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Quantized frame expansions based on block transforms and oversampled filter banks (OFBs) have been considered recently as joint
source-channel codes (JSCCs) for erasure and error-resilient signal transmission over noisy channels. In this paper, we consider
a coding chain involving an OFB-based signal decomposition followed by scalar quantization and a variable-length code (VLC)
or a fixed-length code (FLC). This paper first examines the problem of channel error localization and correction in quantized
OFB signal expansions. The error localization problem is treated as an M-ary hypothesis testing problem. The likelihood values
are derived from the joint pdf of the syndrome vectors under various hypotheses of impulse noise positions, and in a number of
consecutive windows of the received samples. The error amplitudes are then estimated by solving the syndrome equations in the
least-square sense. The message signal is reconstructed from the corrected received signal by a pseudoinverse receiver. We then
improve the error localization procedure by introducing a per-symbol reliability information in the hypothesis testing procedure
of the OFB syndrome decoder. The per-symbol reliability information is produced by the soft-input soft-output (SISO) VLC/FLC
decoders. This leads to the design of an iterative algorithm for joint decoding of an FLC and an OFB code. The performance of the

algorithms developed is evaluated in a wavelet-based image coding system.
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1. INTRODUCTION

Various joint source-channel coding approaches, guided by
an optimum tradeoff between compression efficiency and er-
ror and/or erasure resilience depending on the link charac-
teristics, have been considered in order to improve multime-
dia signal transmission over noisy channels. Here, we focus
on JSCC techniques based on quantized redundant signal
expansions by means of OFB. As the signal representation
in this approach is redundant, an OFB-encoded stream has
error-resilient features. Error-control coding and signal de-
composition are thus integrated in a single block. The error-
correcting code thus allows also to suppress some quantiza-
tion noise effects.

So far, the research in this area has been concentrated
mainly on the study of oversampled transform codes (OTC)
which are OFB codes with polyphase filter orders equal to
zero. The OTC can be viewed as real-number block codes,
while the OFB codes can be associated to real-number con-
volutional codes. Decoding of real-number block codes has
been considered by many authors [1-7]. Oversampled block
transforms like DFT codes have been shown to be BCH codes
over the real field [8, 9]. DFT or DCT codes have also been
considered as joint source-channel block codes to obtain

robustness to erasures [4-6, 10] and impulse noise errors
[2, 3, 11-13]. Filter bank frame expansions have also been
studied to achieve resilience to erasures [14-16]. In [14],
the authors have shown correspondences between OFB and
frames in [*(Z). They have shown that if the frames satisfy
some properties, the mean-square reconstruction error can
be minimized. The authors in [17] have studied oversam-
pled tree-structured filter banks for erasure recovery. How-
ever, there has not been many studies of OFB codes for im-
pulse error correction.

Here we consider OFB-based quantized redundant sig-
nal expansions for both signal compression and channel er-
ror recovery. The problem of decoding OFB codes can be
viewed as a problem of decoding real-number convolutional
codes in presence of impulse noise errors and background
noise [18, 19]. In contrast to finite-field convolutional codes,
real-numbered convolutional codes have infinite state-space
size, and therefore Viterbi algorithm cannot be applied. The
decoding strategy which is usually considered is based on
syndrome decoding [8, 18]. This problem has been treated
in [18] in the context of fault-tolerant systems and chan-
nel coding for communications, and recently in [19] in the
context of JSCC. Presence of background noise requires dif-
ferent error localizations and calculation procedures to be
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used than that of standard syndrome decoding. The localiza-
tion procedure usually relies on the hypothesis testing the-
ory. For example, in both [18, 19], the error localization
is motivated by the M-ary hypothesis testing theory. How-
ever, they differ in the way the likelihood values for hy-
pothesis testing are calculated. In [18], the activity detec-
tion (presence of impulse errors) is based on forming the
quadratic terms for each log-likelihood ratio calculated from
the syndrome covariance matrices under various hypotheses.
In [19], the error localization is based on the pdf of syndrome
norm.

The error localization procedure presented here is in-
spired from [18]. However, in contrast to [18] where the de-
tection of the increased noise statistics due to impulse errors
employs quadratic forms of likelihood ratios [1, 18], we ap-
ply a minimum total probability of error test [20]. That is,
we compute the a posteriori probability of each hypothe-
sis, and choose the largest. We consider two channel impulse
noise models. We first consider a Bernoulli-Gaussian impulse
noise model as in [18, 19]. We then introduce a quantizer-
dependent impulse noise model. This model takes into ac-
count the discrete nature of the impulse errors at the out-
put of the VLC/FCL decoders. For these two impulse noise
models, the error localization procedure based on M-ary hy-
pothesis testing theory is presented. Each possible error posi-
tion within a window of the received samples is considered as
a separate hypothesis. The localization procedure selects the
hypothesis with a maximum a posteriori probability. The er-
ror amplitudes are then estimated by solving the syndrome
equations in the least-square sense. The message is recon-
structed from the corrected received sequence by a pseudoin-
verse receiver. We further consider using the soft informa-
tion, that is, per-symbol reliability information, produced by
the SISO VLC/FLC decoder in the localization procedure of
the OFB decoder. The a posteriori probabilities of the source
symbols produced by the SISO VLC/FCL decoders are used
in the calculation of the hypothesis a priori probabilities. The
results show that introducing the soft information in the er-
ror localization procedure in this way improves the proba-
bility of detection and decreases the MSE. An iterative algo-
rithm for joint decoding of the FLC and an OFB code is pre-
sented. In this algorithm, the trellis for the decoding of the
FLC-encoded source coefficients modeled by the first-order
Markov source is iteratively pruned with the help of the hy-
pothesis a posteriori probabilities. This is done based on the
information on the symbols for which errors have been de-
tected in the OFB syndrome decoder. The performance of
these algorithms has been tested in the image compression
system based on the subband decomposition by a wavelet fil-
ter bank.

The paper is organized as follows. Section 2 introduces
the general framework and problem statement. OFB codes
are described in Section 3. Section 4 describes the SISO
VLC/FLC decoders. The impulse error models and the OFB
syndrome decoding algorithms are described in Section 5. It-
erative algorithm for decoding of the FLC and OFB chain
is presented in Section 6. Simulation results are given in
Section 7.

2. GENERAL FRAMEWORK AND
PROBLEM STATEMENT

The block diagram of the considered encoding/decoding
chain is shown in Figure 1. The encoding chain consists of an
OFB followed by a scalar quantization and a fixed or variable-
length coder. An OFB provides an oversampled frame expan-
sion of the input signal. A set of vectors ® = {¢;};c) in a
Hilbert space H is a frame if for any x # 0,

AlxI? < [(x,¢:) | < BlxI?, (1)

icl

where (x,y) denotes the inner product of x and y, [ is the in-
dex set, and A > 0, and B < o are constants called frame
bounds [14]. The coefficients of the expansion are quan-
tized and encoded. In the sequel, both fixed- and variable-
length codes are considered. When considering a system with
a variable-length code (VLC), we employ a scalar quantizer
with a dead zone and with a number of levels N(’g for each
subband k, k = 0,...,N — 1. In the system with an FLC, we
employ a Lloyd-Max scalar quantizer with the same number
of quantization levels N§. The encoded subbands are trans-
mitted over an additive white Gaussian noise (AWGN) chan-
nel. Overcomplete frame expansions for providing robust-
ness to erasures and errors in communication networks can
be regarded as joint source-channel codes. The redundancy
inherent in a frame makes the expansion resilient to additive
channel and quantization noise. Similarly, the implicit re-
dundancy due to the use of FLC or due to VLC coder subopti-
mality in capturing the Markov property of the OFB outputs
gives extra error-correcting capability. The receiver consists
of a SISO VLC/FLC decoder followed by the inverse quanti-
zation, OFB syndrome decoder, and a synthesis filter bank.

In Figure 1, the message signal is denoted by x[n]. A sam-
ple at time instant n of the signal in subband k at the output
of the OFB is denoted by y*[n]. In the sequel, L¥ denotes the
number of samples (or symbols) in subband k. Each quan-
tized coefficient y’q‘[n] in subband k takes its value in an al-
phabet of dimension N§. The sequence of quantized sym-
bols in subband k is denoted by y’; [n]. The vector uk[n] =
(ub[n] - - ué‘ﬂn]_l [n]] denotes the VLC/FLC codeword cor-
responding to symbol y’;[n], where ¥[n] is the length of
the VLC/FLC codeword. In the case of FLC, I¥[n] = IX.
The BPSK modulated VLC/FLC codewords and the chan-
nel observations corresponding to these codewords in sub-
band k are denoted by c*[n] = [clg[n] . 'Ci[n]q[”]] and
z*[n] = [z’é[n] . -Zf}[n]fl[n]], respectively. The estimates of
the received symbols at the output of the VLC/FLC decoder
in subband k are denoted by yk[n]. The symbol a posteriori
probabilities calculated by VLC/FLC decoders in subband k
are denoted by P¥[n]. The estimate of the kth subband sig-
nal at the output of the OFB syndrome decoder is denoted
by 7¥[n] and the estimate of the message signal is denoted
by x[n].
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FIGURE 1: Joint source-channel coding chain considered.

3. OVERSAMPLED FILTER BANK CODES

There are numerous ways to construct oversampled filter
banks [15, 21-23]. A straightforward approach that often
yields an OFB from critically uniform FBs is by replacing the
downsampling factor to a number less than the number of
channels.

The OFB codes constructed in this way may not have the
best error-correction power, however they can be very simply
integrated in current source-coding standards.

Let us consider the analysis and synthesis filter banks with
N filters shown in Figure 2. In the analysis filter bank, an in-
put signal x[n] is split into N signals y*[n], k = 0,...,N — 1.
The sequence y*[n] is obtained by downsampling the output
of the filter k with a factor K, where K < N. The sequences
yk[n] are then quantized and transmitted over the channel.
The task of the receiver is to combine the received signals into
a single signal X[#] which, in absence of quantization, is iden-
tical to the signal x[n], and which, in presence of quantiza-
tion, is as close as possible to x[#n] in the mean-square error
sense. Due to redundant signal representation (K < N), per-
fect reconstruction (PR) may be possible even if some of the
signals y*[n] are corrupted.

The encoding operation performed by an OFB with N
channels and downsampling factors K can be described in
the polyphase domain as

Y(z) = E(2)X(2), 2)

where X(z) and Y(z) are the polyphase representations of the
input and the output signals for the analysis filter bank and
E(z) is an [N x K] analysis polyphase matrix [24].As OFB
implement processing analog to that implemented by con-
volutional codes, the analysis matrix E(z) is referred to as a
generator matrix of an OFB code. Similarly, the parity check
matrix is defined as

P(2)E(z) = 0,

Lp
P(z) = ZPLPﬂ'Zﬂl, 3
i=0

where P; is a [(N — K) X N] matrix and where Lp denotes
the order of the multiple-input multiple-output parity check
filter. From (2) and (3), we observe that filtering a sequence
Y(z) with parity check filters yields zero sequences. On the

other hand, if the transmitted signal is corrupted by quanti-
zation noise and errors, we have

S(z) = P(2)(Y(2) + e(z) + n(z)) = P(z)(e(2) +n(z)), (4)

where n(z) is the quantization noise, and e(z) denotes er-
ror sequences in various subbands. S(z) denotes a vector of
z transforms of the sequences at the parity check filters out-
puts. The parity check outputs S(z) are referred to as syn-
dromes.

Let us denote (N — K) parity check filter outputs for time
instant n by a vector

s[n] = [so[n] . s(N‘K)[n]]T. (5)
And let the vectors
eln] = [n] -+ N Un)]’, o
6
n[n] = [no[n] . nN’l[n]]T

denote errors and quantization noise at the inputs to the
[(N — K) X N] parity check filter at time instant n, respec-
tively.

In the time domain, the syndrome equations for L time
instants can be written as

S =P(e+n), (7)

where S is an (N — K)L vector of syndrome values given by

s=[s"10] -+ sTiL-1]", (8)

eisan [N(L + Lp)] error vector given by

e=[0 .- 0 eT[o] ... eT[L—l]]T, 9)

nisan [N(L+ Lp)] vector containing quantization noise

0 n’[0] T o)

n:[O . nT[L—l]]
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F1GURE 2: Oversampled filter bank structure.

and Pisan [(N —K)L X N(L+ Lp)] parity check matrix given
by

P, P, --- P, 0
0 Pp P, --- P, 0

P=|. . (11)
0 --- 0 P, P, --- P,

The matrix P; is defined in (4). Note that first LpN elements
of the error and quantization noise vectors are equal to zero.
As in the case of codes over the finite field, the syndromes can
be used to detect and correct errors.

4. SISO VLC/FLC DECODER

The performance of FLC and VLC decoding can be sig-
nificantly improved by exploiting the correlation between
the coefficients in a subband. The quantized coefficients in
the subband k, y’;, are modeled as a first- order Markov

N}; 1} In this

model, the sequence at the output of each subband is de-

scribed by a vector of symbols’ stationary probabilities P =

[P(SE) - - -P(Slk\]k_l)] and the probability transition matrix
Q

P¥ with entries P (m, v) = P(Sk | $k), n,m = 0,...,N5 —1.

The SISO decoder uses a symbol-by-symbol maximum
a posteriori probability criterion (also referred to as maxi-
mum posterior marginals—MPM) for estimating a sequence
of subband coefficients. However, it also outputs per-symbol

reliability information. That is, the decoder outputs a pair
(yE[n], P¥[n]), where

process with symbol alphabet 8% = {Sk - -

ﬁg[n] = argmkaxP(yl;[n] =5 zk),

k k k k (12)
P*[n] :mkaxP(yq[n]zslz ), se 85,

and where z* is a vector of all the observations at the input of
the VLC/FLC decoder for subband k.

The derivation of the SISO decoding algorithm for FLC is
straightforward. The channel observations corresponding to
each symbol are gathered together. Symbol-by-symbol MAP
estimation is done on the trellis defined by the Markov model
for the subband coefficients [25].

The a posteriori probabilities of symbols in the SISO FLC
decoders, for each subband k, are computed with the BCJR
algorithm [26] in the following way:

P(yg[n] | zk) o< 0, (5)Bu(s), P(yflf[n] = s,z’f,n>,

(Xn(S) =

Buls) = P(25,, 1 | yE[n] =5),
(13)
yu(s',s) = P(y;f[n] = s,z’,‘, \ y’,;[n -1] = s')
k-1 (14)
—P(sls)n(k[n Ic n]) 5,5 € 8k
where z8 = [z8[n] Z5[n] - zi_l[n]] are the observa-

tions corresponding to the quantized symbol yX[n], z, =
[k 2, z¥] is a vector of observations correspond-
ing to yf[n]---yk[v], and 4% is the symbol alphabet
for subband k. The forward and backward steps consist
in calculating a,(s) = 2o an_1(s")ya(s’ss) and Bu(s) =
> Prr1(s)Yns1(s,s). The coefficients ag(s) are initialized
with the stationary probabilities of the source symbols, and
the coefficients 1« (s) are initialized with uniform probability
distribution.

In the case of a VLC, due to the variable-length prop-
erty of the codewords, the estimation of the transmitted bit
stream must be performed together with its segmentation
[25]. That is, it is necessary to calculate the probability of the
pair P(y’;[n] = s,N,]j = 1| z¥), where N,]j is the number of
bits in the VLC coding of the sequence y’;[O], . ,y’q‘[n].The
decoder outputs

?’q‘[n] = argmngP(yf;[n] =s,NFk=1]| zk),
I

N (15)
Pk[n] = msaxZP(yf;[n] =, NF=1| zk).
I

The symbol-by-symbol MAP estimates are obtained by the
application of the BCJR algorithm [26] which, in the case
of VLCs, operates on the joint trellis representation of the
Markov source and VLC trellis [27, 28]. The MAP estimate
can also be obtained by the algorithm which separates the
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Markov source model and the VLC model [25]. This ap-
proach reduces the complexity of the decoding algorithm.

Due to channel errors, the VLC/FLC decoder occasion-
ally makes an error and outputs a wrong symbol. This can be
seen as if the transmitted symbol has been corrupted by the
impulse noise of magnitude equal to the difference between
the decoded and transmitted symbols.

5. SYNDROME DECODING OF OFB CODES

The signal at the input of the OFB decoder (output of the
VLC/FLC decoder) yﬁ [n] can be written as

yiln] = y*[n] + ek [n] + nk[n], (16)

where #n*[n] is the quantization noise and e*[n] is an im-
pulse error at the output of the VLC/FLC decoder in subband
k. The quantization noise is modeled as a Gaussian random
variable with a zero mean and variance g7. We consider the
two following models for the impulse errors.

5.1. Bernoulli-Gaussian model

The impulse noise is modeled as ef[n] = a*[n]b*[n], where
ak[n] is a sequence of ones and zeros with probability
P(a*[n] = 1) = p* and b*[n] is a Gaussian random variable
with zero mean and variance 0["2. The overall noise model

is a mixture of the Gaussian and Bernoulli-Gaussian noises
[1,19].

5.2. Quantizer-dependent model

The impulse noise is modeled as ek[n] = a*[n]b*[n], where
ak(n] is a sequence of ones and zeros with probability
P(a*[n] = 1) = p* and b*[n] is a discrete random vari-
able with P(bk[n] = A’g) = P;. In this model, the values
A’g are given by the differences between the symbol levels in
a subband, while the value P(b*[n] = A]g) = P’g represents
the probability that a VLC/FLC decoder outputs a symbol S,
whereas a symbol S/’j =Sk - A’g was transmitted.

The input of the OFB decoder, the corresponding analy-
sis filter bank’s outputs, quantization noise, and impulse er-
rors corrupting the analysis filter banks™ outputs in various
subbands (16) are arranged in an array as

yrln] = [yRn] yR’l[n]]T,
yinl = [l) - ],

. (17)
nn] = [2°ln] - AV Unl]

where y*[n] = 0, yﬁ[n] =0, nf[n] = 0, and e*[n] = 0 for
n < 0and n > L* — 1. L¥ is the length of the sequences in

subband k. In the time domain, the syndrome equations for
window j of the received signal can be written as

S/ = Pyl = P(y/ +n +ef), (18)
where

S = [sTj] STl +1] --- ST M-1]],

T
sljl = [sili] L] - svexlil]

and P is a matrix in (11) restricted to dimension [(N —K)M X
N(M + Lp)].

As the number of syndrome equations for an entire OFB
encoded sequence is large, the syndrome decoder operates
on the segments of the received codeword, in a sequential
manner. The decoding algorithm consists of two steps: error
localization and error amplitude estimation. The error local-
ization procedure determines the positions in which errors
have occurred by inspecting the syndromes. Due to quantiza-
tion noise, syndromes have nonzero values, even in absence
of channel noise. The localization procedure therefore has to
distinguish between the changes of syndrome values due to
quantization noise and that due to impulse errors. This can
be done for example by thresholding the syndrome values
[18]. However, better results can be achieved by using more
sophisticated methods such as methods based on the hypoth-
esis testing theory [1, 18, 19].

The errors are localized and estimated for the first win-
dow of the received signal. Their influence is removed. The
decoding procedure for the next syndromeand received data

. ; M. .
windows $/*M and y;  is the same as that for the first win-
dow. The typical window size is M = Lp + 1.

5.3. Errorlocalization

The approach presented here is based on the M-ary hypoth-
esis testing theory [20], where each possible position of an
impulse error within a window of the received data is con-
sidered as a separate hypothesis [18]. We further introduce a
symbol reliability information provided by a SISO VLC/FLC
decoder in this localization procedure.

We assume that impulse errors are sparse and that we
can have at most one error within a few consecutive win-
dows of the received data. Each possible position of an im-
pulse error within a window of the received data is consid-
ered as a separate hypothesis. The null hypothesis means that
there are no impulse errors. We note that in the first window,
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[yg[—Lp] - -yg[—l]]T is a zero vector. As we assume that
there is no error propagation, the first LpN samples in the
following data windows are corrupted only by quantization
noise. The effective window size for impulse error localiza-
tion and correction is therefore MN samples. That is, we con-
sider MN + 1 hypotheses: null hypothesis Hy and hypothesis
H;, i = 1,..., MN which says that there is an impulse error
in position NLp + i within the window j of the received data
y. This in turn means that there is an error at time instant
n=((j—1)M+|i/N]) in subband k = (i mod N). That is,
the error position assumed by the hypothesis directly trans-
lates into the number of the subband and the time instant in
which error has occurred.

5.3.1.  Hypothesis testing for a Bernoulli-Gaussian
impulse noise model

Assuming that the quantization noise is Gaussian and inde-
pendent of the impulse noise which has Bernoulli-Gaussian
distribution, the joint probability density function (pdf) of
the syndromes under hypothesis H; is a multivariate Gaus-
sian distribution given by

p(Sl,...,SD | Hi)
1

T (2n)P2 det (M;) "2 (20)
xewp ([ - 357 80) My (57 81) )

where, in order to simplify the notation, the D = (N - K)M
elements in S/ are denoted by sy,...sp. M; is the syndrome

covariance matrix under hypothesis H;, and S/ is a vector of
syndromes mean values under hypothesis H;. The quantities

M, (hypothesis that there is no channel error), M;, and S{ are
given by

M, = E{sfsiT | Ho}

: 02 N-12 02 N-12]pT
=Pd1ag{aq,...,aq seer0g 5enes, P,

M; = E{sfsz | H}

. 2 12 2 12
=P[d1ag{ag N AR ,...,(aq +of ),...,O'N ! HPT,

k2
S/ = E{S' | H;} = E{Py | Hi} =0,
(21)

where k = (i mod N).
The a posteriori probability of each hypothesis is given
by

4 _ p(si,...,sp | Hi) pa(H;)
P(H1|51,---,5D) - P(Sl,--.,SD) 5 (22)

where p,(H;) is the a priori probability hypothesis Hj, that is,
the a priori probability of having an error at position i within
the considered window.

5.3.2.  Hypothesis testing for a quantizer-dependent
impulse noise model

The possible error amplitudes at the output of the VLC/FLC
decoder are given by the symbol level differences A]g = Sl’j —Sk,

U FE vy = 1,...,N(’§, where S¥ are symbols in the sym-
bol alphabet of subband k. For example, for a uniform scalar
quantization with a dead zone, the quantized symbol values
are given by y’q‘[n] = sign(I*[n])|I%[n]|8%, where I*[n] =
sign(y*[n])| | y*[n]1/8* ], and 8 is the quantization step size
in subband k. For this example, the differences between sym-
bol values A]g are given by A’g = +vok v = 1,...N5 - 1.

The joint pdf of syndromes conditioned on A? and H; is
a multivariate Gaussian distribution given by

P(Sb---)sD |H1)Alg)
B 1
 (2n)P2det (M;) 2 (23)

X exp ([ - %(Sj —S{)TM,TI(SJ' —S{)D,

where M; and glj are given by

M; :E{SJ’SJ’T | Hi}

=Pdiag{0'32,...,057712;...,0'22)...,057712}PT)
} A . (24)
S! = E{S | H} = E{Py; | Hi}
r
:PI:O"'OA{;O"'O:I b SéZO’

where k = (i mod N).
In this case, the hypothesis is characterized by the param-
eter A’g which can take a number of different values. Assum-

ing that we know the probability distribution P(AéC | H;), we
can apply the composite hypothesis testing. The a posteriori
probability of the hypothesis is given by

p(Hl ‘ Sl)---)SD)
X psiooosp | Hy AF)P(A | Hi) pa(H;)  (25)
B p(s1,-..,5p) ’

where P(Aé< = 0| Hy) = 1 and where we have assumed that
the probability of making an error A’g does not depend on
the error position, that is, P(A]g | H;) = P(A’g) = Pé‘.

5.4. The hypothesis a priori probabilities

The a priori probability of each hypothesis can be calculated
based on the average symbol error rate (SER) at the output
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of the VLC/FLC decoder or based on the symbol posteriori ~ 5.4.2.  Using the symbol posteriori marginals
marginals provided by the SISO VLC/FLC decoder.
The a priori probabilities are given by
5.4.1.  Using the average SER
I I pa(Ho) =[] PIv],
The a priori probabilities are given by Y (27)

pa(Ho) = (1= p")™,

MN-1_ i=1
=1,...

(26)
pa(Hi) = (1= p*)"" 7 pk,

» MN,

where pk is the probability of an impulse error in the sub-
band k.

P=[P[j] - PN

The OFB decoding algorithm with calculation of the a priori
probabilities as in (26) and (27) is referred to as Algorithms
A and B, respectively.

5.5. Errortracking

Due to the memory of the convolutional code, the errors can
be tracked by considering syndrome segments S/*! - - - Si*l»
under the same set of hypothesis as in the window corre-
sponding to S/ [18]. That is, the hypothesis testing should
indicate the same error location in respect to window S/ for
each of these syndrome segments. We therefore introduce a
parameter T which specifies how many times the error lo-
cation has to be confirmed in order to be considered as a
true error location. The tracking of errors is necessary if the
structure of the matrix P in (11) is such that not all error
positions can be detected by considering only the syndrome
segment /.

5.6. Amplitude estimation

Once located, the errors’ amplitudes are calculated by solving
the syndrome equations in (18) in the least-square sense. For
the error at position i within a window yg, the error ampli-
tude is estimated as

e/ = (PTP;) 'PISI. (29)

P; denotes the ith column of matrix P. Since impulse er-
rors are sparse, one can consider additional syndrome equa-
tions in order to have better estimate of the error ampli-
tudes. It is necessary to consider additional syndrome equa-
tions when the matrix P in (11) is such that the system of
syndrome equations in (7) is underdetermined for some er-
ror positions. For the amplitude estimation, we consider a set
of equations corresponding to the following augmented syn-
drome segment [Si” sTj+M] --- sT[j+M+E-1]]7,
where E is a parameter which determines the number of
additional syndrome equations. After amplitude estimation,

S Pj+M—1] ---

pa(H;) = (1=P[i]) [ [ PIV],
v#i

i=1,...,MN,

where P[v] is an element of a vector of symbol probabili-
ties P = [P[0] - - - P[MN — 1]] obtained by interlacing the
probabilities at the output of the SISO VLC/FLC decoders in
various subbands as

PNI[j+M—1]]. (28)

the error estimates for particular subband and time instant
are subtracted from the received signal.

5.7. Message reconstruction

It has been shown in [14] that if the output of an OFB is cor-
rupted by quantization error which can be modeled by an
additive white noise, and if the noise sequences in different
channels are pairwise uncorrelated, the pseudoinverse is the
best linear reconstruction operator in the mean-square sense.
Assuming that after impulse error correction the received se-
quence is corrupted only by quantization noise, the message
is reconstructed by applying the pseudoinverse receiver.

The polyphase matrix of the synthesis filter bank corre-
sponding to the pseudoinverse receiver is obtained as

R(2) = [E(2)E(2)] 'E(2), (30)

where E(z) = EF (1/z*) denotes the paraconjugate of E(z).

6. ITERATIVE DECODING OF THE OFB-FLC CHAIN

Here we consider joint decoding of an OFB-FLC code and
present an iterative algorithm which can improve the decod-
ing performance. However, we do not give the proof for the
convergence of this algorithm.

The syndrome decoding algorithm computes the a pos-
teriori probabilities of the hypothesis regarding the impulse
error positions. As the symbols at the input of the OFB syn-
drome decoder are known, the calculated a posteriori prob-
abilities can be used to “eliminate” particular symbols from
the trellis in the SISO FLC decoding algorithm in the next
iteration. For example, if the a posteriori probability of hy-
pothesis H; is 1, this means that the decoded symbol at time
instant corresponding to the error position assumed by hy-
pothesis H; is wrong. This symbol can therefore be elimi-
nated from the trellis of the Markov source. The SISO de-
coding can thus be performed on the reduced trellis. That is,
in this way, the trellis for SISO decoding can be iteratively
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FI1GURE 3: Block diagram of the iterative decoder.

pruned. The block diagram of the iterative decoder is shown
in Figure 3.

The pruning of the trellis in the FLC decoder is done
by multiplying the a,(s) and f,(s) coefficients in (14) by a
factor P{ , (s) in the following way: a,,(s) = >¢ au-1(s")ya(s’,
$)PE,(s) and Bu(s) = ¢ Bus1(s)ynr1(s, 8P, 1n(s"). The
probability P{,(s) is the a priori probability of the state s
at time instant # in the trellis for subband k. The probabil-
ities P{,(s) are initialized to 1 in the first iteration. In the
subsequent iterations,the probabilities Pf (s) are updated
for the decoded symbols for which an error has been de-
tected in the OFB syndrome decoder in the previous itera-
tion. That is, let us assume that in iteration r — 1, the errors
have been detected for the subset of decoded symbols given
by [75[n0) = s, JE[ml=su -+ 3E[m] =541, 50, € 85
The probabilities P, (s) in iteration r, denoted in the follow-
ing by P, .(s), are updated as

Pl?,n,r (Sn) = Pz,n,r—l (Sﬂ) (1 - Pz?np,r—l (S”)>’ n=to,..., Nt

(31)
where P,ff,,(s,,) is the a posteriori probability of the hypoth-
esis H; which, since there is a one-to-one correspondence
between the error position in the window of received data
and the subband and time indices, says that there is an er-
ror at time instant » and subband k. Knowing that the OFB
syndrome decoder input in iteration r was yr[n] = s,, the
PZ’I;E .(sy) can be seen as the probability that the symbol s,
was not transmitted at time instant # in subband k.

There are two problems associated with this iterative al-
gorithm. First, the a posteriori probabilities of the hypoth-
esis are calculated for a number of consecutive overlapping
windows of syndromes and the question which one to use as
PZ,pnp)r(sn). Here, we take an empirical approach and use the
average of the hypothesis a posteriori probabilities over the
considered syndrome windows. The second problem is the
presence of the false detected errors. Due to false detected
errors, it is possible that the performance of the algorithm
decreases with iterations. However, assuming that the prob-
ability of a false alarm is small and that in the case of false
detected errors the probabilities P}, (s,) are small, we can
expect the MSE improvement with iterations. Also, in most
cases if a false detected error in one iteration becomes a true
error in the next iteration due to soft “elimination” of the
correct state, it will be detected by the syndrome decoder
and corrected. The experimental results show that the MSE
decreases with iterations and stabilizes after a few iterations

around a value smaller than the MSE obtained in the first
iteration.

7. PERFORMANCE RESULTS

In this section, we consider an application of the presented
decoding algorithm to an image coding system with a tree-
structured subband signal decomposition shown in Figure 4.
In each stage, an N = 2-channel biorthogonal 9/7 wavelet
filter bank is employed.

The redundant signal representation is obtained by re-
moving the downsamplers in the last horizontal filtering
stage. Therefore, the signal in the first two subbands is pro-
tected by the OFB code with (N,K) = (2,1). The generator
and parity check matrices of an OFB are given by E(z) =
[Ho(z) Hi(z)]T and P(z) = [Hi(z) —Ho(2)], where Hy(z)
and H,(z) are the z transforms of the two-channel wavelet
filter bank impulse responses.

We assume that the oversampling is introduced in the
last horizontal filtering stage, whereas VLC/FLC coding is ap-
plied on the columns of the 2D subband representation of
an image. The JSC codeword is depicted in Figure 5. In the
case of the system with a VLC, this kind of interleaving pre-
vents bursty impulse errors at the output of the entropy de-
coder. The interleaving also facilitates iterative decoding of
the OFB-FLC chain.

All the results are obtained for the gray scale [512 x 512]
Lena image. The Markov model parameters are estimated by
simulation. The parameters E and T are set to E = 5 and
T = 5. The number of quantization levels in subbands LL2,
LH2, HL2, HH2, LH1, HL1, and HH1 is 64, 16, 4, 4, 2, 2, and
2, respectively.

Tables 1 and 2 show the performance of various decod-
ing algorithms in terms of the mean-square error (MSE),
the probability of detection Py, and the probability of a false
alarm Py. The probability of detection is the probability that
we localize an error when there is an error. The probabil-
ity of a false alarm is the probability that we localize an
error when in fact there is no impulse error at that posi-
tion. The results compare the performance of the syndrome
decoding Algorithms A and B with Bernoulli-Gaussian im-
pulse noise model. The results for the quantizer-dependent
impulse noise model are not shown as they are similar to
the results for the Bernoulli-Gaussian impulse noise model.
The decoding algorithm with no syndrome decoding is re-
ferred to as pseudoinverse receiver (PR). Table 1 shows the
results in the system with a Huffman entropy code. The MSE
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in the absence of channel noise is 43.3804. The probabil-
ities of impulse errors at the output of a VLC decoder in
the first two subbands are prr> = 0.0053 and pr = 0.0077
for Eb/N() = SdB, and pL2 = 0.0116 and pPLH2 = 0.0182
for Ep/No = 4dB. The impulse-to-quantization noise ra-
tio in the first two subbands are IQR;;, = 23.54dB and
IQRLHZ = 16.4 dB for Eb/N() =5 dB, and IQRLLZ =24.12dB
and IQRy 5, = 16.6 dB for E,/N, = 4 dB.

Table 2 shows the results in the system with an FLC. The
MSE in the absence of channel noise is 21.8339. The prob-
abilities of impulse errors at the output of FLC decoders in
the first two subbands are pri, = 0.0055 and pr, = 0.0067
for E,/Ny = 6dB, and pr1> = 0.0282 and pr, = 0.0344 for
Ep/Ny = 4dB. The impulse-to-quantization noise ratios are

IQRLLZ = 24.9965 dB and IQRLHZ = 14.8449 dB for Eb/N() =
6dB, and IQR;;, = 25.5188dB and IRQy; = 14.7dB for
Ey/Ny = 4 dB. We assume natural binary index assignment.

From Tables 1 and 2, we can see that introducing the soft
information in the localization procedure of the syndrome
decoding algorithm significantly improves the probability of
a detection. In the system with an FLC code, the probability
of a false alarm is decreased as well. In the system with a
VLC code, the probability of a false alarm is decreased in the
subband LL2 where the IQR is high. However, in the LH2
subband where the IQR is low, utilizing the soft information
can worsen the probability of a false alarm. In both systems,
the MSE performance of Algorithms A and B is similar.

The peak signal-to-noise (PSNR) improvement due to
OFB syndrome decoding at E,/Ny = 4dB is 0.75dB for
the system with an FLC and 0.6dB for the system with a
VLC. We have assumed that the entropy decoders perfectly
know the Markov model parameters. In this case, the SISO
entropy decoding performs very well, that is, the IQR is
small. The possible improvement by using a syndrome
decoding algorithm is therefore small. For example, in the
system with the FLC, the maximum possible PSNR gain due
to syndrome decoding is less than 1.18 dB at E;/N, = 4dB
and less than 0.24 dB at E;/Ny = 6 dB. As the other extreme,
we consider a system with the FLC and entropy decoding
which does not make use of the Markov property of the
source symbols in the first two subbands. For this example,
the MSE for E;/Ny = 6dB in the system with and without
syndrome decoding is 22.87847 and 40.411473.

Figures 6 and 7 show the reconstructed image without
and with syndrome decoding for this example.

Figure 8 shows the MSE versus Ep/N, for the first and the
fourth iterations in the iterative decoding of the OFB-FLC
chain. The results for the pseudoinverse receiver and the
performance of the pseudoinverse receiver in the case when
there are no impulse errors in the first two subbands are also
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TasLE 1: Performance of the syndrome decoding algorithm in the system with a VLC.

MSE pit? piH2 P Pt Alg. E,/Ny
44.6844 0.4298 0.4006 0.0004 0.0006 A 5dB
44,4559 0.5516 0.5370 0.0002 0.0013 B 5dB
48.2196 — — — — PR 5dB
48.7849 0.3978 0.3218 0.0011 0.0014 A 4dB
48.1248 0.4851 0.4046 0.0007 0.0027 B 4dB
55.3454 — — — — PR 4dB

TaBLE 2: Performance of the syndrome decoding algorithm in the system with an FLC.

MSE P2 Py P P2 Alg. Ey/No
21.9933 0.4981 0.2349 0.0006 0.0055 A 6dB
21.9697 0.6418 0.3399 0.0005 0.0031 B 6dB
23.0284 — — — — PR 6dB
24.2307 0.4231 0.1981 0.0015 0.0051 A 4dB
24.0243 0.5124 0.2533 0.0010 0.0037 B 4dB
28.7464 — — — — PR 4dB

2
=

FIGURE 7: Reconstructed image after syndrome decoding.

Ey/Ny

—— Pseudoinverse receiver ~ —— Fourth iteration
—o— First iteration --- Bound

FiGure 8: Performance of the iterative decoding of the OFB-FLC
chain.

shown. From this figure, we can see that iterative decoding
reduces the MSE. However, at 3 dB, there is still a significant
gap between the performance in the fourth iteration and the
performance of the system with no impulse errors in the first
two subbands.

8. CONCLUSIONS

We have examined the performance of a JSCC system con-
sisting of OFB codes and of redundant source codes. The
localization procedure based on the M-ary hypothesis test-
ing theory for the two impulse noise models has been devel-
oped. We have further shown how the soft information at the
output of the SISO entropy decoder can be used in order to
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improve the error localization procedure. An empirical algo-
rithm for the iterative decoding of the FLC-OFB chain has
been presented. The performance of the various decoding al-
gorithms has been tested for the image compression system
with a wavelet-based signal decomposition.
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