A=<0 =0 ifx,=0, (19
(xnh(”)y(ﬂ) +Xx, +Nn —A=U, Yy = itx, =0, ( )

1 . ’

a,hMWy™ +x, + N, A=0, v,=0 if0<x,<C},
(20)

1 .

_)L—’Vn =0, le,, :C’ncj (21)

ahMy™ +x, + N,

/\(an—P"):O, xE€ 8,120, v=0. (22)

Suppose that the KKT conditions are satisfied by the
triplet (X, 10 , @). The triplet (X, 20 , @) need not be unique, in
general. However, the first element is unique (by Theorem 4),
and thus it remains to be seen whether the ordered pair
(A9,90) is unique. If E # &, then the pair is unique. To see
this, consider ny € E which by (20) uniquely determines 20
and along with (19) and (21) uniquely determines W, Be-
cause 1/(a,,h)ym) + x, + N, ) > 0 for all x € &, in ac-
count of (20) it must be that 20 > 0. In this case, we define
A =210and % = 0.

In the event that E = &, observe that because the ob-
jective (15) is strictly increasing in x, it must be that I # &.
Also, because EC EUF =1 # &, one has F # @. Define

X=ﬁ+rr}?€irF1;3\1, (23)

V= (24)

N ;g—minmep@, neF,

0 else.
It may be readily verified that (%, 1,7) also satisfies the KKT
conditions. Observe that by (24), 7, = 0 for at least one n €
I. Because 1/(a,h™y™ +x, +N,) > 0foralln € I + @,
x € 43, (21) implies that A > 0. It is therefore the case that
the triplet (x,A,7) satisfies the KKT conditions and A > 0
whether E = @ or E # @.

For each n € D, define ¢, as the solution of the equa-
tion 1/(X, + ¢) = A+ 9,, namely ¢, = 1/A — X,,. Define the
polytope

Q={(xy"...yV]) e s:x=%
anh(n)y(ﬂ) = anh(")}?(”) Vnel, (25)
a,hMy™ 4N, > ¢n Vn € D}.

It remains to be shown that P = Q; it is first argued that
Q C P. Recall that (%, [yV,...,yM]) € P was used to con-
struct Q, and consider any (%, [J'V,...,¥™]) € Q. Note that
X = X by construction of Q. The inequality (5) requires that
[¥Y,...,¥™] be an optimum solution of the convex opti-
mization problem:

N .
X,
. l 1 + L ~
[y ny] ,Zl . ( aphy + B%, + N"> (26)

subject to [yV,...,yV] € 4,.

However since by Theorem 4, a,h®™§" = ,h"y™ for all
n € I, the objective value is equal, and hence (5) is satis-
fied. Equation (4) is equivalent to requiring the KKT condi-
tions (19)—(22) to be satisfied for some ordered pair (A, ),
where x = X and [yV,...,y™] = [§1,...,N)] are fixed.
It is now argued that the choice of (A,v) = (i, ) satisfies
the conditions. For each n € {1,...,N}, if n € D, then
a,hW§™W + N, > ¢, implies that (X, + a,h™§" + Nn)_1 -
1<o0 by monotonicity of 1/(x + a) in x = 0 for a > 0. If
n € I, then a,hWy™ + N, = a,h§" + N,, by construc-
tion of Q, and accordingly (20) or (21) is satisfied. Because
both (4) and (5) are satisfied, it follows by definition that
&, [yV,...,y™]) € P, and hence Q C P.

It is now argued that P C Q. Recall that (%, [yV,...,
y™]) € P was used to construct Q and consider any
& [yV,...,yNM]) € P. By Theorem4, X = X. Also by
Theorem 4, one has a,,h"§" = @, h™y™ forall n € I, and
therefore it remains only to prove that a,, A™W§" + N, > ¢,
foralln € D.

Because (X, [yV,...,¥N)]) € P, there must exist a pair
(/ﬁ, 1?)) such that the triplet (X, IO“, 17)) satisfies the KKT con-
ditions (for fixed [y'",...,yM] = [y1,...,.y™]).

In the event that E # &, define A=A and ¥ = 0,
Clearly, the triplet (X,A,%) also satisfies the same KKT con-
ditions. Observe by Theorem 4 that because for n’ € E one
has a,h")§") = a, h")§) it follows by (20) that A = A.

In the event that E = &, observe that because @ = E C
I+ O,wehave F =1 — E + @. Define

A= ;\\9: + min ;/\‘,):,, (27)
meF

Vn = (28)

~ r’V\g_minmEF@/p T’IEF,
0 else.
It may be readily verified that (%, 1,%) satisfies the KKT con-
ditions (for fixed [y"V,...,y™] = [y1,...,y™]). By (28),
there must exist some n’ € F such that 7, = 0. Simi-
larly, recall that there must exist some m’ € F such that
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Vo = 0. It is now argued that there exists some m € F such
that both 7,, = 0 and v,, = 0. In particular, let m = m’.
Then by (21) and the fact that the triplet (X, 1,9) satisfies the
KKT conditions for [yM,...,y™M] = [y1,...,7M], one has
1/(a,h™ +xm+Nm) < 1/(ay, h”)y(” +X, +N,) for all
n e F. However a,hW§ = o, KWy for all n € F, and
therefore 1/(e,,h " +X,, +N,,,) < 1/(¢xnh(”))N'(”)+)N(n+N,,)
for all n € F. This (along with the fact that v, = 0 for some
n’ € F) implies that v, = 0. Then, (21) for this choice of m
implies that X=1

Because it is always the case that 1 = 1, the triplet
(%,1,%) satisfies the KKT conditions (for yD,...,y™M] =
¥Y,...,N]). Therefore, 1/(a,h™§"™ + %, + N, ) ~1<0
for all n € D implies that a,hWy™ + N, > ¢, forall n € D.
Thus &, [§V,...,§V]) € Q. O

3.5. Numerical computation of the saddle point

In order to apply the WCI bound in practical settings, it
is necessary to develop numerical algorithms to solve for
Nash equilibrium strategies and R*. The methodology con-
sidered herein is that of interior-point optimization tech-
niques such as the “infeasible start Newton method” [27
Section 10.3]. The general approach of interior-point tech-
niques is to replace the (power and positivity) constraints
with barrier functions that become large as the (power and
positivity) constraints become tight. By making the increase
in the barrier functions progressively sharper, one solves a se-
quence of problems whose solutions converge to a Nash equi-
librium of §. We now formally cast the problem (11) in the
interior-point setting and argue that it satisfies certain neces-
sary properties needed for convergence. Logarithmic barrier
functions are employed to enforce the positivity and power
constraints and a Newton-step central path algorithm is used
to compute R* to arbitrary accuracy [27].

Let the central path parameter be denoted by t € R,
and define 8, = int(4,), 5 = int(4,), and T8 x % — Ry,
where

~

Jx [y, y™)

N N
=t'log (P" - xn> +> t'og (CE — x,)

n=1 n=1

N
X, 4
+ n; {log (1 + B0y + B + N,,) +t 'log (x,)

~t 3 g (417) +og (0 51")]]
=1
2L

N
B (r- $50),
n=1

=1

(29)

To establish convergence, it is necessary only to show that
] satisfies the following sufficient conditions [27, Section

10.3.4] that Lhe sublevel sets of ||V ]NII , are closed, and that the
Hessian of J is Lipschitz continuous with bounded inverse.

The partial derivatives of ],

o] ahMy™ + N,
X, (Buxn + o, hMWy™ + N,) (1 + ) x40, hMy) +N,,)
1 1 1
X, t(Px—17x)  £(Cx —x,)’

_ anhfn") 3 anh%’)
(14 Bn)xn + ashMy™ + N, B,x, + a,,h(Wy(W + N,
1 1 1

o (O ) (R s

(30)

are continuous on %, X %5, 1mply1ng by contlnulty of the

norm that || V] Hz is continuous on 51 X 52 Consequently,
the sublevel sets S, for each « € R,

So = {0 [y y™]) € Bix 3o
N (31)
197 (G [y ™.,y ™I, < of

are closed relative to Z; X /?2 To show that S, is closed,
suppose that {z,} is any sequence in S, with z, — z. If
z € :JT X sz = int(gf X :52/), then z € S, by relative clo-
sure. Therefore, it remains only to observe that there does
not exist any z, — z with z € acl(z X {72). This follows
from examining (30), where it can be seen that IIVT(ZH)IIZ
increases without bound for any such z, — z. This contra-
dicts the assumption that {z,} is a sequence in S,.

In order to show for arbitrary « € R that the Hessian is
Lipschitz continuous on S, it is enough to show that each
element of V2 ]N is continuously differentiable on S,. The par-
tial derivatives of (30) may be readily computed® and seen
to be continuous functions on S, C 4; X §,. However,
41 % 4, is bounded, therefore S, is also bounded (and closed),
hence compact. Therefore, each partial derivative of V?2 ]N, as
a continuous function on a compact set, is bounded. Finally,
the bounded inverse condition on the Hessian follows from
the fact that the barrier functions are strictly concave in x
and strictly convex in [y(",...,y™]. In particular, compu-
tation of the Hessian reveals that V2] < (—¢~1/(P*)2)I and
V@(l),,_,,ym)] > (t7'/max;(P?)?)I on 8, x 85, and hence S,.

4. SIMULATION RESULTS

The scope of the WCI analysis extends generally to DMT-
based DSL systems. This section examines two particu-
lar cases that are deployed prevalently: VDSL and ADSL.
In VDSL, a prominent interference issue is the upstream

> The expressions are lengthy and omitted for space.
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FIGURE 2: Binder configuration for upstream VDSL simulations (not to scale). The dashed line is of varying lengths.

WCl rate as a function of line length

First, consider the WCI rate bound when the variable-length
line is the victim line (Player 1). Numerical results are shown
in Figure 3, where a lower bound rate as well as the rate ob-
tained when all lines execute full-power rate-adaptive (RA)
IW are plotted as a function of victim line length. Note that
full-power RA IW is quite different from fixed-margin (FM)
IW, where power is minimized while achieving a fixed rate
and margin [18]. To investigate practical bit loading con-
straints numerically, RA TW with discrete bit constraints [9]

8
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FIGURE 3: Achievable rates in upstream VDSL as a function of vic-
tim lines length (200-1000 m).

near-far effect, which is caused by crosstalk from short-
(“near”) lines FEXT coupling into longer (“far”) lines. In
ADSL, the issue of RT FEXT injection into longer CO lines
is similarly of concern. Numerical results for these sample
deployments demonstrate the practicality of the WCI analy-
sis and show surprising commonalities between the different
scenarios. In all simulations, the interior-point technique is
used with an error tolerance of less than 0.1%.

4.1. VDSL upstream

The WCI rate bound is first applied to two different up-
stream VDSL scenarios exhibiting the near-far effect. The
binder configuration is illustrated in Figure 2. For all sim-
ulations, 19 X 300 m lines, 10 X 1200 m lines, and one line
of varying length occupy the binder of 24 AWG twisted-
pairs. The FTTEx M2 (998 FDM) bandplan is employed
with HAM bands notched and the usual PSD constraints re-
moved. Tones below 138 kHz are disabled for ADSL compat-
ibility, and the normal PSD masks are not applied. The FDM
condition is satisfied for this configuration, hence 3, = 0.
For 1077 BER, assume coding gain of 3 dB, with 6 dB mar-
gin, thus I' = 12.5 dB. Each line is limited to 14.5 dBm power
(P* =14.5dBm, P’ =1 - 14.5dBm).

is executed on the victim modem assuming the WCI (11).
Player 1 achieved rate with discrete bit loading is plotted as
R}. Evidently, R} < R*, and therefore R} is also a lower
bound to the achievable rate under the WCI.

Observe that for most line lengths, the rate achieved by
RA IW is fairly close to the WCI bound, particularly near
200 m and 900 m. For intermediate lengths (= 650 m ), rate-
adaptive IW can perform up to =~ 75% better than the WCI
bound, though the absolute difference is small. As a corol-
lary, the interference generated by IW in this configuration is
deleterious in the sense that it is close in rate to the WCI sad-
dle point. This finding is consistent with results [11] showing
that other centralized DSM strategies can significantly out-
perform IW in such cases. Furthermore, fixed-margin (FM)
IW can also be seen to perform significantly better than the
WCI bound when rates are adjudicated reasonably [18].

4.1.2.  WCl rate as a function of PBO

Motivated by the results of the previous section showing that
the full-power WCI rate bound can decrease precipitously as
loop length increases, the efficacy of upstream power back-
off (UPBO) at mitigating this effect is considered. This sec-
tion examines a simple power-backoff strategy in the form of
power-constrained RA IW for Level 0-1 DSM. Though the
use of RA IW is retained, an effect similar to fixed-margin
(rate-constrained) IW [18] is induced by imposing various
tighter sum power constraints. In particular, the variable-
length line is set to length 300 m, and (sum) power backoff
is imposed on all (20) 300 m lines with full power retained
on the (10) 1200 m lines. By taking the victim line to be one
of the 300 m lines, the 300 m WCI curve in Figure 4 is gen-
erated, yielding a lower bound to the achievable data rate for
all 300 m lines in the binder. The 1200 m WCI curve repre-
sents the case where the victim modem is instead taken to
be one of the 1200 m lines. To compare standardized SSM
techniques to DSM, the rates achieved using the SSM VDSL
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F1GURE 4: Achievable rates in upstream VDSL as a function of short-
line (300 m) power backoff.

UBPO masking technique defined for the noise A environ-
ment [29] are illustrated by dashed horizontal lines.

The results illustrate that a tradeoff exists between the
rates of the short and long lines. Examining the 1200 m
lines, the proposed technique improves both the RA TW-
achieved and WCI bounds significantly up to approximately
—30 dBm, with diminishing returns for further PBO as the
300 m line FEXT no longer dominates the interference pro-
file. However, further PBO decreases the achievable rates of
the 300 m lines, as expected. The WCI bound is again fairly
tight. Thus by employing such a simple PBO scheme with
Level 1 DSM, one can dynamically control the tradeoff be-
tween short and long lines to best match desired operat-
ing conditions, that is, operating with guaranteed ~ 4 MBps
on the 1200m lines and = 7.75 MBps on the 300 m lines.
In this example, the SSM technique achieves approximately
the same performance as this simple DSM technique at one
tradeoff point (~ —22 dB PBO).

4.2. ADSL downstream with remote terminals (RTs)

The WCI rate bound is also applicable to ADSL. This sec-
tion considers an RT ADSL configuration as illustrated in
Figure 5. For all simulations, 25 ADSL lines are located
2000 m from a fiber-fed RT 4000 m from the CO. Addition-
ally, 5 x 5000 m lines are present in the binder. The FDM
ADSL standard [30] parameters are assumed. As in the VDSL
simulations, I' = 12.5dB. Each line is limited to 20.4 dBm
downstream power (P* = 20.4 dBm, PY = 1-20.4 dBm), and
the standard PSD masks are neglected.

A common problem of such configurations is that the
signal from the CO to the non-RT (7000 m) modems will
be saturated by FEXT from the RT lines. As in the VDSL ex-
ample, the efficacy of (sum) power backoff for the RT lines
as a means of improving the rate of the CO lines is stud-
ied. Figure 6 shows the dependence of rates on the level of

4000 m 2000 m

RT D 25 x 6000 m

D 5 % 5000 m

CO

FIGURE 5: Binder configuration for downstream RT ADSL simula-
tions (not to scale). A common RT is used for each line.
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F1GURE 6: Achievable rates in downstream ADSL as a function of
RT line power backoff (relative to 20.4 dBm nominal TX power).

power backoff (relative to 20.4 dBm) for the RT lines. The
horizontal lines represent the performance obtained by SSM
with the standardized PSD masks.

The WCI bound is reasonably close to actual power-
controlled RA TW performance on both RT and CO lines.
Figure 7 shows the spectrum adopted at the (approximate)
Nash equilibrium, as well as the power allocation chosen by
discrete IW against the noise induced by Player 2, yielding
R (in discrete IW, tones above 47 are not used because they
correspond to fractional bit loadings). The simulation shows
that Player 1 interference is dominated by interference from
the RT modems; these modems induce a “kindred-like” noise
while the CO lines concentrate their power at low frequen-
cies. Also illustrated by example is that the Player 2 optimal
strategy may be highly frequency-selective, and therefore the
existing interference analysis technique of setting tight PSD
masks for each modem cannot capture the WCI unless the
masks are set very high.® As in VDSL, a wide range of useful
operating points may be attained; for example, it is possible
(through proper power control) to guarantee 3 MBps service
on all lines, whereas this rate point was far from being feasi-
ble with SSM or with full-power rate-adaptive IW. However

¢ Doing so would consistently overestimate interference power, and under-
estimate achievable DSM performance.
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without any power backoft, the performance of RA IW and
the WCI bound is near that of SSM, showing the key role of
power control in obtaining DSM gains in this setting.

5. CONCLUSION

This paper has studied the worst-case interference encoun-
tered when deploying Level 0-2 DSM techniques for next-
generation DSL. A game-theoretic analysis has shown that
under mild conditions, a pure-strategy Nash equilibrium ex-
ists in the WCI game, and can be computed using standard
optimization techniques. The Nash equilibrium provides a
useful lower bound to the achievable rate for a DSL modem
employing DSM under any power-constrained interference
profile. Furthermore, the structure of the Nash equilibrium
reveals that for FDM systems, IW is optimal in a maximin
sense.

The WCI bound was applied to a Level 0—1 upstream
near-far VDSL scenario and was found to be numerically
tight. The utility of a simple DSM UPBO strategy employing
RA IW was compared to SSM UPBO, were it was found that
control of rate tradeoffs is possible with DSM, which may al-
low significantly preferable operating rates. A similar trade-
off was observed in RT ADSL systems, where CO line per-
formance benefits significantly from proper power control.
These results suggest that the parameter of transmit power
is important to DSM performance, in the sense that proper
power control can beget large performance gains in this set-
ting.
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