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This paper describes subband dependent adaptive shrinkage function that generalizes hard and soft shrinkages proposed by
Donoho and Johnstone (1994). The proposed new class of shrinkage function has continuous derivative, which has been sim-
ulated and tested with normal and abnormal ECG signals with added standard Gaussian noise using MATLAB. The recovered
signal is visually pleasant compared with other existing shrinkage functions. The implication of the proposed shrinkage function
in denoising and data compression is discussed.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. INTRODUCTION

Electrocardiogram (ECG) obtained by noninvasive tech-
nique is a harmless, safe, and quick method of cardiovas-
cular diagnosis. The accuracy and content of information
extracted from recording require proper characterization of
waveform morphologies that needs better preservation of
signals and higher attenuation of noise. Recently, wavelet
transform has proved to be a useful tool for nonstation-
ary signal analysis. Wavelets provide flexible prototyping en-
vironment that comes with fast computational algorithms.
A shrinkage method compares empirical wavelet coefficient
with a threshold. The coefficient sets it to zero if its magni-
tude is less than threshold value [1]. The threshold acts as an
oracle, which distinguishes between significant and insignif-
icant coefficients. Shrinkage of empirical wavelet coefficients
works best when the underlying set of true coefficients of
function f is sparse [4].

The wavelet shrinkage was conceptually inspired by the
work of Donoho and Johnstone (1995) as well as by the work
of Breiman and Bruce and Gao (1996). Donoho et al., de-
veloped wavelet shrinkage methods for denoising of func-
tion estimation [2]. Among wavelet shrinkage methods,
SureShrink is an optimized hybrid scale dependent thresh-
olding scheme based on Stein’s unbiased risk estimate (SURE)
[5]. It combines universal threshold selection schemes and
scale dependent adaptive threshold selection scheme that
provide the best estimation results in the sense of l2 risk
when true function is not known. However, since standard

soft shrinkage function is weakly differentiable only in the
first order, it does not allow for gradient based optimiza-
tion method to search for optimal solution for SURE risk
[3]. Asymptotically both hard and soft shrinkage estimates
are achieved within a factor log(n) of the ideal performance
[1]. The wavelet coefficients at coarsest scale are left intact,
while coefficients at all other scales are thresholded via soft
shrinkage with universal thresholding

λ = σ
√
2 logN , (1)

where σ2 is the noise variance and N is the length of the sig-
nal.

The shrinkage functions proposed by Donoho and John-
stone (1995) are the hard and the soft shrinkage functions:

δHλ (x) =
⎧⎪⎨
⎪⎩
0, |x| ≤ λ,

x, |x| > λ,

δSλ(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, |x| ≤ λ,

x − λ, x > λ,

x + λ, x < −λ,

(2)

where λ ∈ [0,∞] is the threshold.
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Figure 1: Subband-adaptive shrinkage model.

Note that the derivation of standard soft shrinkage func-
tion is not continuous. Both hard and soft shrinkages have
advantages and disadvantages. The soft shrinkage estimate
tends to have bigger bias, due to shrinkage of large coef-
ficients. Due to discontinuities of shrinkage function, hard
shrinkage estimate tends to have bigger variance and can be
unstable, that is, sensitive to small changes in data [4].

The nonnegative garrote shrinkage functions provides a
good compromise between hard and soft shrinkage functions
[4] and is first introduced by Breiman (1995),

δGλ (x) = x

[
1−

(
λ

x

)2]

+

=
⎧⎪⎨
⎪⎩
0, |x| ≤ λ,

x −
(
λ2

x

)
, |x| > λ.

(3)

The nonnegative garrote shrinkage function is continuous
and approaches identity line as |x| gets large. Breiman ap-
plied Garrote shrinkage technique to subset regression to
overcome drawbacks of stepwise model selection (equivalent
to hard shrinkage in current situations) and ridge regression.

Gao and Bruce (1997) introduced firm shrinkage rule
δλ1,λ2 (x):

δλ1,λ2 (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if |x| ≤ λ1,

sgn(x)
[
λ2
(
|x|−λ1

)
(
λ2−λ1

)
]

if λ1 < |x| ≤ λ2,

x if |x| > λ2.

(4)

Though firm shrinkage [6] takes all functional advantages
from hard and soft without drawbacks of either, it requires
two thresholds. This complicates threshold selection prob-
lems further and is computationally expensive for procedures
like SURE.

Hyper shrinkage is an optimized thresholding scheme
based on universal threshold [1]. The major advantage of hy-
per shrinkage is nonlinearity; wherein wavelet domain tends
to keep a few larger coefficients representing the function
while noise coefficients tend to be reduced to zero.

Poornachandra and Kumaravel (2004) proposed hyper

shrinkage δ
hyp
λ (x) [7],

δ
hyp
λ (x) = tanh

(
ρ∗x

)
(|x| − λ)+ =

⎧⎪⎨
⎪⎩
0, |x| ≤ λ,

tanh
(
ρ∗x

)
, |x| > λ,

(5)

ρ is the boundary contraction parameter, which depends on
boundary attaining parameter Δ, 10 > Δ > 1, used to re-
tain the exponent behavior of shrinkage function outside re-
dundant area of distribution curve as shown in Figure 1. The
value for boundary attaining parameter is purely based on
the outcome of replicated trials. In our simulation, we as-
sumed Δ = 5. It is observed that for Δ < 5, the convergence
of the function is poor resulting in loss of stability in output
signal and for Δ > 5, sets saturated, that is, further increase
in the value of Δ results in the fractional change in the SNR
value,

ρ = Δ

max |x| . (6)

This paper proposes a novel subband-adaptive shrink-
age function that deploys a subband dependent shrinkage
scheme based on redundant detection mechanism. While
still using a simple shrinkage operation, the proposed model
yields superior results in terms of denoising ECG signal.

1.1. Introduction to wavelet transform

The special structure of wavelet bases may be appreciated by
considering generation of an orthonormal wavelet basis for
function g ∈ �2(�) (the space of square integrable real func-
tions). The approach of Daubechies (1992) is the most of-
ten adopted in applications of wavelets in statistics, mutually
orthonormal, functions or parent wavelets: the scaling func-
tion, ϕ (sometimes referred to as the father wavelet), and the
mother wavelet, ψ. Other wavelets in the basis are then gen-
erated by translation of scaling function ϕ, and dilations and
translations of mother wavelet ψ using the relationships

ϕj0k(t) = 2 j0/2ϕ
(
2 j0 t − k

)
,

ψjk(t) = 2 j/2ψ
(
2 j t − k

)
,

j = j0, j0 + 1, . . . ; k ∈ Z

(7)

for some fixed j0 ∈ Z, where Z is set of integers. The 2 j/2

term maintains unity norm of the basis function at various
scales and j and k are the scaling and translation parameters,
respectively. A unit increase in j in (7) has no effect on scal-
ing function (ϕj0k has a fixed width), but packs oscillations
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of ψjk into half the width (doubles its scale or resolution). A
unit increase in k in (7) shifts the location of both ϕj0k and
ψjk, the former by a fixed amount (2− j0 ) and the latter by an
amount proportional to its width (2− j). Given the wavelet
basis, a function g ∈ �2(�) is then represented in a corre-
sponding wavelet series as

g(t) =
∑

k∈Z
cj0kϕj0k(t) +

∞∑

j= j0

∑

k∈Z
wjkψjk(t), (8)

with cj0k = 〈g,ϕj0k〉 and wjk = 〈g,ψjk〉 (where 〈·, ·〉 is
the standard �2-inner product of two functions: 〈g1, g2〉 =∫
R g1(t)g2(t)dt).

The wavelet expansion (8) represents the function g as a
series of successive approximations.

Given a vector of function value g = [g(t1), g(t2), . . . ,
g(tn)]T of equally spaced points ti, the DWT of g is given
by

d =Wg, (9)

where d is an n × 1 vector comprising both discrete scaling
coefficients uj0,k and discrete wavelet coefficients dj,k and W
is an orthogonal n × n matrix associated with orthonormal
wavelet basis chosen. Both uj0,k and dj,k are related to their
continuous counterparts cj0,k and wj,k via the relation ships
cj0,k ≈ uj0,k/

√
n and wj,k ≈ dj,k/

√
n. The factor

√
n arises be-

cause of the difference between continuous and discrete or-
thonormality conditions. Note that, because of the orthogo-
nality of W, the inverse DWT (IDWT) is simply given by

g =W′d, (10)

whereW′ denotes the transpose ofW.
This paper is organized as follows: the new shrinkage

function is formulated in Section 3, where its implementa-
tion is also discussed. Section 3 reports a number of exper-
imental results to demonstrate the performance of the new
shrinkage function with other shrinkage functions. Conclu-
sions are drawn in Section 4.

2. FORMULATIONS AND IMPLEMENTATION

2.1. Objective

The wavelet shrinkage method relies on the basic idea that
the energy of a function will often be concentrated in a
few coefficients in wavelet domain while the energy of noise
is spread among all the coefficients. Therefore, nonlinear
shrinkage function in wavelet domain will tend to keep a few
larger coefficients representing the function while noise co-
efficients will tend to be reduced to zero. The conventional
wavelet shrinkage methods are proved to be effective in min-
imum mean square error (MSE) sense.

The main objective of this paper is to reduce the MSE

between original ECG f and denoised ECG f̂ . Assume the
observed data vector as

y = [y1, y2, . . . , yN
] ∈ �N (11)

at equispaced location xN , then

yi = fi + σzi, i = 1, 2, . . . ,N , (12)

where fi is a deterministic signal and {zi} are Gaussian ran-
dom variables with independent identically distributed (i.i.d)
N(0, σ). The goal of this paper is to estimate f with small

mean square error (MSE), that is, to find an estimate f̂ with
small �2 risk:

R
(
f̂ , f

)
= 1

N

N−1∑

i=0
E
{
f̂i − fi

}2
. (13)

WaveShrink achieves the minimax risk over each functional
class in a variety of smoothness classes and with respect to a
variety of losses, including �2 risk [1].

2.2. A new subband-adaptive shrinkage

A native method of denoising is equivalent to low-pass fil-
tering naturally included in any dyadic wavelet framework.
That is, simply discard channels of highest resolution and al-
low signal in the channel confined to lower frequency. The
problem associated with this linear denoising approach is un-
suitable, as it does not remove the noise present in the low
frequency channel as most of the signals of biomedical ori-
gin are of lower frequencies. For any shrinkage scheme to be
effective, an essential property is that the magnitude of signal
components is larger than that of existing noise (at least most
times).

The proposed subband-adaptive shrinkage, a nonlinear
model, works on hyperbolic function, which will outperform
the stated soft shrinkage depicted in Figure 1. The analysis
section depicted in the block diagram responsible for gener-
ation of the empirical wavelet coefficients is shrunk at every
subband of wavelet decomposition. The synthesis section is
responsible for reconstruction of ECG signal.

For hyperbolic function the distribution characteristic
of tangent hyperbola resembles fundamental shrinkage dis-
tribution among its family. The pointwise distribution of
subband-adaptive shrinkage is compared with both hard and
soft shrinkages as illustrated in Figure 2. The pointwise dis-
tribution of subband-adaptive shrinkage is comparable with
soft shrinkage function; hence it retains the same function
stability of soft shrinkage model. The soft shrinkage function
exhibits antisymmetric linear characteristics; on the con-
trary, subband-adaptive shrinkage function exhibits antisym-
metric exponential characteristics (Figure 2). The exponen-
tial distribution tends to keep larger empirical coefficients,
which represent signal characteristics, and shrinks the re-
maining empirical coefficients exponentially towards zero.
Due to which the total number of coefficients to represent
the characteristics of ECG is retained and hence better signal-
to-noise ratio (SNR) and data compression are achieved. It
can be seen that the proposed subband-adaptive shrinkage
function also holds the symmetry as in case of soft shrink-
age. This shrinkage distribution of subband-adaptive func-
tion gives a profile closer to the form of a minimum MSE
estimate of a Laplacian signal in Gaussian noise.
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Figure 2: Pointwise distribution of various shrinkage functions while the dotted line represents the original data samples.

The subband-adaptive shrinkage model is expressed as

δSAλ (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ

[
1− λ

−2λjx
j

1 + λ
−2λjx
j

]
, |x| ≥ λj ,

0, |x| < λj ,

(14)

where

ρ = Δ

max |x| , (15)

ρ is the boundary contraction parameter, which depends on
boundary attaining parameter Δ, 10 > Δ > 1, used to retain
the exponent behavior of shrinkage function outside the re-
dundant area of distribution curve as illustrated in Figure 2.
The value for boundary attaining parameter is based on the
outcome of replicated trials. It is observed that for Δ < 5,

convergence of function is very poor resulting in loss of sta-
bility in output signal and for Δ
 5. Further increase in the
value of Δ results in fractional change in SNR value. In this
paper, Δ is assumed to be 5.l

The general algorithm for wavelet shrinkage is the follow-
ing.

(1) Apply DWT to signal vector y and obtain empirical
wavelet coefficients at scale j, where j = 1, 2, . . . , J .

(2) Apply subband-adaptive shrinkage to empirical wavel-
et coefficients at each scale j.

(3) Estimated wavelet coefficients are obtained based on
threshold λ= [λ1, λ2, . . . , λj]T . Different thresholds are
used at different scales.

(4) The estimate of function f̂ can be obtained by taking
inverse DWT.
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Figure 3: (a) SNR (dB) in the denoised ECG signal versus noise in original ECG signal (b) PRD (%) in the denoised ECG signal versus noise
in the original ECG signal.

3. RESULTS ANDDISCUSSION

The practical ECGs with 1000 samples are downloaded from
the PhysioBank with sampling rate 360Hz. The simulation
was carried out in MATLAB environment. The study was
conducted on 50 different ECGs obtained from various limb
lead systems of 30 patients. The test was conducted both on
normal and abnormal ECGs such as acute myocarditis, right
atrial enlargement which results in P wave and QRS wave ab-
normalities, right ventricular hypertrophy, and so forth, for
the robustness of the proposed shrinkage function.

During simulation various wavelet functions were used
for testing denoising of ECG signals such as Daubechies
wavelets (DB1 to DB10), Coifman wavelets (COIF1 to
COIF8), Meyer wavelet, and Symlet wavelets (SYM1 to
SYM8) and found that higher-order functions of all wavelet
families produce good denoising effect. Gaussian noise of
different standard deviation has been added to the original
(noise free) ECG for testing denoising efficiency of the pro-
posed model. It is clear from Figure 3(a) that the SNR per-
formance of other shrinkage models fails to achieve constant
SNR value under increased noise condition whereas subband
adaptive is consistent.

The SNR is defined as

SNR(dB) = 20 log
[

Original ECG
Original ECG−Noisy ECG

]
. (16)

The performance of the model for compression has been
compared using the percentage root mean square difference
(PRD).

PRD is defined as

PRD =

√√√√√
∑N

i=1
[
xoriginal(i)− xrecovered(i)

]2
∑N

i=1
[
xoriginal(i)

]2 × 100%, (17)

where xoriginal(i) and xrecovered(i) are the ith sample of the
original and recovered ECG signals, respectively. Low values
of PRD have been obtained for proposed subband-adaptive
shrinkage technique. Though the experiment has been con-
ducted on 50 different ECG signals of different origin, Table 1
projects the detailed comparison of SNR (dB) and PRD (%)
for various ECG signals: m105a is measured usingmain lead-
II, m104b is measured at chest lead-V2 when the rate of paced
rhythm is close to that of the underlying sinus rhythm, result-
ing in many pacemaker fusion beats and the premature ven-
tricular contractions (PVCs) are multiform. Several bursts
of muscle noise occur, but the signals are generally of good
quality, m203b is measured from chest lead-V1 when the
PVCs are multiform, and there are QRSmorphology changes
in the upper channel due to axis shifts. There is consider-
able noise in both channels, including muscle artifact and
baseline shifts, m213b is measured at chest lead-V1 when
the PVCs are multiform and usually late-cycle, frequently re-
sulting in fusion PVCs. The morphology of the fusion PVCs
varies from almost normal to almost identical to that of the
PVCs and m219b measured at chest lead-V1; following some
conversions from atrial fibrillation to normal sinus rhythm
pauses up to 3 seconds in duration. The PVCs are multiform.
It is quite interesting to know that the SNR of proposedmod-
els are equal to hyper shrinkage when additive noise level



6 EURASIP Journal on Applied Signal Processing

Table 1: SNR and PRD comparison of various ECG signals for different noise levels.

Noise level (%)
Hyper Subband adaptive

SNR (dB) PRD (%) SNR (dB) PRD (%)

10 24.2360 6.1404 24.2306 6.1445

30 24.2540 6.1278 24.2487 6.1315

50 m105a 24.2317 6.1435 24.2143 6.1558

70 24.2195 6.1521 24.1647 6.1911

90 24.1777 6.1818 24.0934 6.2421

10 24.7299 5.8010 24.7300 5.8009

30 24.7453 5.7908 24.7454 5.7907

50 m104b 24.7197 5.8426 24.6969 5.8231

70 24.7074 5.8219 24.6645 5.8449

90 24.7025 5.8374 24.6426 5.8596

10 24.5652 5.9121 24.5770 5.9040

30 24.5835 5.8996 24.5922 5.8937

50 m203b 24.5597 5.9158 24.5549 5.9191

70 24.5468 5.9246 24.5096 5.9500

90 24.5446 5.9261 24.4791 5.9710

10 24.6339 5.8655 24.6537 5.8521

30 24.6527 5.8528 24.6693 5.8416

50 m207b 24.6301 5.8680 24.6449 5.8581

70 24.6114 5.8807 24.5866 5.8975

90 24.5908 5.8947 24.5416 5.9282

10 22.9795 7.0991 22.9781 7.0973

30 22.9994 7.0795 23.0000 7.0794

50 m213b 22.9807 7.0952 22.9698 7.1041

70 22.9196 7.1453 22.8737 7.1832

90 22.9817 7.0944 22.9259 7.1401

10 23.5058 6.6790 23.4507 6.7215

30 23.5264 6.6632 23.4734 6.7039

50 m219b 23.4870 6.6934 23.4060 6.7562

70 23.5014 6.6823 23.4080 6.7546

90 23.4574 6.7163 23.3122 6.8296

in ECG signal is increased. It is observed that the proposed
subband-adaptive shrinkage function demonstrates good de-
noising results for both normal and abnormal ECG signals.

In this paper, simulation results of various wavelet func-
tions like COIF5 (Figure 4(d)), Mayer (Figure 4(e)), SYM3
(Figure 4(f)), and DB3 (Figure 4(c)) are illustrated. To vi-
sualize the denoising ability of ECG signal, a known per-
centage of Gaussian noise is added with noise free ECG sig-
nal. In this paper, the variance of the original (noise free)
ECG is considered as maximum variance level of the noise

(Gaussian) to be added. So experiments were conducted for
various noise levels from 0%–100% (noise variance is equal
to signal variance). It is evident from Figure 4 that DB3 and
COIF5 wavelet functions are highly suitable for ECG analy-
sis, as it preserves the edge information of original ECG and
does not over smooth the denoised signal. The visual rep-
resentation of denoised ECG for various noise levels using
proposed subband-adaptive shrinkage function is illustrated
in Figure 5. It is found that the signal recovery rate decays, as
the noise level in the original ECG signal is more than 50%
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Figure 4: (a) Original ECG signal; (b) noisy ECG (noise level is 50% of signal variance); recovered ECG (c) using DB3 wavelet; (d) using
COIF5 wavelet; (e) using Mayer wavelet; (f) using Symlet wavelet.

of variance of original ECG signal. It is also evident from the
results that under high noise conditions, the recovered signal
characteristics such as P wave, QRS complex, and T wave of
ECG signal are preserved (Figures 5(g) and 5(j)), that is, the
subband-adaptive shrinkage function does not over smooth
the ECG signal as in case of hyper shrinkage. The major ad-
vantage of subband-adaptive shrinkage function over hyper
shrinkage [7] is its signal stability at discontinuities, which
makes the subband-adaptive shrinkage unique in its family.
The hyper shrinkage exhibits oscillatory behavior at the QRS
complex of ECG signal in alternate beats that are almost sup-
pressed in case of subband-adaptive shrinkage.

4. CONCLUSION

This paper proposes a novel dynamical nonlinear wavelet do-
main shrinkage model for signals of cardiovascular origin to
reduce noise in signal by shrinking the redundant empirical
wavelet coefficients at every subband level. The initial experi-
ment was conducted on a normal ECG and then extended to
other abnormal ECG signals. Experiments were conducted
by increasing the noise level of both normal and abnormal
ECGs and found the proposed subband-adaptive shrinkage
function model robust. Experimental results have been eval-
uated for data compression and the results confirm that the
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Figure 5: (a) Original ECG signal. (b) Recovered ECG (noise level is 0% of signal variance). (c) Noisy ECG (noise level is 10% of signal
variance). (d) Recovered ECG (noise level is 10% of signal variance). (e) Noisy ECG (noise level is 30% of signal variance). (f) Recovered
ECG (noise level is 30% of signal variance). (g) Noisy ECG (noise level is 50% of signal variance). (h) Recovered ECG (noise level is 50% of
signal variance). (i) Noisy ECG (noise level is 80% of signal variance). (j) Recovered ECG (noise level is 80% of signal variance).

technique is able to achieve good PRD. The subband-adaptive
shrinkage function has been further tested with reference to
SNR; further, implementation of the new algorithm is sim-
ple. The results are visually pleasant and comparable to that
of the state-of-the-art algorithms. The proposed subband-
adaptive shrinkage model has potential application in de-
noising signals.
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