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Multimode systems have emerged as an area- and power-efficient platform for implementing multiple timewise mutually ex-
clusive digital signal processing (DSP) applications in a single hardware space. This paper presents a design methodology for
integrating flexible components and controllers into primarily fixed logic multimode DSP systems, thereby increasing their overall
efficiency and implementation capabilities. The components are built using a technique called small-scale reconfigurability (SSR)
that provides the necessary flexibility for both intermode and intramode reconfigurabilities, without the penalties associated with
general-purpose reconfigurable logic. Using this methodology, area and power consumption are reduced beyond what is pro-
vided by current multimode systems, without sacrificing performance. The results show an average of 7% reduction in datapath
component area, 26% reduction in register area, 36% reduction in interconnect MUX cost, and 68% reduction in the number of
controller signals, with an average 38% increase in component utilization for a set of benchmark 32-bit DSP applications.
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1. INTRODUCTION

The burgeoning demand for high performance DSP sys-
tems has spurred widespread research on efficient platforms
for implementing arithmetic intensive applications charac-
teristic of such systems. Based on these applications’ high
throughput requirements, fixed logic application-specific in-
tegrated circuits (ASICs) are normally the platform of choice.
However, their lack of flexibility is disadvantageous in today’s
world of disparate and rapidly evolving standards and appli-
cations, which require the execution of a variety of DSP tasks.
In the absence of flexibility, direct hardware implementation
of all of the tasks is the only option and can be prohibitively
expensive—even in this “transistors for free” era. This has led
to the search for new methods for adding flexibility to other-
wise fixed logic DSP circuits, without having to pay the large
performance, area, and power penalties associated with field
programmable gate arrays (FPGAs), DSP processors, or even
application-specific instruction processors (ASIPs).

An emerging platform that has been proposed to address
the flexibility issue in ASICs for DSP is “multimode” systems
[1, 2]. Tasks that are timewise mutually exclusive are syn-
thesized to the same hardware area, allowing the tasks to be
separated temporally rather than spatially. When a particu-
lar task must be executed, the system switches to the appro-
priate hardware configuration “mode.” Such a design plat-
form can prove useful for many DSP systems. For example,

a system jointly implementing two different standards (e.g.,
CDMA/GSM formats in a cell phone, different region DVD
formats in a Universal DVD player, etc.), where only one
mode needs to be active at any given time, can benefit from a
multimode implementation.

However, current multimode systems are severely con-
strained in their capabilities and efficiency due to their lim-
ited reconfigurability. Reconfiguration between modes is ac-
complished by changing only the dataflow between compo-
nents; the datapath components themselves do not change.
The individual controllers for each mode are composed to-
gether into a single controller that also does not change be-
tween modes. Hence, such a system is inefficient and not very
powerful, with only the interconnections changing between
modes.

In this paper, we present a multimode DSP system design
and synthesis technique that provides greater implementa-
tion flexibility by enabling reconfigurability in controllers
and datapath components, as well as the interconnections.
In addition, reconfiguration may be performed not only be-
tween modes but also within a single mode. This technique
provides improved results in terms of resource requirements
and/or task latency and power consumption (via increased
component utilization), when compared to existing multi-
mode synthesis techniques, enabling more powerful DSP ap-
plications. While these improvements would likely be lost if
general-purpose reconfigurable devices (e.g., FPGAs) were
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F1GURE 1: Sample DFGs.

used to provide the hardware flexibility, the technique pre-
sented here uses small-scale reconfigurability (SSR) [3, 4].
SSR provides hardware flexibility without the area, delay,
power, and reconfiguration time penalties associated with
general-purpose reconfigurable fabric.

1.1. lllustrative example

Consider the two dataflow graphs (DFGs) in Figure 1, each
representing a different mode of a DSP system. The datap-
ath and controller designs must be capable of implementing
either mode.

1.1.1.  Datapath design

Assuming the system is not pipelined and specifications dic-
tate that modes have minimum latency, DFG la (Figure 1(a))
would require two multipliers (MULTs) and one adder
(ADD), and DFG 1b (Figure 1(b)) would require one MULT
and one ADD. If both tasks were implemented spatially sep-
arately, the total number of arithmetic components would be
three MULTs and two ADDs.

However, if the tasks are timewise mutually exclusive,
they may be implemented using existing multimode tech-
niques in which components may be shared by both tasks,
but must remain fixed. Such an implementation would re-
quire only two MULTs and one ADD, and the proper mode
would be invoked based on the task to be implemented.
While the tasks share datapath components, they require sep-
arate controllers. In addition, interconnect complexity is also
high, as component interconnections have to support the
dataflow in both product instances. For example, the adder
component producing the overall output (mapped to nodes
v3 or V) gets its inputs either from the two multipliers (for
DEFG 1a) or from a multiplier and itself (for DFG 1b), requir-
ing a MUX to be added at the inputs that was unnecessary in
the separate single-mode implementations.

Now consider a flexible arithmetic component (FAC) ca-
pable of performing both addition and multiplication that is
as fast as a multiplier but is smaller than the combined areas
of an adder and multiplier (although larger than each indi-
vidually). For example, the “morphable multiplier” uses the
adder chains within the multiplier to perform addition with
minimal area and no delay penalties [5]. The flexibility of a
FAC is such that not only can it be a multiplier in one mode
and an adder in another (intermode reconfiguration), but it
could also be an adder and a multiplier in different control
steps (c-steps) within the same mode (intramode reconfigu-
ration).

Using FACs and intramode reconfiguration, DFG 1la can
be implemented with one MULT and one FAC, with the
FAC switching between a MULT (to execute v, in c-step 1)
and an ADD (to execute vs in c-step 2). If DFG 1b were
synthesized independently, the technique would allocate one
MULT and one ADD. But given that the two DFGs are to
be implemented in the same physical multimode space, they
can be synthesized together, resulting in one MULT and one
FAC. Given the assumption that one FAC is smaller than
the combined area of an adder and a multiplier, area sav-
ings are achieved over existing limited reconfigurable mul-
timode synthesis techniques. Component utilization is also
increased, reducing wasted power consumption. Note that
if only intermode reconfiguration is utilized (with the FAC
functionality being fixed within a mode through all c-steps),
the component allocation would be an ADD, a MULT, and a
FAC, which still provides an improvement over the nonmul-
timode implementation.

This technique also inherently leverages any inter- and
intra-DFG isomorphism. Using efficient binding of flexible
components to nodes, the need for MUXes in the intercon-
nection network is minimized without the need for any iso-
morphic subgraph identification and matching on the nodes
in the DFG. Consider that nodes v, and v, in Figure 1 use the
MULT component and nodes v,, v3, vs, and v use the FAC,
so the component interconnects will not change from one
mode to the other. Without the FAC, v, and vs would be ex-
ecuted on a MULT and ADD, respectively. Both operations’
results would be input to the ADD, requiring a 2 : 1 MUX
for the ADD and MULT to write to the same result register
or for the ADD to read from different source registers for the
different modes. For large system bit widths, MUXes become
very expensive. The technique presented here minimizes the
need for such MUXes (and control signals for the MUXes,
which must be generated individually for each mode), while
avoiding computationally intensive subgraph isomorphism
identification algorithms [6].

1.1.2.  Controller design

Conventional multimode or domain-specific customization
approaches, where fixed datapath components are shared be-
tween tasks, require separate controllers, with the individual
controllers typically MUXed at their outputs to form a com-
posite controller. However, the composite controller in such
designs often becomes complex enough to require a pro-
grammable microcode-based implementation, which is less
area- and power-efficient and has lower performance than
hardwired controllers.

SSR-based adaptable controllers can reduce these ineffi-
ciencies. Consider now a composite controller for the multi-
mode system shown in Figure 1. Assume that the individual
instance controllers have only minor differences; say, for ex-
ample, one of their output functions is represented by f; in
one and f, in the other. Assume f; and f, are defined as fol-
lows: fi =a+b+ce+de f, = ac+ad+bc+bd+e. Fora
composite controller, both functions could be separately im-
plemented on the same device, and selection between them
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for the specific mode could be performed with an output
MUX. Using only 2-input fixed logic gates from a standard
cell library such as the Lsil0k library, the total circuit cost for
such an implementation is 19 inverter-equivalent gates.

The SSR-designed flexible controller provides the same
flexibility more efficiently. f; and f, are jointly synthesized
as a multi-output function, thus maximizing logic sharing
between the functions and automatically obtaining the min-
imum implementation difference between them. The shared
logic (in this case, the common subexpressions X = a+b and
Y = c+d) is then implemented in fixed logic, while the differ-
ences are implemented in configurable logic. In our example,
the functions f; and f, are rewrittenas fj = X+e*Y and f, =
X*Y+e, and jointly implemented using programmable inter-
connect for a total circuit cost of 12 inverter-equivalent gates.

An algorithmic framework for integrating flexible datap-
ath and control components into multimode systems is pre-
sented in this paper. Conventional high-level synthesis tools
do not take advantage of the range of flexibility provided
by these components. For example, module allocation tech-
niques for multifunction ALUs (e.g., using operation clus-
tering, etc.) are not optimized for application-specific, lim-
ited flexibility addition. Other approaches for incorporating
ALUs, in which allocation precedes synthesis, are ineffective
for multimode systems since inter-DFG dependencies are not
effectively extracted for optimum allocation. In the following
sections, new algorithms and extensions to conventional al-
gorithms are proposed for datapath synthesis, allocation, and
binding, and for automatic control path synthesis for multi-
mode DSP systems with flexible components and controllers.

2. BACKGROUND AND RELATED WORK

In order to leverage the increasing relative performance, area,
and power benefits of hardware versus software, there is a
trend towards implementing in hardware many algorithms
and applications that had previously been done primarily
in software. This is particularly evident with the advent of
embedded system-on-a-chip (SOC) designs, in which em-
bedded processors and application-specific circuitry share
the processing load based on a designer-defined partition.
For applications requiring several disparate performance-
sensitive tasks, this often results in low resource utilization,
a metric for hardware efficiency.

One approach that has been suggested to address the low
resource utilization issue, as well as to enable more power-
ful hardware implementations of DSP systems, is to jointly
synthesize different applications to build a unified datapath.
By using separate controllers, the datapath may be animated
to implement the various applications. This method was
first explored in [2] as “multifunctional processing units.”
The work provided heuristic local search algorithms for the
joint allocation of components so as to minimize intercon-
nect. Designing application-specific programmable proces-
sors (ASPPs) by bundling similar applications and jointly
synthesizing them has also been investigated [7]. Flexible
datapaths have been proposed for fault tolerance purposes,

with various configurations available to recover from com-
ponents failures [8]. Most recently, a “spatially chained trans-
formation” was introduced to enable dataflow graphs of dif-
ferent applications to be chained together for joint compo-
nent allocation and binding [1]. The essential element in all
of these efforts is that timewise mutually exclusive applica-
tions can reside in different configurations in the same phys-
ical area of a “multimode” system.

Domain-specific customization is a related approach for
application-specific flexibility in reconfigurable systems [6,
9]. This approach involves creating a custom reconfigurable
architecture to specifically implement a set of circuits from
a given domain and be completely flexible within that do-
main. This is, in a sense, a mirror image of our approach.
While ours is aimed at inserting small amounts of reconfig-
urability into primarily fixed logic circuits, domain-specific
customization inserts fixed logic into circuits with primarily
reconfigurable fabric. The synthesis techniques developed for
such systems, therefore, address a different set of issues (e.g.,
template generation, isomorphic subgraph identification and
matching, etc.) that is relevant to domain-specific customiza-
tion. It is difficult to adapt these techniques to address is-
sues specific to our problem, such as runtime reconfigurabil-
ity within isomorphic subgraphs. The technique presented in
this paper addresses such issues.

While hybrid FPGAs and reconfigurable cores provide
hardware flexibility, their coarse integration of fixed logic
and reconfigurable fabric result in significant area, perfor-
mance, and power penalties. Techniques have therefore been
explored to add flexibility to individual hardware compo-
nents without the penalties associated with general-purpose
reconfigurable arrays. By reusing adder chains within a mul-
tiplier, an area-efficient “morphable” multifunction compo-
nent capable of both addition and multiplication was de-
scribed in [5]. Such a unit is useful in DSP systems domi-
nated by multiply-accumulate (MAC) chains. Another flexi-
ble component capable of both single-precision and double-
precision floating point multiplication was described in [10].
Synthesis techniques that integrate flexible components into
primarily fixed logic systems are detailed in [3]. That work
augmented traditional force-directed list scheduling (FDLS)
[11] for component scheduling and allocation using a hybrid
library of fixed and reconfigurable arithmetic components,
providing significant area savings for single-mode systems.
The work presented here provides hybrid library synthesis
techniques for multimode systems, yielding even greater sav-
ings.

3. EFFICIENT FLEXIBLE HARDWARE

Hardware flexibility is traditionally achieved with large-scale,
general-purpose reconfigurable arrays such as FPGAs, which
are significantly less efficient (in terms of area, delay, and
power) than fixed logic. The logic is not as dense, delays
are larger through SRAM-based lookup table (LUT) logic
and programmable interconnects, and power consumption
is greater due to the increased node capacitance.
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The SSR design technique minimizes these penalties by
inserting into a primarily fixed logic design only the flexibil-
ity that is required for a specific application. Reconfigurable
logic and interconnect (e.g., SRAM-based LUTs, MUZXes,
SRAM-gated pass transistors, etc.) are finely integrated with
fixed logic at a gate-level granularity. While some recent
technologies contain both fixed and reconfigurable logic on
the same chip, they are coarsely integrated. For example,
some hybrid FPGAs contain a fixed logic core surrounded by
general-purpose reconfigurable fabric. Domain-specific cus-
tomization [6, 9], discussed in Section 2, provides another
example. SSR allows for finer integration and application-
specific implementation, providing the necessary flexibility
with ASIC-like efficiency. In addition, the reconfiguration
time is significantly shorter, as there is less to reconfigure.
The tradeoff is the design effort and fabrication costs as-
sociated with all ASICs, but high-volume applications off-
set these costs, and many applications require ASIC perfor-
mance.

The SSR design methodology can be applied to a range
of designs and applications. The remainder of this section
focuses on the use of SSR for designing FACs and adaptable
finite state machines (FSMs), which enable efficient datapath
and control flexibility.

3.1. Flexible arithmetic components

When designing a FAC, the similarities between the desired
operations can be implemented in fixed logic, and reconfig-
urable logic and interconnect must be used to implement the
differences. Therefore, the first step in designing a FAC with
SSRis to determine the minimum distance between the oper-
ations to be implemented, thereby minimizing the need for
reconfigurable hardware (and its associated penalties). Cer-
tain operations have inherently greater similarities than oth-
ers, making them more conducive to SSR implementation.
For example, adders and multipliers have similar substruc-
tures, resulting in an especially efficient flexible implementa-
tion.

Other DSP operation combinations may also be consid-
ered for FAC implementation: a wide bit width operation
could be integrated with multiple operations of narrower
width; several low-precision operations could be embedded
within a high-precision operation [10]; a rarely used opera-
tion could be integrated within a high use operation (increas-
ing hardware usage); and so on. In addition, reconfigurable
rounding modes may be added so that the binary point of the
output can be moved based on the inputs and desired round-
ing. This would address the rounding inaccuracy and scaling
problems that plague conventional fixed-point components
used in hardware signal processing. As stated in Section 1.1,
for a FAC to provide area savings, its area must be smaller
than the combined area of all of the operations implemented
individually.

FAC:s built using SSR avoid the large performance, area,
and power penalties associated with FPGAs and DSP pro-
cessors. For example, we have presented a flexible com-
ponent capable of executing a 4-bit fixed-point addition,

subtraction, multiplication, or comparison [3]. The areas of
the various components normalized in terms of the com-
parator (which is the smallest of the fixed components at
52 inverter-equivalent gates) were obtained as Comparator:
X, Adder/Subtractor: 1.44X, Multiplier: 4.5X, Limited Flexi-
ble Unit (LFU; Adder/Subtractor and Multiplier): 4.81X, and
Full Flexible Unit (FFU; Comparator, Adder/Subtractor, and
Multiplier): 5.31X. The flexible units were therefore of very
reasonable size compared to the fixed logic units. To com-
pare these inverter-equivalent gate counts to an FPGA im-
plementation, the largest fixed component (i.e., the multi-
plier) was considered. The 4-bit multiplier implemented on
an FPGA with 4-input LUTs required 82 LUTs (using the Xil-
inx ISE software package). At an approximate area cost of
80 inverter-equivalent gates for each LUT, this is equivalent
to 6560 inverters or 126.15X. This does not include the in-
terconnect network, which consumes the majority of recon-
figurable fabric area. Reconfiguring the flexible components
is also efficient since it just involves changing the configu-
ration bits for a single 4-input look-up table and select sig-
nals for internal MUXes as opposed to reconfiguring large ar-
eas of an FPGA. Small-scale reconfigurability clearly provides
hardware flexibility with significantly less area than general-
purpose FPGAs. Since FPGAs are, in general, more efficient
than DSP processors when customized for a particular appli-
cation, SSR provides greater benefits overall.

While SSR provides area savings, delay penalties must
also be considered, as the length of a c-step may increase
with flexible components. For the 4-bit components in [3],
the relative path delays of the components were Compara-
tor: Y, Adder/Subtractor: 2Y, Multiplier: 3.67Y, LFU: 4.67Y,
and FFU: 5Y, with the approximation that all combinational
gates have equal delays. Therefore, assuming the length of the
c-step was defined by the multiplier delay, the use of an LFU
or FFU will increase the c-step length by 27% and 36%, re-
spectively. These increases must be traded off with the area
savings provided by hybrid library scheduling and allocation.
In addition, these delays are significantly less than those of an
FPGA, revealing the delay benefit of SSR.

It must be noted that the specific multiplier chosen for
comparison is that with the shortest critical path. For other
multiplier structures, the percentage delay increase would be
smaller. For example, the results in this paper use an aug-
mentation of the “morphable multiplier” [5], which is ca-
pable of implementing both multiplication and addition (in
fact, it can perform two data-independent additions in paral-
lel) with the same delay as a fixed logic multiplier. Given the
regularity with which MAC operations occur in DSP algo-
rithms, this FAC provides significant benefits for multimode
DSP systems. This component and the augmentations per-
formed are discussed in Section 5.

3.2. Flexible controllers

Controllers in application-specific multimode systems are
typically designed as a composition of individual controllers,
one for each mode. These controllers can be microcoded or
hardwired FSMs. Hardwired FSMs are the more common
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choice given their smaller area and higher performance.
However, when one considers designing a single flexible con-
troller capable of being adapted for each mode, microcode
has been the traditional option, as different microinstruc-
tions can be loaded for each mode. But as with FPGAs,
the area, performance, and power costs of microcoded con-
trollers make them significantly less efficient that hardwired
FSMs.

SSR can again be used to find the minimum distance
between the various mode controllers to implement an ef-
ficient flexible hardwired FSM. Consider that an FSM can be
defined as a six-tuple (S,I,0, Sy, §,1), where S is the set of
states, I is the input set, O is the output set, Sy is the ini-
tial state, § is the state transition function set, and A is the
output function set. For an FSM to be made flexible, the §
and A functions can be implemented using SSR such that
they can be configured to implement the various mode con-
trollers (including the control signals setting the FAC func-
tionalities), and the cardinality of S is defined by the maxi-
mum § cardinality of the individual mode controllers. Such
an implementation is likely to be significantly more efficient
than either separate hardware controllers or programmable
microcode.

The adaptable FSM is optimally implemented as follows.
The set of state transition functions defined by ¢ is fed to
a logic synthesis tool and jointly synthesized as a multiple-
output function circuit with logic sharing between the func-
tions. The shared logic in the final synthesized circuit is the
logic common to all of the functions and is implemented
in fixed logic. The logic specific to each function is imple-
mented in reconfigurable logic (using LUTs and/or MUXes)
and changes between contexts. The process is repeated for the
A set.

This process is efficient as long as the intermode func-
tions differ only slightly from each other. The multimode
system synthesis techniques detailed in the following section
help to minimize these differences, ensuring an efficient im-
plementation. It should be noted that the number of config-
uration control bits is limited due to the small scale nature
of SSR. Therefore, the extra logic needed for generating these
bits in the flexible FSMs is small compared to the savings ob-
tained in simplifying the steering logic for the interconnect
MUXes.

4. MULTIMODE DSP SYSTEM SYNTHESIS

While the SSR design methodology helps to enable efficient
flexible hardware, a multimode DSP system’s efficiency is ul-
timately driven by high-level synthesis, which ensures the
flexibility is used efficiently. General multimode synthesis
techniques are emerging, but this section presents the first
multimode DSP system synthesis technique that incorpo-
rates FACs and adaptable FSMs. In fact, it is noted by the
designers of the morphable multiplier that no synthesis tech-
niques exist that make use of such components [5].

The steps in Figure 2 detail the synthesis methodology
and are explained via the subsequent example.

(1) input DFGs and system and DFG-specific constraints;
2) identify the set of potential arithmetic components;

3) traverse DFGs for critical paths;

4) for each DFG (in order of increasing slack) HFDLS (DFG);
HAL (DFG);

(5) c-step matching (scheduled DFGs);

(6) for each DFG (in order of decreasing resource usage)
bind (DFG);

(7) design controller.

(
(
(

FIGURE 2: Multimode system synthesis methodology.

¢

(a) (b)

F1GURE 3: Sample DFGs.

In step 1, the inputs to the system are the individual
DEFGs, representing the signal processing modes and an op-
tional overall delay and/or resource constraint on the whole
system. Parameters associated with each DFG, such as the
precision, data width, and maximum tolerable latency (or
optionally, the resource constraint), are also input to the sys-
tem. (The results in Section 5 are for deriving the minimum
resource allocation under latency requirements. Future work
will address other scenarios.)

Consider the two DFGs in Figure 3. Assume that the
latency constraints on DFG 3a (Figure 3(a)) and DFG 3b
(Figure 3(b)) are eight c-steps and seven c-steps, respectively.
At this time, a preprocessing step, step 2, is performed that
identifies the set of arithmetic components that could pos-
sibly execute each operation, including satisfying operations
of various bit widths, such as implementing a 32-bit addi-
tion with two 16-bit adders. For this example, the total re-
source set includes ADDs, MULTS, and the augmented mor-
phable multipliers. Assume that all operations have the same
bit width and that the c-step latencies of an ADD and MULT
are one and two, respectively, in both the fixed logic com-
ponents and the FAC. As stated in Section 3.1, the FAC can
also do two data-independent additions in a single c-step.
Given that FAC reconfiguration time is minimal due to the
SSR implementation, FACs can change functionality within
the same mode (i.e., intramode reconfiguration).
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The DFGs are then traversed in step 3 to find the critical
paths based on data dependencies and the operation latency
assumptions. Counting additions as one c-step and multi-
plies as two, the longest paths on DFG 3a and DFG 3b are
eight and six steps, respectively. Therefore, to meet the la-
tency constraints of each DFG, there is no c-step slack for
DFG 3a and one c-step for DFG 3b. This determines the DFG
scheduling order, with the DFG with the least slack scheduled
first.

Therefore, DFG 3a is scheduled first in step 4 using hy-
brid force-directed list scheduling (HFDLS) and hybrid allo-
cation (HAL) [3]. Unlike the conventional FDLS algorithm
that lowers the concurrency of same-type operations per c-
step, the HFDLS algorithm uses a modified force calculation
such that an overall balance in the number of operations per
c-step is achieved. The HFDLS algorithm has the same worst
case computational complexity as FDLS: O(n?), where 7 is
the number of nodes to be scheduled in each DFG. After
scheduling, general multifunction ALU allocation algorithms
can be used by considering the flexible component as a kind
of limited ALU. However, the bulk of the work in creating an
optimum schedule requiring the minimum number of flex-
ible components is done by HFDLS, and a simple allocation
algorithm, such as HAL, is sufficient to allocate components
on these scheduled graphs. HAL uses principles from set the-
ory to produce an exact minimum module allocation set. The
algorithm has a computational complexity of O(m), where m
is the number of adder and multiplier nodes to be allocated.
Further details on both HFDLS and HAL can be found in [3].

Given that DFG 3a has no slack, it must be scheduled in
the fewest number of c-steps. The resulting scheduled DFG
is shown in Figure 4. From this schedule, it is clear that two
ADDs and one MULT would be necessary if only fixed com-
ponents were available. However, this DFG can be imple-
mented with a single FAC. Given the relative size of the var-
ious components, this represents a large reduction in area,
even within a single mode. (This echoes the results in [3],
which focus on FACs in single-mode systems.)

Once the first DFG is scheduled, the other DFGs are each
scheduled (in the order of increasing slack) so that they meet
their individual latency requirements. For each DFG, an at-
tempt is made to meet the required latency without more re-
sources than are currently allocated. When the resource allo-
cation must be increased to meet a latency requirement, the
global resource allocation is updated. While an increase in
the allocation set may enable already scheduled DFGs to re-
duce latency by rescheduling, the algorithm does not do so,
as the DFG latency requirements have already been met. In-
stead, this resource slack is exploited during binding, as dis-
cussed below. When all of the DFGs are scheduled, the fi-
nal resource allocation set, including both fixed and flexible
components, is known.

When DFG 3D is scheduled using this approach, it is ob-
vious that it cannot be scheduled with only one FAC. There-
fore, the number of resources must be increased. The mini-
mum resource set to schedule DFG 3b, while meeting its la-
tency requirement, is two FACs, as opposed to 2 ADDs and
2 MULTs if FACs were not available. The resulting scheduled

F1GURE 4: Scheduled DFG for DFG 3a.

.OO

@

FiGUre 5: Scheduled DFG for DFG 3b.

DFG is shown in Figure 5. (Note that the schedule would be
different if only fixed components were available, as HFDLS
often produces different schedules than traditional FDLS.)
Even though we increased the component allocation, we do
not reschedule DFG 3a. (Note that in this case the schedule
would not change anyway.)

If the DFGs have different numbers of c-steps, step 5
matches c-steps across the DFGs. The goal is to maximize
same-control-step component usage, thus minimizing the
functional differences between the various mode controllers
for an efficient adaptable FSM design. This matching is done
using maximal weighted matching, which can be solved in
polynomial time [11]. The weight assigned to each control-
step-connecting edge in the matching graph is the number of
resources common to the connected c-steps.

In the example here, there are only 2 DFGs, making it a
case of bipartite matching. Given that DFGs 3a and 3b have
eight and seven c-steps, respectively, there is only a slack of
one c-step for the matching process. So c-step 1 in DFG 3b
can match with either c-step 1 or 2 in DFG 3a, c-step 2 can
match with either c-step 2 or 3, and so forth. Given the bal-
anced resource needs of each c-step, the edges all have equal
weight. Therefore, by convention, the same number c-steps
are matched across DFGs (1 to 1, 2 to 2, etc.).
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Step 6 binds operations to components, starting with
the DFG that last set the resource allocation, as it is typi-
cally the mode with the highest component utilization. Max-
imal weighted matching is used to minimize interconnect,
MUZXes, and registers [13]. An important change to tradi-
tional binding is that the graph is constructed with compat-
ibility edges drawn from operation nodes not only to com-
ponents of that type but also to FACs, albeit with a smaller
“component match” weight factor.

In binding the other DFGs, an effort is made to minimize
interconnect, MUX, and register overhead above that set by
the base DFG as well as to simplify the subsequent controller
design. The key benefit provided by FACs is that subgraphs
within a DFG with different operations are actually isomor-
phic in both nodes and edges if the disparate operations can
be bound to the same FAC. Therefore, the binding algorithm
is likely to find a larger number of subgraphs and individual
nodes that share inputs/outputs. These benefits are further
enhanced by the resource slack in the DFGs that were not
rescheduled after additional resources were allocated.

The binding result for DFGs 3a and 3b are shown in
Figure 6. The different block shadings represent the two
FACs. Note that the darkly shaded component always out-
puts to itself, except for c-step 1 in DFG 3b, and the lightly
shaded component always feeds the same input port of the
other component. This matching helps minimize the inter-
connect, MUXes, and registers.

The final step is controller design. As discussed in Section
3.2, SSR and multiple output logic synthesis enable the con-
trollers for all of the modes to be implemented in the same
physical space, with their similarities implemented in fixed
logic and interconnect and their differences in reconfigurable
logic. The outputs of the FSM include the control signals for
the MUZXes, register enables, and FAC settings.

None of these steps in this process are more computa-
tionally complex than what is currently done for multimode
system synthesis, but as the results show in the following sec-
tion, the area and power savings can be significant.

5. RESULTS

The methodology presented in this paper has been evalu-
ated by synthesizing multimode DSP systems with runtime
reconfiguration. The base DFGs used are well-known DSP
instances from the high-level synthesis literature. The param-
eters of these DFGs, in terms of number of nodes, minimum
latency, and so forth, span a wide range and are representa-
tive of the kind of DFGs that occur in multimode systems.
ELLIP is a fifth-order elliptic digital filter with 33 operations
and minimum latency of 13 c-steps [12], EDGE is an edge
detector with 241 operations and minimum latency of 121
c-steps [13], ARFILT is an autoregressive filter with 28 op-
erations and minimum latency of 8 c-steps [14], FDCT is a
fast discrete Fourier transform instance with 42 operations
and minimum latency of 6 c-steps [15], and FIRFILT is a 16-
point FIR filter with 23 operations and minimum latency of
9 c-steps [16].

The datapath is assumed to be 32-bit wide in all of the
example systems. The component library consists of 32-bit
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fixed logic adders, multipliers, and FACs capable of both ad-
dition and multiplication (including two data-independent
ADDs in one c-step). Other FACs (including those not
specific to DSP applications) will be considered as part of
future work. As discussed in Section 3.1, the FAC is based
on the morphable multiplier [5]. The component areas in
terms of the number of constituent transistors are as follows:
ADD = 1306, MULT = 6150, FAC = 6860. The multi-
plier and multiply-configured FAC have latencies of two c-
steps. Pipelined versions of these components can be built
at a cost of approximately 1000 additional transistors each,
which would be necessary if the required maximum latency
was less than what non-pipelined components allowed. Re-
configuring this component simply involves sending the ap-
propriate select signal to internal MUXes and is virtually in-
stantaneous.

The component allocations and resource utilizations for
various DFG combinations are shown in Table 1. The DFGs
were synthesized for minimum area under the imposed la-
tency constraint. The first three columns (SMFixed: single-
mode fixed) show the area for fully implementing each DFG
individually with fixed components. The next three columns
(MMFixed: multimode fixed) show the synthesis results for a
fixed logic multimode DSP system. Both SMFixed and MM-
Fixed were obtained using conventional FDLS and allocation
[1]. Finally, the synthesis results for a flexible DSP system
with intramode reconfiguration using the method presented
here are shown (MMFlex: multimode flexible), including the
datapath area savings and resource utilization increase over
the fixed logic multimode DSP system. We have shown in
[3] that performance gains in flexible single-mode systems
are attributable to both the use of FACs and the synthesis
algorithm. The modified synthesis and allocation procedures
presented here are therefore necessary to fully utilize the ben-
efits provided by FACs and flexible controllers for multi-
mode systems as well. It is important to note that domain-
specific synthesis and conventional multifunction ALU allo-
cation techniques could possibly be adapted to produce sim-
ilar, but intermode reconfiguration only, systems. However,
the intramode reconfiguration enabled by the technique pre-
sented here contributes a substantial portion of the benefit
over conventional fixed multimode DSP systems.
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TasLE 1: Component allocations and utilizations.
MM system SMFixed MMFixed MMFlex Improvement (%)
+ % Area Util. (%) |+ *» Area Ut (% )|+ = FAC Area Util (%) | Area Util. (%)
AR, FDCT,FIR | 7 14 95242 17.9% 4 8 54424 37.5% 1 6 2 51926 44.7% 4.59% 19.2%
ELLIP, FIR 5 4 31130 29.1% 3 2 16218 52.3% 1 0 2 15026 73.2% 7.35% 40.0%
ARFILT, FDCT | 6 12 81636 29.7% 4 8 54424 44.6% 0 6 2 50620 56.2% 6.99% 26.0%
FIR, EDGE 4 4 29824 36.1% 3 2 16218 57.8% 1 0 2 15026 90.1% 7.35% 55.9%
ELLIP, EDGE 4 29 824 33.6% 3 2 16218 53.7% 1 0 2 15026 81.5% 7.35% 51.8%
TABLE 2: Registers, MUXes, and control signals.
MM system MMFixed MMFlex Improvement (%)
Reg 2:1MUX Ctrl Reg 2:1MUX Ctrl Reg 2:1MUX Ctrl
AR, FDCT, FIR 18 83 249 14 51 53 22.22% 38.55% 78.71%
ELLIP, FIR 11 42 84 8 23 25 27.27% 45.24% 70.24%
ARFILT, FDCT 14 69 138 12 45 47 14.29% 34.78% 65.94%
FIR, EDGE 11 29 58 8 22 24 27.27% 24.14% 58.62%
ELLIP, EDGE 7 27 54 16 18 42.86% 40.74% 66.67%
controller. The flip-flops and other memory elements in both
Tasre 3: Controller logic areas. the fixed controller and the adaptable controller are the same
MMFixed MMFlex | Improvement and are hence not included in the area results.
MM system
Controller area | Controller area (%)
AR, FDCT, FIR 1094 709 35.19% 6. CONCLUSIONS
ELLIE, FIR 416 263 36.78% This paper presented an approach for synthesizing multi-
AR, FDCT 506 354 30.04% mode DSP systems with a hybrid library of fixed and flex-
FIR, EDGE 294 133 54.76% ible arithmetic components and adaptable controllers. The
ELLIP, EDGE 266 202 24.06% implementation capabilities and efficiency of the multimode

The increased resource utilization also results in less
wasted power consumption. For all three implementations,
turning off components that are completely unused in a
mode will help reduce power, but the overhead of turn-
ing components on/off prevents intramode component shut
down.

While these datapath area savings are significant, Table 2
shows that even larger savings are provided in terms of regis-
ters, MUXes, and control signals. The register and 2 : 1 MUX
reductions, due primarily to the binding process, are espe-
cially valuable, as the 32-bit wide datapath makes these com-
ponents large. The ~70% reduction in the number of control
lines (ctrl) to the datapath from the controller, which among
other things helps to simplify placement and routing, is ob-
tained as a result of both the binding process as well as the
use of adaptable controllers.

The controller logic area is also reduced, as shown in
Table 3. Since separate controllers need not be built, the logic
is greatly simplified. The area numbers shown are in terms
of inverter-equivalent gates and are only for the combina-
tional portion of the controller that implements the output
functions, including any LUTs in the case of the adaptable

system platform is greatly increased by the extra hardware
flexibility provided by small-scale reconfigurability, without
the large area, performance, and power penalties associated
with general-purpose reconfigurable fabric. The intramode
reconfiguration and the scheduling, allocating, and binding
flexibility provided by the FACs result in significant datapath
and control area savings and wasted power consumption re-
duction over existing multimode DSP system synthesis tech-
niques.
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