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Wireless systems already provide time delay and signal strength measurements and the future may see antenna arrays that provide
directional information. All these may be used for positioning. Although the statistical accuracy of different positioning methods is
well studied, the systematic error effects, which arise, for example, from errors in sensor (node) location, network synchronization,
or the path loss model, are not. This study fills this gap providing a unified error-propagation-law-based tool to analyze measure-
ment and systematic error effects. The considered positioning systems, which are compared based on the developed framework,
are the hyperbolic (time-delay-based), direction finding (DF), received signal strength (RSS), and relative RSS (RRSS) location
systems. The obtained analytical results verify our intuitive expectations; the hyperbolic methods are sensitive to errors in network
synchronization, RRRS methods to channel modelling errors, whereas DF methods are rather insensitive to systematic errors.
However, the bias of DF methods is at its largest if the sensor location error is perpendicular to the line joining the sensor and
the source. If the methods are compared based on overall accuracy, hyperbolic methods may be preferred in large sized networks,
whereas the DF and RRSS methods may provide better accuracy in small sized networks. However, RRSS systems require a dense
network in order to provide reliable results.
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1. INTRODUCTION

Not just are location-based services becoming more popu-
lar in wireless systems but location is needed also in wireless
sensing applications [1, 2]. A fundamental question in loca-
tion is what is the attainable location accuracy and what is
required to obtain it; whether some methods can offer suffi-
cient accuracy with lower complexity and, possibly, with sim-
pler installation than other ones. Positioning accuracy is af-
fected by the measurement accuracy and systematic errors. A
systematic error may be defined as an error that is not deter-
mined by chance but is introduced by an inaccuracy (as of ob-
servation or measurement) inherent in the system (Merriam-
Webster On-Line http://www.m-w.com/). Therefore, system-
atic errors, in contrast to random ones, are reproducible in-
accuracies that are consistently in the same direction. In this
work systematic errors include errors in wireless node po-
sitions, network synchronization, the propagation path loss
model, and so forth.

The effects of measurement accuracy are well studied,
see, for example, [3—12], but systematic error effects are not.
They are often just discussed, see, for example, [11].

The measurement error effects are usually approxi-
mated using the Cramér-Rao lower bound (CRLB) as in the

above-mentioned references. It is used also in [13] to study
the effects of sensor location uncertainties assuming sensor
locations are random variables with the nominal locations
as means. Reference [14] studied aperture error effects on
frequency-based emitter location using perturbation anal-
ysis instead of the usual Taylor series approach [4] which
yields the CRLB in the Gaussian case. The Taylor series ap-
proach is used in this paper to provide a unified tool to ana-
lyze both the measurement and systematic error effects on
the location accuracy. This approach was suggested in [4],
but the authors have not seen any attempts to apply it. The
method is equal to the law of propagation of uncertainty
(see http://physics.nist.gov/cuu/Uncertainty/, the web page
of Physics Laboratory of National Institute of Standards and
Technology) [15].

We briefly explain the analysis framework in Section 2
and apply it to the analysis of the location accuracy of hyper-
bolic (time-delay-(TD) based), direction finding (DF) and
received signal strength (RSS) location systems in Sections 3,
4, and 5, respectively. The location methods are compared in
Section 6. The proposed analysis tool can also be used to ana-
lyze other possible location systems, for example, hybrid sys-
tems where time, angle, and strength measurements are used
for positioning. In this sense the paper serves as an example
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of the usage of the method. Hybrid methods and the CRLB
are discussed in [16].

We have some expectations about how sensitive these lo-
cation systems are to systematic errors, see, for example, [11].
Hyperbolic systems are expected to be sensitive to network
synchronization errors, RSS methods to path loss modelling
errors, whereas DF methods are rather insensitive to system-
atic errors. However, it is expected that in DF methods the
resulting error is largest when the sensor location error is
perpendicular to the line joining the sensor and the source.
Luckily, we can confirm these expectations analytically and
also provide a tool to calculate numerical values for the re-
sulting location errors.

2. ANALYSISTOOL

Let x be the estimator of the actual location x° either in two
or three dimensions. The biasis b = E{x—x°}, the covariance
C = E{(x — E{x})(x — E{x})"}, and the total mean-squared
error V.= E{(x — x%)(x — x°)T} = bb" + C. Therefore, the
analysis of the bias and covariance suffices to determine the
accuracy of location systems.

Let the measurements without uncertainties be defined
asr{ = fi(x%q"), or in a vector form

r = f(x%q°), (1)

where q, in general, denotes the system parameters that af-
fect the measurement model and q° denotes the actual sys-
tem parameters. The model is, in general, nonlinear. There-
fore, it is linearized using the first two terms of the Taylor
series of r = f(x,q) around x° and q°. Assuming that x and
q are close to the actual values and that the cross terms be-
tween measurement and systematic errors are insignificant!
(or “independent”), it follows that [4, 15, 17]

r~f(x%q") +(x%q") (x—x°) +J(x,q°) (g - q°), o
2

where Jx(x,2z) and J4(x,q) are the Jacobians of f(x,q) with
respect to x and q. The first two terms are those used in [4]
to solve the measurement error effects problem. In [13] this
insignificancy assumption is not made, but neither are the re-
sults so simply expressed as ours. Solving this linear equation
for x — x° gives

x—x" = (I (%, ") (x" ")) "I (x.q°)

0o .0 0 .0 0 (3)
x (r—£f(x’,q") —Jq(x°.q") (g - q")).

In reality, the measurements r are disturbed by measurement
errors e such that r = 1 + e. Substituting this into (3) yields

x—x = (Jf (x, q") < (x", ¢) " (x", q")

(4)
x (e —Jq(x%,q°) (g —q")).

! This also simplifies our analysis; the another reason. See, for further dis-
cussions, http://physics.nist.gov/cuu/Uncertainty/.

This is the result that allows us to analyze the bias and co-
variance of the positioning error. The measurement errors e
are typically modelled as zero mean Gaussian random vari-
ables with the covariance Ce. Alternatively, the measurement
errors may contain bias be. This bias may arise, for exam-
ple, from calibration errors. Systematic errors are most often
modelled as deterministic variables, but can also be modelled
as random ones, in which case one obtains an average per-
formance over different possible system errors. Herein, the
deterministic viewpoint is used.
The term

b = J4(x%,q°)(q - q") (5)

presents the bias in the measurements due to the system-
atic errors. If there exists an additional measurement bias be
through calibration errors, it can be added to the measure-
ment bias (5). The location bias resulting from (4) and the
definition (5) is

b= (1)) )b (6)

The positioning error covariance becomes

C= (];(F (X0> qo)]X(XO: q0)>71];‘r(X0) qO)Ce
7)
) g (1 (=0, )1 (<%, 7))

It is shown in the appendix that C can be upper bounded by

C. = no? (1T (@) (%, q)) (®)

where 7n is the number of measurements (the dimension of
r) and ¢ is the maximum (diagonal) element of C,. The up-
per bound is in the sense that the matrix difference C, — Cis
positive semidefinite. It is also shown in the appendix that a
tighter upper bound and a lower bound can be obtained by
substituting no? by the maximum and minimum eigenvalues
of C., respectively. For a diagonal (or nearly so) C,, this is
equivalent to choosing the maximum and minimum vari-
ances.

It can be concluded that the mean-squared error is upper
bounded by

V=06 + ) (T OAT) L (©)

where b is the maximum element of bl b,. Equation (9) forms
a simple way to find an approximative performance of a lo-
cation system. This is done selecting the maximum single
measurement error bias b and maximum estimation error
variance o7 (as in the upper bound above) and multiplying
these by the term Q = (J1(x°,q°)/x(x°,q"))~!. The term Q
presents effects of the sensor geometry to the location accu-
racy and may be called the geometric dilution of precision
(GDOP) [4]. Reference [4] gives results related to it for hy-
perbolic and direction finding location systems and also dis-
cusses other definitions for the location error.
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It is also possible to solve the unknown location using the
weighted least squares [3, 4]. The resulting location error is

x—x0 ~ (1 (', @)W (x%,q%) ) L (x,q°)
(10)

xW(e-J4(x%q") (q-q")),

where W is a positive definite weighting matrix. It can be
an identity matrix, but the optimal choice is W = C,
if the covariance C. is known (or estimated somehow)
[3, 4]. In this case the position error covariance becomes
C = (JI(x%q")C;Jx(x%q°))~". This is equal to the well-
known CRLB (see, e.g., [3, 10]) if the estimation error
is Gaussian. It can be shown, as in the appendix, that
(5 (x% q")C 1 Jx(x% q°))"! is upper and lower bounded by
dJI(x° q%)Jx(x% q°))~!, where d is the maximum or mini-
mum eigenvalue of C,, respectively. If C, is diagonal, max-
imum and minimum variances may be used to obtain the
bounds.

The main aim of this paper is to investigate the bias b,
and how it translates to location errors through the GDOP
in different location systems.

3. HYPERBOLIC LOCATION

Hyperbolic location systems use differences of times-of-
arrival (TOAs) measured either directly [18] or subtracting
measured TOAs [4]. Therefore, they may be called time dif-
ference (TD) location systems. The methods require that
the sensor or base station network is synchronized or sen-
sors/base stations have known relations between their clocks.
Let the transmission time be denoted as #,. The signal pass
the distance d,‘-) = |x° - x?l\, where || - || denotes the Fu-
clidean vector norm, between the emitter and the sensor i at
x; at time 7;. The receiver therefore observes the signal at time
ti = to + 7; + i, where §; denotes the network synchroniza-
tion error, that is, the time difference to the common time of
the sensor network. Let sensor j be a reference sensor. Sub-
tracting ¢; from the other measurements and multiplying the
results with the propagation speed of the signal ¢, the mea-
surements of the hyperbolic location systems are modelled
as

ri=c(ti—t;) =[x = xl| = [[x = x;[[ + c(8; = 9)) +ei.

(11)

If there are N sensors, then there are N — 1 measurements,

the minimum possible number being N = D + 1, where D is

the dimension of the location problem, that is, two or three.
Clearly, the system parameters

T
q=[x -+ x{ & ov | (12)
include the locations of the sensors x; and the clock errors
8. The actual sensor locations are x}. The assumed sensor
locations may differ from the actual sensor positions by Jy,.

The desired value & for the clock errors is naturally zero. For

brevity, let Jx = Jx(x° q°). Then, the Jacobian with respect to
the unknown location is

o) o)
& &
(x0T (- x))
d° d°
Jx = = / : (13)
60 -x) 0 -x)”
2. z
(= -xp)" & -x)’
L & i ]
The ith element of the bias by is
—(x-x? T(?X. (x0 - XQ)T(ij
[b.], = ( o ) O, o (8= ).
i ]

(14)

The terms may be contrastive (to “opposite directions”) re-
sulting in a small bias. The terms may, as well, be restorative
(to “equal directions”) resulting in a large bias. The clock er-
ror term, the last term in (14), attains its maximum if the
clock errors are to opposite directions and minimum if the
clock errors are to equal direction. In order to see the magni-
tude of this bias, notice that if the clock error §; — J; is 3 ns,
1 us, or 1 ms and the signal is a radio signal, then the caused
biases are of order 1 m, 300 m, and 300 km, respectively. The
clock errors may therefore be rather fatal to the accuracy of
hyperbolic location systems and clearly show why very accu-
rate network synchronization is required in these systems.

Due to the Schwarz inequality the first two terms in (14)
are bounded as

(<0 —x?) "o
&
with equality if and only if &, = a(x® —x?), where « is a con-
stant. Consequently, the errors through the sensor locations
are at maximum if &, are parallel to x° — x?. These errors
vanish if 8, and x° —x? are orthogonal. Indeed, this result ap-
proximates the actual situation as shown in Figure 1. The bias
due to sensor location errors are not necessarily very large
since the sensors (or base stations) can typically be set within
a few meters. However, the required sensor location accuracy
depends on the demands of the application. The sensor lo-
cation accuracy cannot be larger than the accuracy required
from the system. Otherwise, the bias through the sensor lo-
cation accuracy may dominate the error budget.

It is readily understood that these bias results could easily
be derived without the used technique, just using logical rea-
soning. However, the technique allows us to determine also
the covariance. As a consequence, the used technique offers a
unified method to analyze the accuracy of location systems.
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FiGure 1: Illustration of the true and approximate bias through the
sensor location error.

X

F1GURE 2: The definition of the DOA measurements.

It is well known that the TOA estimation accuracy o
is proportional to the signal-to-noise ratio y and the signal
bandwidth W, see, for example, [4], such that

or (16)

o ——.
Wy

In this light, wideband systems like ultra-wideband (UWB)
and wideband code division multiple access (WCDMA) are
better for hyperbolic location than the GSM system that uses
a rather narrowband signal. This is especially true if high ac-
curacy is required. One problem with TOA measurements is
the absence of the line-of-sight (LOS) signal which is tac-
itly assumed in the previous results. Instead, the TOA may
be measured from a reflected signal which causes additional
bias. One solution to this non-LOS situation is presented in
[19].

4. DIRECTION FINDING LOCATION

The direction finding (DF) location system is considered in
a two-dimensional case. The measured direction of arrival
(DOA) is defined in Figure 2. It follows that the measure-
ments are modelled as [4]

A L, (17)

1

r; = arctan

where x = [x y]T and x; = [xi y:i]T. Thus, the parameter

vectorq = [x] --- xx]|T involves only the sensor locations.

The Jacobian becomes

(=0 =) (=) ]
(d?)’ (d?)’
Jx = : : . (18)
-(° =) ("= x})
(&)’ (d%)*

The ith bias term (in radians) is

O =) = =)
[br],»—[ (@) @) ]6 (19)

Leta = [(y° = y)) — (x° = x)]T. Due to the Schwartz in-
equality the maximum bias || dx, ||/d? occurs if &, is parallel
with a. Since x° — x? is orthogonal to a, the maximum mea-
surement bias occurs if the location error is orthogonal to
the line joining the sensor and the emitter. This is obvious
also from Figure 3. The measurement bias vanishes if Jy, is
orthogonal to a, or, equally, parallel with the line joining the
emitter and the sensor as can be observed also from Figure 3.

The maximum bias b, decreases as the distance between
the emitter and the sensor increases, as can also be logi-
caly concluded. The measurement bias may be significant if
the sensor location accuracy is not small compared to the
emitter-sensor distance. The accuracy of the DOA estimator
can be well approximated by the Cramér-Rao bound at suffi-
ciently high SNR values. The bound for uniform linear arrays
can be found from [20]. At large emitter sensor distances the
measurement error dominates the error budget. As a conclu-
sion, it was shown that the DF location methods are rather
insensitive to systematic errors.

5. SIGNAL STRENGTH LOCATION

In received signal strength (RSS) location systems the path
loss is assumed to have a known relation with the distance.
However, there are several possible path loss models and,
consequently, several possible analysis. In this paper a simple
model is used, but the presented technique can be applied to
any other model; a possible model is discussed in [11]. Let
the measurements, the received signal power, be modelled
simply as

el (B () e

where djy and f are the reference distance and frequency,
respectively, and the frequency f is the known factor while
the unknown assumed factors are « and f3, which typically
are between 2 and 4 [21, 22]. The transmitted power P; may
be unknown or known. However, even though it is “known”
it may contain uncertainties through calibration errors [11].
Note that if @ = 3 = 2, (20) results in the standard free space
path loss model.
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FiGure 3: DOA estimation errors due to sensor location.

The propagation models predict the average (or median)
received power level. However, real life channels may contain
variations which may affect the received power level enor-
mously [11, 23]. The variations may lead to erroneous con-
clusions about the received power causing bias to the mea-
surements. The channel variations may be compensated for
by measuring the median of several consecutive measure-
ments [23].

Since the system parameter vector

q=[P a px - xb], (21)

the ith element on the measurement bias vector is

S (d
[be], = P (P—I; +1n (d—g)a +1n (%)5,;
. (XO _ X?)T6Xi> (22)

+«
(d?)?

The assumed transmitted power P; = P} + &p,. If P;
is much smaller than the actual power (P, < PY), then
8p,/P) ~ 1 and the first term in (22) causes a measurement
bias that is on the order of the actual power. If the assumed
power is much larger than the actual power (P; > PY), then
8p,/P} > 1 and the bias may be even much larger than the
actual power. Since it is difficult to accurately guess the trans-
mitted power of an unknown transmitter, it follows that the
received signal strength location method does not very well
suit those cases. If the transmitted power is known, then
this measurement bias term can be neglected. However, even
rather small uncertainties may cause severe effects. For ex-
ample, if the uncertainty is 1 dB, then (Spt/P? = 0.25, which
causes a significant measurement bias, of order 0.25P).

The second and third terms in (22) are then considered.
The path loss attenuation factor errors §, and &g may vary
between —2 and 2. However, the logarithms are small if the
reference distance and frequency are selected small with re-
spect to the actual distance and frequency, that is, if dy < d°
and fy < f°. Therefore, the effects of these two terms to the
measurement errors are typically rather small.

The fourth term in (22) can be evaluated as the corre-
sponding terms in the previous analyses. Therefore, the max-
imum bias through this term is a® | , HP?/ d?, which typically
is rather small.

The RSS method is sensitive to the systematic errors also
in another way. To see this, note that the Jacobian

(x*—x)"
@)
0 2 ﬁ
jom—antad (o) (5) | @3
(x* - x})"
(d%) ™"

depends on the propagation model. Therefore, also the es-
timated location depends on the propagation model and if
there are errors on that, also the estimated location will be
incorrect, that is, the actual mean-squared error cannot be
predicted by the above method. To see this more clearly ob-
serve that the location may be computed iteratively (4) as

-1
Xk = Xg—1 t+ (]lk,llxkfl) ]lk,lelv (24)

Since the Jacobian is dependent on the propagation mod-
el, a general comparison to the other methods is difficult.
However, some conclusions can be made assuming the re-
ceived powers are equal, say PY. Then Jy = —a’P?Jrss, where
the rows of Jrss are (x? — x?)T/(d?)?. Now the covariance be-
comes upper bounded as n(Jkss Jrss) (02 + b2)/(a’P?)?),
and comparison to other methods is possible if the estima-
tion accuracy ¢? and bias b are known with respect to PY.
The term (]}ESS Jrss) ! is the approximated GDOP of the RSS
method, which is rather similar to that of the TD method.
Therefore, the RSS method may, at its best, perform like the
TD method.

5.1. Relative signal strength location

RSS location systems were observed to be rather sensitive to
uncertainties in the transmitted power. This sensitivity can
be reduced using the relative RSS (RRSS) location method.
Therein, two received powers are compared by dividing them
such that the divider serves as a common reference. If the
propagation loss model (20) is used and the jth sensor is used
as a reference, then the measurements of the RRSS method
are modelled as

- pt(c/4n-f0d0)2(ﬁ)/f)ﬁ(do/di)a+ei’ (25)

Pt(c/47rfodo)2(fo/f)lg(do/dj)a tej

where the terms e; denote the measurement errors.

Since ideally the measurement errors are zero, the mea-
surements become ideally as r; = (d;/d;)* and the ith row of
the Jacobian J is

o )" 0 -x)"
5[ @ @]

where & = d;-)/d?. Note that the ideal measurements do not
depend on the transmitted power or the frequency and, thus,
B. Therefore, the system parameters are

q=[axf - 5] 27)
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Due to the fact that the derivative of a~* with respect to x is
—a *Ina, the ith measurements bias term is

a8 (x0 —x9)" 8y,

(d?)?

[br]i = (Efxu In&;) s +

20 (x - x)) "8, 29

(d9)*

The last two terms in (28) are due to the sensor position-
ing errors. Their magnitudes are upper bounded by (£’a®/
d) |18y, || and (§0a’/d}) |8, || These terms are typically rela-
tively small. The first term in (28) is due to channel mod-
elling errors. It approaches zero if the reference sensor is
much closer to the emitter than the other sensor, that is,
& < 1. Therefore, this term may be relatively small. How-
ever, in the opposite case (§; > 1) it is large. As a conclu-
sion, the measurements in the RRSS method are not sensi-
tive to channel modelling errors assuming that all the mea-
sured channels obey the equal channel propagation loss law
and that the closest sensor to the emitter is selected as a refer-
ence. As in the RSS method, the Jacobian of the RRSS method
depends on the propagation model (through «) and similar
conclusions about the location hold.

5.1.1.  Measurement error covariance

The Cramér-Rao bound for the RRSS method may be diffi-
cult to evaluate since the measurement model (25) involves
the division of random variables. Therefore, the measure-
ments are linearized with respect to measurement errors e;
[15]. It follows that the measurement error covariance ma-
trix becomes

Ce = ]eée]g: (29)

where J. is the Jacobian and Ce is the covariance of measure-
ment errors e;. The ith row of the Jacobian contains zeros
except that the ith element is dr;/de; = 1/P9j and the jth el-

ement is dr;/de; = —Pg/ (P?j)z. It follows that the diagonal
elements of Ce are
1 PO\?
[C, = — [5{ n (—) 62,], (30)
(po)"L" AP/

where &7 is the variance of the power measurement P,,. The
error covariance (30) is minimized using the closest sensor
to the emitter as a reference since the closest sensor provides
the highest actual power.

6. NUMERICAL RESULTS

Early in this work the measurement covariance and especially
the bias have been discussed. In Section 2 these were (ap-
proximately) shown to be directly related to location accu-
racy through the GDOP. Therefore, it suffices to consider the
GDOP, or tr{Q}, as an additional performance measure of
the location systems. The final accuracy is obtained by mul-
tiplying the GDOP values by the measurement error variance

iUl O OO O O O

00000

0.5DU -

0.25DU Route

] 4 sensor arrangement

oo
oo O 21 sensor arrangement

8 sensor arrangement

F1GURE 4: The sensor placements in different arrangements and the
route of the emitter.

and bias and taking adequate distance scales into account, as
will be soon discussed.

We present some numerical examples related to TD, DF,
and RRSS location systems with 2D positioning. These serve
just as illustrative examples but, still, provide some light to
the accuracy problem. The examined sensor system is formed
from 4, 8, or 21 sensors covering a square with the length 1
distance unit (DU) per side. The arrangement is shown in
Figure 4. One DU can be any distance, for example, a meter,
a kilometer, or 30 km. Therefore, the shown results can be
used to approximate geometric effects of different location
systems with different sizes. The route of the emitter is also
shown in the figure. The sensor at (0,0) DU is selected as a
reference if it is required. In what follows, the GDOP values
are presented according to the horizontal axis of the route.

The results for the 4,8, and 21 sensor arrangements are
illustrated in Figures 5, 6, and 7 for &« = 2 (required in the
RRSS). The results show that the RRSS method is rather sen-
sitive to the selection of the reference sensor in the few sensor
case. In contrast to the bias and measurement error analy-
sis, the GDOP is large (even huge) if the closest sensor to the
emitter is selected as a reference. Therefore, the bias and mea-
surement accuracy yield different requirements on the ref-
erence sensor than the geometric effects. The RRSS method
may, however, offer the lowest GDOP values if the reference
sensor is selected appropriately. The DF method has the sec-
ond best GDOP and the TD method has the worst GDOP. It
can also be concluded that in dense networks it is not wise
to select the furthest sensor from the emitter as a reference in
the TD method. The DF method does not need a reference
sensor and provides similar GDOP in all investigated posi-
tions.

The obtained GDOP values may be used as “rule of
thumb” values in location accuracy studies. These should be
multiplied by the variance, bias, and, in addition, the distance
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F1GUure 5: The GDOP in the 4 sensor case as a function of the emitter
location with respect to the horizontal axis.
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FiGURE 6: The GDOP in the 8 sensor case as a function of the emitter
location with respect to the horizontal axis.

scale to attain the final location accuracy. The distance scale
follows from the unit of the GDOP. The units of the Jacobians
of the TD, DE, and RSS methods are unitless, rad/DU, and
PU/DU, respectively, where PU stands for power unit. The
corresponding units of the GDOP are unitless, DU?/rad?,
and DU?/PU?2. Therefore, the location accuracy of the DF
and RRSS methods depends on the dimension of the net-

0.3 T T T T T T T T T

GDOP
[=}
G
’
’
\
\
\

N . 0.0002,
0 01 02 03 04 05 06 07 08 09 1
Horizontal axis of the route (DU)

F1GURE 7: The GDOP in the 21 sensor case as a function of the emit-
ter location with respect to the horizontal axis.

work, whereas the performance of the TD method does not
(see also [11] for a discussion on GDOP units). An exam-
ple will illustrate this. Typical measurement accuracies are

presented in [10]. Using those we have /b + g2 values for

TD, DF, and RRSS methods as 20m, 6 degrees, and 10P?,
respectively. If the DU is 10 km, the root mean-squared lo-
cation errors are obtained by multiplying the given accuracy
with the square root of the GDOP value and by 20 m in the
TD method, by 671/180 radians x 10 km in the DF method,
and by 100 PU x 10 km in the RRSS method.

It follows that the root mean-squared accuracies are
6.9 m for the TD method, 209.4 m for the DF method, and
1400 m for the RRSS method in the 21 sensor case. The TD
method may therefore be preferred in large sized networks.
In small sized networks the other methods may offer better
performance than the TD method. In order to see this as-
sume that the DU is 100 m. Then the corresponding accura-
cies become 2.4 m, 2.1 m, and 14 m.

7. CONCLUSIONS

The effects of systematic errors on the location accuracy have
been studied in this paper. A unified tool that can be used
to analyze also the effects of measurement errors was intro-
duced. It was analytically shown that our expectations on
sensitivity are valid; the hyperbolic (time-delay-based) lo-
cation methods are sensitive to errors in the network syn-
chronization, the direction finding location methods are
rather insensitive to systematic errors, and the received sig-
nals strength methods are rather sensitive to propagation loss
modelling errors. The proposed analysis tool may be used to
evaluate the magnitude of the location error through system-
atic errors.
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The relative received signal strength methods, which are
less sensitive to the propagation model errors than the reg-
ular signal strength methods, are sensitive to the selection
of the reference sensor. The furthest sensor from the emit-
ter should be selected as a reference although this maximizes
the effects of bias.

It was also shown that the hyperbolic methods may be
preferred in large sized networks whereas the direction find-
ing and received signal strength methods may offer better
or adequate performance in small sized networks. The RSS
methods usually require a dense sensor network in order to
provide results that are related to the accuracy of the hyper-
bolic and direction finding methods; see [11, 12] for similar
conclusions.

APPENDIX
For simplicity, let J = Jx(x%, q°). Consider the difference
x=y'L0") T = 0 eI ")y
=y [0 T (a1 - €I 'y
(A.1)

where I is an identity matrix, y is an arbitrary nonzero real
vector, and a is a real scalar. The eigendecomposition Ce =
UDUT, where D is the diagonal matrix of the eigenvalues and
U the matrix of eigenvectors, and the fact UUT = 1 yield

x=y"0") T (aUU" - UDUT)I () "y

=y'0") U (al - D) UTI(TY) Ny
—_—

z

(A.2)

=z"(al - D)z

It has been shown [24, page 142] that the eigenvalues of C
are upper bounded by ||| Celll«, the maximum absolute row
sum norm. Since [||Cell| < 1?2, where n is the dimension of
Ce and 0? the maximum element of it, it follows that y > 0 if
a = no?. This means that ng2(J7))~!' > (J7))"1J'CJ(J)) !
in the sense that the difference of the matrices is positive def-
inite. This concludes the proof.

The proof also shows that a tighter upper bound is ob-
tained if the maximum eigenvalue of Ce is chosen as a. Cor-
respondingly, if the minimum eigenvalue of C, is chosen as
a, the lower bound is obtained.
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