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1. INTRODUCTION

Multiple description (MD) coding [1, 2] offers an attractive
framework for the transmission of multimedia over hetero-
geneous networks. In MD coding, a source is encoded into
multiple independently decodable bitstreams which are mu-
tually refining and equally important. At the decoder side,
the reconstruction quality is dependent on the number of de-
scriptions that was errorlessly received. Due to its flexibility,
multiple description coding is considered a very robust and
reliable tool for information transmission.

Multiple description coding has been investigated for im-
age [3-5] and video transmission [6-11]. In the particular
case of video transmission, the study of MD systems becomes
more complicated due to the uncertainty about the infor-
mation that will be available at the decoder of an MD sys-
tem.

In [12], a methodology was presented for the design
of two-channel orthonormal filter banks based on the La-
grangian optimization of the redundancy rate-distortion
performance of MD subband coding. In [7], an MD pre-
dictive quantization system was introduced, appropriate for
the encoding of correlated information sources such as video
and speech. The proposed system was used to construct a
balanced twin-description interframe MD video coder, and
performance results are presented using two packetization

strategies. A review on MD coding was recently presented in
[13].

In [6], MD video coders were proposed which use
motion-compensated prediction. These systems utilize MD
transform coding, three separate prediction paths, and side
information in order to accommodate all possible scenarios
at the decoder. For this reason, three different algorithms for
redundancy allocation were implemented, and experimental
results were presented. An improved algorithm based on the
same principles was presented in [10] where the encoding
of the side information was modified in order to be useful
even if no drift occurs. In [14], a novel scheme for double-
description coding was proposed, which is built in the H.263
coder and replicates some selected DCT coefficients in both
descriptions. The selection is based on a threshold deter-
mined using rate-distortion techniques. In [8], a novel way
to deal with redundancy was devised. Temporal redundancy
was used to control the tradeoff between drift and redun-
dancy. However, this method does not inherently eliminate
drift, that is, the cumulative distortion which occurs when-
ever the reference frames used at the decoder are not identical
to the ones used by the encoder.

In [9], a drift-free wavelet-based MDC video coding
scheme was proposed. However, the redundancy allocation
algorithm did not take into consideration the impact of the
temporal redundancy into the design of the system, thus
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resulting in suboptimal coding. The above problem was dealt
with in [15], where an improved version of the method in [9]
was presented.

In [16], a multiple description coding method for video
streaming was presented. The method in [16] was based on
a 3D discrete wavelet transform. Redundancy was allocated
by applying Lagrangian optimization techniques for the ap-
propriate selection of subband quantizers. In [17], an MDC
scheme for video coding was presented based on a spatiotem-
poral multiresolution analysis. Correlation between the two
descriptions was introduced in the temporal domain by us-
ing an oversampled motion-compensated filter bank.

In the present paper, the intraframe and the motion com-
pensated prediction residual frames are wavelet-coded and
divided into a redundant and an enhancement part with the
redundant part encoded in all descriptions and the enhance-
ment part distributed in several descriptions. The “repeat or
split” strategy was chosen over other proposed techniques,
such as that presented in [2] since, in our case, drift-free re-
construction is straightforward. Using the above framework,
we present and evaluate two techniques for the multiple de-
scription coding of video sequences.

(i) In the first technique, only the redundant part is used
for the construction of reference frames and thus the result-
ing video coding scheme is able to perform drift-free recon-
struction. Since the quality of the reference frame affects the
coding efficiency of the system, an algorithm incorporating
the impact of temporal correlation is also presented for the
allocation of redundancy among multiple descriptions.

(ii) In the second technique, both the redundant and the
nonredundant parts of the stream are used for the creation of
the reference frame. This technique uses high-quality refer-
ence frames but the reconstructed video suffers from drift in
case of transmission over channels with severe loss.

Additionally, in the present paper the problem of opti-
mal redundancy allocation, that is, the appropriate selection
of the redundant and the enhancement parts for each frame,
is investigated. Specifically, this problem is formulated as the
maximization of the average video quality under the con-
straint of a target total rate. Three variations of an optimiza-
tion algorithm are proposed and evaluated in terms of their
complexity. It should be noted here that, in our system, the
compression and the optimization steps are distinct. In this
manner, our redundancy allocation algorithm is applied di-
rectly to compressed source layers, that is, the algorithm ac-
tually parses the compressed stream to multiple descriptions.
This clearly differentiates our algorithm from the method in
[16] in which the generation of descriptions is performed by
application of appropriate quantizers to the transform coef-
ficients.

The structure of the paper is as follows. In Section 2,
the proposed framework for multiple description coding
of video is presented. Section 3 describes the wavelet cod-
ing of intraframes and motion compensation residuals. In
Section 4, the exploitation of temporal correlation during the
optimization process is discussed. In Section 5, the redun-
dancy allocation problem is formulated. The complexity of
the redundancy allocation algorithm is studied in Section 6,

and a faster algorithm is presented in Section 7 based on the
Equivalent Continuous Problem. In Section 8, experimental
results are presented and finally conclusions are drawn in
Section 9.

2. PROPOSED FRAMEWORK FOR MULTIPLE
DESCRIPTION GENERATION

The proposed system for the generation of multiple descrip-
tions is depicted in Figures 1 and 2. Initially, the available bit
budget is evenly allocated to the frames in a group of pic-
tures (GOP). The first frame in each GOP is intra-coded us-
ing block-based wavelet coding. The resulting coded stream
is distributed over a number of descriptions. A portion of
the bitstream is redundant in all descriptions. The correla-
tion between consecutive frames is subsequently removed us-
ing overlapped block motion compensation (OBMC) [18].
The reference frames used to calculate motion vectors are the
original frames in order to ensure good precision in the es-
timation of the motion vectors. Motion vectors are losslessly
coded using the techniques in [19] and are included in all
descriptions.

Using the previously estimated half-pixel accurate mo-
tion vectors, the procedure for the generation of multiple de-
scriptions for the interframes continues as follows: initially,
the first interframe is compensated. No intra-coding is used
in interframes. We employ two different mechanisms for the
derivation of reference frames that are used during motion
compensation. In the first, a version of the I-frame, recon-
structed using only the redundant part of the bitstream so
far coded, is used as reference for the compensation pro-
cess. In the second, both redundant and nonredundant parts
are used for the derivation of reference frames in motion
compensation. The prediction error is derived by subtract-
ing the compensated prediction from the original interframe.
The prediction error is wavelet transformed and coded into
multiple descriptions. A version of the error frame is recon-
structed using either the redundant part or both redundant
and nonredundant information of the coded bitstream de-
pending on which of the two mechanisms described above is
used. The reconstructed error frame is added to the compen-
sated frame. The resulting interframe (instead of the origi-
nal) will serve as the reference frame for the compensation of
the next interframe. The same procedure is iterated until all
frames in a GOP are treated.

Using the above methodology, the proposed multiple de-
scription video coding scheme is able to produce an arbitrary
number of descriptions at the cost of reduced compression
efficiency whenever the number of descriptions is large. In
each description, there is a redundant part, which is always
used for the derivation of the reference frame in the mo-
tion compensation process, and a complementary refinement
part, which is used to improve the quality of each description
and may or may not be used for the derivation of the refer-
ence frame. When both redundant and nonredundant infor-
mation is used, reference frames of high quality are available.
When only the redundant part is used, the motion compen-
sation process performed at the encoder can be identically
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replicated at the decoder even if only one description is re-
ceived. This is a very important feature of our coder since, if
the decoder is unable to use the same reference frames, er-
rors will accumulate in the decoded video sequence causing
the aforementioned drift distortion [20]. With the proposed
methodology, which relies only on the redundant part for

motion compensation, the possibility of facing drift at the
decoder is eliminated and thus a reconstructed sequence of
high quality is obtained even if only some (or even a single)
descriptions are received.

The determination of the portion of the bitstream that is
redundant in all descriptions is performed after the wavelet
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two descriptions.

coding of the intra and the residual error frames. The wavelet
coefficients are coded using a simple bitplane encoder, based
on the context models in [21]. Specifically, the decomposed
frame is divided into blocks of equal dimensions. Each block
may be included in some or all descriptions. Thus, some
blocks may appear in all descriptions whereas some other
blocks appear in only one of the descriptions. The inclu-
sion of blocks in one or more descriptions is done so as to
maximize the average quality at the decoder, subject to a to-
tal rate constraint, and attain fairly equal bitrate and fairly
equal quality descriptions. Such an assignment is depicted in
Figure 3(a). A representation of the redundant and nonre-
dundant part of the coded bitstream for a two-description
system is shown in Figure 3(b).

The generation of descriptions can be achieved by includ-
ing appropriate blocks of wavelet coefficients in one or both
of the descriptions. In the case of two descriptions, this is
achieved by using the checkerboard pattern which we origi-
nally proposed in [9]. This approach bears some resemblance
with the flexible macroblock ordering (FMO) approach in
H.264 (see, e.g., [22]). However, there are fundamental dif-
ferences between FMO and our approach which arise from
the fact that our method operates in the wavelet domain
whereas FMO 1is applied in the spatial domain. Since the
FMO approach uses spatial blocks, the loss of a block would
mean complete loss of information for that spatial region.
This is why in FMO at least a coarsely quantized version of
a chess-block need be included in each description. Clearly,

this means that using FMO there is much less control over
redundancy since information about all blocks need be en-
coded in both descriptions. Moreover, since redundancy is
introduced by the use of different quantizers, and not by ex-
plicitly including the same portion of the bitstream in all de-
scriptions, the elimination of drift is not a trivial task. Finally,
in FMO there is a need for error concealment in case the re-
constructed quality in a spatial region is not good. Unlike
the FMO approach, in our system, a loss of a wavelet block
(due to the loss of the description in which the block is
encoded) causes only the loss of some detail in the re-
constructed frame. Moreover, in our method, most wavelet
blocks are included in only one of the descriptions and only a
few important blocks are included in both descriptions. This
is possible since the wavelet transform compacts the impor-
tant information in a few blocks (subbands) of transform co-
efficients. This strategy seems to be naturally more suitable
for MD coding since it allows better manipulation of redun-
dancy and generally achieves lower redundancy levels.
Throughout our manuscript we assume that no B-frames
are encoded (see Figure 4). However, this assumption does
not affect the significance of our work, which can also be
applied when using B-frames. Suppose that we have an
intra-coded frame, several (unidirectionally predicted) inter-
frames, and some other frames that are to be bidirection-
ally predicted using the intra- and interframes. Apparently,
our MD generation methodology is directly applicable to
the sequence of intra- and interframes. In each description,
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bidirectionally predicted frames could be encoded based
on the reconstructions of intra- and interframes which are
achieved using the bitstream in the same description. Note
that, since B-frames do not propagate errors and do not cause
drift, the reconstructed versions of intra- and interframes can
be obtained using not only the redundant part of the descrip-
tion but also using the nonredundant part as well. An inter-
esting and desirable result of this strategy is that, as these re-
constructions will be different in the two descriptions, the as-
sociated residuals of the bidirectionally predicted frames will
be inherently different in the two descriptions. This is per-
fectly consistent with the MD coding principle of encoding
different versions of the information in each description.

In the ensuing section, the complete wavelet coding
method, used for both intra- and interframes, is described.

3. BLOCK-BASED WAVELET CODING OF MOTION
COMPENSATION RESIDUALS

The intra-frame and the motion-compensated residuals are
decomposed using a wavelet transform based on the 9-7
biorthogonal filter bank [23]. The maximum absolute coeffi-
cient in each subband is placed in the image header. All sub-
band maxima are arithmetically encoded. The transmission
of information takes place in a bitplane-wise manner start-
ing from the most significant bit (MSB) to the least signifi-
cant bit (LSB). Within each bitplane, subbands are encoded
in a predefined scanning order from the lowest to the highest
resolution.

Each subband is divided into a set of blocks. The de-
fault block size is (W/2E+1) x (H/2E+), where W, H are the
width and height of the frame, respectively, and L is the maxi-
mum level of the wavelet decomposition. For each block, first
the coefficients whose most significant bit is on the bitplane
currently coded are identified by comparison to a threshold
T = 2", where n is the index of the bitplane that is being
coded. If a coefficient becomes significant, that is, it is found
to be greater than or equal to T for the first time, then its sign
is coded. This process is often called significance identifica-
tion [24] and the compressed significance map for a block is
termed significance layer. Similarly, the refinement layer is de-
fined as the one containing the nth bitplane of coefficients (in
a block) found significant in previous passes. In our coder,
refinement layers for the nth bitplane are transmitted im-
mediately after the transmission of significance layers for the
same bitplane. Note that each layer contains significant or
refinement information for a single block and that the even-

tual allocation of layers in descriptions is performed by tak-
ing into consideration the fact that the decoding of a layer is
possible only when all its predecessor layers in the same block
are also included in the description.

The nth bit in the binary representation of a coefficient
f in subband B is coded if the maximum coefficient in the
subband & is greater than or equal to the current threshold

aneag(f) > 2", (1)

The deployment of the above rule reduces drastically the
number of coefficients whose significance is tested during the
coding of a significance identification layer. For this reason,
subband maxima are included in all descriptions. However,
in order to further reduce the number of symbols that have
to be coded during the layer coding stage, a single bit is ini-
tially coded to indicate whether all coefficients in a block are
insignificant. A value of “1” of this bit indicates that the block
contains no significant coefficients and no further informa-
tion is coded for this block.

The symbol streams described above are coded using
adaptive arithmetic codes [25]. The context modelling strat-
egy in [21] is followed for the coding of significance iden-
tification layers. Refinement bits are entropy coded using a
single adaptive arithmetic model. The max frequency count
of the arithmetic coder was set equal to 512 in order to allow
fast adaptation of the coder to the statistics of the incoming
symbol stream.

In order to apply an efficient redundancy allocation algo-
rithm that takes into account the actual rate-distortion char-
acteristics of the compressed stream, the distortion decrease
achieved by the transmission of each bitplane should be cal-
culated [21, 26] for each layer. The distortion decrease caused
by the transmission of the ith layer is given by

D= Y ((f = ) = (= 1)), 2)

where 7 is the index of the bitplane included in the layer, ¢ is
the coefficient index, and ¢, ¢ denote the original and the re-
constructed wavelet coefficients, respectively. Each layer cor-
responding to a specific block of wavelet coefficients cause
different reduction in the distortion. Analytical expressions
for the distortion reduction caused by the transmission of
layers can be found in [26]. Let R; be the number of bits re-
quired for the coding of the ith layer. When all pairs (D;, R;)
are determined, the redundancy allocation algorithm can be
applied. This is examined in the following sections.

4. TEMPORAL CORRELATION COMPUTATION

An optimization algorithm should take into consideration
the temporal correlation linking adjacent video frames.
Modelling the dependency of adjacent frames in a video se-
quence is a nontrivial problem. In this paper, in order to
deal with this issue, we introduce a temporal correlation co-
efficient a;, 0 < a; < 1, meant to incorporate the effect
of temporal correlation of layer i into the optimization al-
gorithm. Specifically, we assume (a similar conclusion was
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drawn in [27]) that the distortion reduction in frame m + 1
is a;D;, where m is the frame index. In the same manner, the
additional distortion reduction a;D; in frame m + 1 stimu-
lates additional distortion reduction a;(a;D;) in frame m + 2,
ar(a;j(a;D;)) in frame m+3 and so on, where a;, ay, . . . are the
temporal correlation coefficients for frames m + 1,m +2,...
correspondingly. We further assume that a;, a i ay are ap-
proximately equal for all frames in a GOP since the depen-
dency between consecutive frames in the same GOP is not
expected to exhibit significant variations. In general, the dis-
tortion reduction in frame n caused by the transmission of
the ith layer in frame m, m < n, is a ™ D;. Thus, as the tem-
poral distance n—m between m and n increases the additional
distortion reduction decreases exponentially. Assuming that
the total number of frames in a GOP is M, the total distortion
decrease is given by

D; +a;D; + a%Di toeest af\/Imei’ (3)

where a;D; is the distortion reduction caused in the m + 1
frame, a?D; is the distortion reduction in the m + 2 frame,
and so forth. The above quantity is equivalently written as
the sum

Di+ (ai+a}+---+a"™D;, (4)

where the first term is the distortion reduction in the current
frame and the second term denotes the distortion reduction
in all subsequent frames. If

Ci=aj+a’+---+al™m= a
the total distortion reduction caused by the transmission of
the ith layer in the mth frame can now be expressed as

D,‘ + D,'C,‘, (6)

where D;C; is the cumulative distortion reduction’ that is
caused in the subsequent frames due to the higher quality
of the current (reference) frame m. Clearly, with this formu-
lation, layers in frames lying in the beginning of a GOP are
more important than layers of frames at the end of the GOP
since the quality of the former affects the quality of the lat-
ter. The coefficients a;, and hence C;, which quantify the im-
pact of the current frame on the quality of subsequent frames
were calculated using the methods in [27].

5. FORMULATION OF THE REDUNDANCY
ALLOCATION PROBLEM

In order to address the problem of optimal allocation in MD
video coding, it is important to derive expressions for the
average video quality at the decoder and the total rate used
in terms of the assignment strategy. Although in the experi-
mental results section we consider the average PSNR over the
entire sequence, in this section we will attempt to maximize

! Even though all coefficients D;, a;, and C; depend on the frame index m,
this dependence will in the sequel be omitted for convenience.

the distortion reduction incurred by each frame of the GOP
separately. This simplification will not significantly affect the
optimality of the strategy derived here, while it will serve in
addressing the problem of optimal assignment in a more rig-
orous way and in providing useful insight into the optimiza-
tion procedure.

Let us assume that each frame is coded into L layers, each
using R; bits and contributing a reduction of distortion equal
to D; relative to the quality of the current frame and C;D;,
i =1,...,L, to the quality of the next frames in the GOP?
when used for motion compensation for the next frames. We
further assume that the curve appearing in Figure 5(a) is con-
cave, namely,

— > > > =, (7)

This assumption is generally valid for the case of our
coder (a curve based on real data is shown in Figure 5(b)).
We further note that lower-indexed layers correspond to
coarse image information whereas high-indexed layers corre-
spond to detail information. Between adjacent frames, coarse
information is much more correlated than detail informa-
tion. Thus, g; is fully expected to decrease with i. Since C; is
obviously a monotone function of a;, this implies that:

Ci=C=---2>2(Cp, (8)

an observation which is also verified experimentally. This
ensures that (7) will still hold, if we replace the D;’s with
D;(1+ C;), that is,

Di(1+C)) . Dy(1+Gy) S>> M (9)

Rl R2 RL

We wish to encode the initial video sequence into K de-
scriptions, each of which will either provide a coarse recon-
struction of the initial sequence by itself or improve a recon-
struction based on one of the other descriptions. To this end,
for every frame in the GOP we will assign a number of layers
to each description in a way so as to maximize the distortion
reduction incurred under a limited-rate constraint. We will
consider the case of double-description coding (K = 2). The
general case is studied in Appendix B.

Let I = {1,...,L} denote the set of the possible values
that the layer indices may assume. The problem of provid-
ing two descriptions for each frame in the GOP is equiv-
alent to assigning a set of layer indices I, C I to the first
and a set I, C I to the second description. Subsequently, the
two descriptions will be transmitted over two communica-
tion links to the decoder. If Ay represents the event that de-
scription k reaches the decoder and p denotes the probability
that each stream is successfully delivered to the decoder (i.e.,

2 For the last frame in the GOP C; = 0,i = 1,...,L.
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the source coder of Section 3.

p = Pr{A}, k = 1,2), four events exist for each frame:

B 2 A\ Ay only the first description is delivered
B, £ A, \ A;: only the second description is delivered
B2 £ A N Ay: both descriptions are delivered

By £ A§ N AS: no descriptions are delivered.

The probability of each of these events may be easily derived
if we make the reasonable assumption that the events A; and
A, are independent:

Pr{B,} = p(1 - p),
Pr{Bo} = (1 - p)~.

Pr{Bi} = p(1-p),
10
Pr {B]z} = PZ’ ( )

Let d(By), d(B2), d(B12), d(By) denote, respectively, the
distortion reduction at the decoder for the current frame
when each of the events By, B;, B2, and By occurs. Their val-
ues may be calculated as

)= 2. Di, )= 2. D

iel} i€l

d(Bi) = > Dj d(By) = 0.

iclhul,

(11)

Moreover, when at least one of the descriptions arrives at
the decoder, the layers common to all descriptions will be
used for the motion compensation of the next frame in the
GOP, incurring an additional distortion reduction of C;D;
for each layer. Let By, £ B denote the event that at least
one description reaches the decoder and I, 2 I, nL de-
note the set of indices common to both descriptions. Then,
Pr{B;;} = p(2— p) and the corresponding distortion reduc-

tion will be

d(Bip) £ > CD;. (12)

i€l

Consequently, the expected distortion reduction, D, (I},
I,), incurred at the decoder, when the index-assignment pol-
icy (I, ) is used, will be

D,(I1,I,) = Pr{Bi}d(By) + Pr {B,}d(B,)

+Pr {Bi,}d(B1;) +Pr {Bi2}d(Bi)2)

=p(1—=p) > Di+p(1-p)> D (13)
iel} i€l
+p? Z D+ p(2-p) Z CiD;,
iel,ul, icl,

and after some simple manipulations we arrive at

D.(I,L) =p(2—-p) > Di(1+C)+p > D, (14)

iel, i€l

where I, £ (I U I,) \ I is the set of indices contained in
exactly one of the descriptions.
The total rate, R(I;, I), used by the two streams is

R(I;,L) = > Ri+ > R, (15)

iel} i€l
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and may also be expressed as

R(I,L) =2 > Ri+ Y R (16)

i€l i€l

Assuming that the total rate used may not exceed a pre-
defined rate budget Rg, our purpose is to identify the index-
assignment sets I; and I, which do not violate the rate con-
straint and maximize the expected distortion reduction at the
decoder

max 55(11,12). (17)

I1,L:R(I1,I,) <R

It is clear from (14) and (16) that the expected distortion
reduction and total rate depend upon the sets I, and I,,. Fur-
thermore, the factor p in the expected distortion reduction
(14) may be ignored for the optimization procedure for the
sake of simplicity. Therefore, the maximization problem may
be rephrased as

Maximization problem

Find disjoint sets I, I;, C I maximizing

D(Io,I,) =(2-p) > Di(1+C)+ > D (18)

ieln il
subject to the constraint
R(In, 1) =2 > Ri+ > Ri < Rs. (19)
iely i€l

The solution of the above problem will yield the optimal
sets I, and I, where I, will contain the indices of the lay-
ers assigned to both streams and I, will contain the indices
assigned only to one of the streams. In order to obtain the
optimal I, I, we need to further partition I, into two dis-
joint index-assignment sets, one for each stream. It is clear
from (14), however, that any such partition will yield sets I,
L, inducing the same expected distortion reduction at the
decoder; hence, the partition of I, may be arbitrary (we may
even assign the whole set I, to only one of the streams). How-
ever, since balanced MD coding is sought, an acceptable par-
titioning should result in fairly equal total rates of I; and L.
In order to achieve this, the indices in I, may be ordered in
terms of decreasing corresponding rates R; and be assigned
alternately to each stream.

6. COMPLEXITY ANALYSIS

If we were to solve the maximization problem (17) by ex-
haustively examining all possible realizations of I; and I, this
would involve 22L possibilities, since there are 2F subsets of
the index set I. Clearly, the optimal solution will be achieved
by choosing any pair of sets I; and I, resulting in the same
sets I* and I’*, which solve the maximization problem de-
scribed by (18) and (19). Hence, we only need to examine all
possible realizations of disjoint sets I, I, C I.

Note that since there are 2 possible subsets of the in-
dex set I, any subset A C I may be expressed as the binary

max D = 0 (maximum distortion originally 0)
I* = I = 0 (optimal sets originally empty)
for I, = 0,...,2% — 1 (all possible realizations of 1)
for I, = 0,...,2% — 1 (all possible realizations of I,,)
if (I AND 1)) # 0 (check if sets are disjoint)
if (19) is satisfied (check rate constraint)
Calculate expected distortion reduction
D(I,1,) from (18)
if D(I»,I,,) > max D, update max D, I and I
(update optimal sets)
endif
endif
endfor
endfor
Partition I* into two fairly equal-rate subsets I, » W and Ik @,
The optimal index assignment is given by I} = I U I} W,
=1:ur".

ArcoriTHM 1: Exhaustive search algorithm.

representation of a number between 0 and 2L — 1, with the
ith bit being 1, if i € A and 0 otherwise. An exhaustive search
algorithm which will determine the optimal solution I, I*
to the maximization problem is shown in Algorithm 1.

Although this algorithm will always produce an optimal
solution, the number of possible realizations of I, and I,
over which the search will be performed, is 3%, still pro-
hibitive even for moderate values of L. The NP-completeness
of the maximization problem described by (18) and (19) can
also be shown by formulating it as an integer (0—1) program-
ming problem as shown in Appendix A.

In view of these remarks, it would be desirable to estab-
lish some optimality results that will narrow the number of
possible candidate solutions or devise techniques that would
search through a smaller set of possible near-optimal solu-
tions. To this end, the following will prove helpful.

Lemma 1. If I, and I, are fixed and j € 1, or j € 1, replac-
ing layer j with layers of higher indices, such that their total rate
does not exceed R;, would result in smaller expected distortion
reduction.

Proof. Assume that j € I (the proof for j € I, is similar)
and ji,...,jk € In, [, withj < j; <--- < jrand

i

M-

R;, <R;. (20)

i=1

If I, is replaced by the setIAm £ (I,\ {iH) U iji,..., jk}, then
the rate constraint (19) would still be satisfied and the ex-
pected distortion reduction (18) would decrease by

D(I,1,) — D, 1)

k (21)
= (2 p)|:D](1 +C]) - ZD]X(I +CJ;):|

i=1



Nikolaos V. Boulgouris et al.

Using (9) and (20) it is straightforward to show that the out-
come of (21) is nonnegative; hence, this replacement would
prove inefficient. O

The same also holds if we were to replace more than one
lower-indexed layers with higher-indexed ones of smaller to-
tal rate. In other words, Lemma 1 suggests that, if possible
(i.e., if the rate constraint is not violated), we should replace
higher-indexed layers with lower-indexed ones with appro-
priate total rate. However, Lemma 1 might mislead us to as-
sume that the optimal solution would consist of sets I* and
I}* comprising the lower-indexed layers, that is,

IX ={1,...,L}},

I¥ ={L}+1,...,L}%}, L} <Lk

(22)

This would not be true in case the rate margin Ry £
Rp — 22 cr, Ri — Yic;, Ri can be filled by replacing one (or
more) of the lower-indexed layers j with one or more higher-
indexed layers j < j; < --- < ji, such that ZZ;‘:lRJ". <
2R; + Ry It is possible that in this case the resulting expected
distortion reduction actually be larger, as shown in the ex-
ample below.

Counterexample 1. Let Rg = 21.5, p = 0.8, C; = 0,
i=1,...,L,and R;, D; given by the following table:

i | 4 5

1 2 3
Ri|5 4 3 2 15
D; |09 0.7 0.4 0.25 0.18

It turns out that the optimal sets I, I, of the form (22) are
In = {1} and I, = {2,3,4,5} (L} =1, L} = 5) resulting in
total rate 20.5 and expected distortion reduction 2.61. There
is, however, a rate margin Ryy = Rp — 20.5 = 1 that may
be taken advantage of, if I or I, is properly chosen. In fact,
if the sets In = {2,4} and I, = {1,4,5} are used, the total
rate matches the rate budget Rp and the expected distortion
reduction increases slightly to 2.62.

This counterexample verifies that the optimal solution
will not always be of the form (22); however, extensive ex-
perimentation showed that in most cases the sets I, and I,
given by (22) provide a near-optimal solution, as was indeed
the case in the previous example.

An improved exhaustive search algorithm, which stems
from this remark, would consider only sets I, I, of the form
(22). The number of possible candidates may be further re-
duced based on the following lemmas.

Lemma 2. L} cannot exceed any certain value beyond which
the sum Zfﬁl R; exceeds the rate budget Rp.

Proof. This lemma is a direct consequence of the total rate
constraint (19) for L} = 0. O

Lemma 3. L}, cannot be smaller than any value for which the
sum Z,-LEI R; does not exceed Rg/2.

max D = 0 (maximum distortion originally 0)
L% = L} = 0 (optimal sets originally empty)
Ly =max{lel: ZLI R; < Rg/2} (smallest value for L¥)
L, =max{l€1: ZLI R; < R} (largest value for L¥)
L, = L, (initial value for L)
for L, = Ly,..., L, (all possible values of L)
while 17 R; > Rp — X1 R,
decrease L,
endwhile
In=1{1,...,L~}, I,={L,+1,...,L,}
(corresponding index-assignment sets)
Calculate expected distortion reduction
D(I,1,) from (18)
if D(I5, I,) > max D update max D, L%, and L,
(update optimal values)
endfor
I ={1,...,Lr}, I} = {Lr+1,...,L}}
(optimal index-assignment sets)

ArgoriTHM 2: Improved exhaustive search algorithm.

Proof. 1f XiLEl R; < Rp/2, the best choice for L} is LY = L/,
since the rate constraint will still be met. If there exists a [ >
L¥ with '_, Ri < Rg/2, then setting L¥ = L¥ = I improves
D(I,1,). O

Lemma4. Fora given LY, the optimal value of L}; is the largest
integer | < L, for which the total rate for I~ does not exceed

the remaining available rate, 25\ | R; < Rg — ZileH R ¢
! L
Zi:l Ri < Rp — zi:l R;.

Proof. It is straightforward to prove that the more layers I
comprises, the better the distortion reduction will be. There-
fore, we should try to “fit” as many layers as possible in the
remaining available rate. O

Lemmas 2—4 may be used to narrow down the exhaus-
tive search space. In particular, Lemmas 2 and 3 suggest that
we should examine values of L¥, in a set {Ly,...,L,}, while
Lemma 4 suggests that for each of these values of L¥ there is a
unique optimal value of L; hence, it suffices to examine only
L, — L, +1 < L cases. In view of these results, we can describe
the improved exhaustive search procedure in Algorithm 2.

The while loop in this algorithm searches for the maxi-
mum value of L, fitting in the rate margin, since, as can be
easily verified, the corresponding value of L for L, + 1 will
be smaller than that for L, (the previous value of L). Hence,
the search is performed over L, — L; + 1 possible values of L
and L, possible values of L’ and the complexity of the algo-
rithm will be linear in L.

In general, the improved exhaustive search algorithm will
result in sets I* and I%, which do not exactly meet the rate
constraint. In this case, there will be a rate margin Ry £
Rp —22cx Ri — Xici+ Rj, which can be “filled” with smaller
segments outside I* or I*. A further improvement would
search for possible augmentations of I* or I, so that the
total rate be closer to the rate budget Rg.
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As already stated, this algorithm will, in general, yield
suboptimal yet near-optimal solutions to the maximization
problem. A further (and more important) disadvantage of
this algorithm is that, when applied in the general case of
K > 2 descriptions, its complexity will be even higher. If we
are to construct a low-complexity algorithm for the gen-
eral case, we may resort to heuristics emanating from a
continuous-case consideration of the problem. This is ex-
plored in the next section.

7. EQUIVALENT CONTINUOUS PROBLEM

By examining closely the discrete maximization problem
described by (18) and (19), we first note that the sums
2ier, Di(1+ Ci), 2iey, Ri and Xicp, Di, ey, Ri are the dis-
tortion reduction and rate “measures” of I, and I, respec-
tively. A further restriction arises from the requirement that
I, and I, have to comprise intervals dictated by the available
blocks and that partial blocks may not be used. If we relax
this restriction, we may formulate a corresponding Continu-
ous Maximization Problem, which is easier to solve.

Assume that the curve appearing in Figure 5 represents a
continuous, differentiable, nondecreasing, and concave func-
tion D(R) of the rate R. Then the derivative D'(R) will be a
well-defined, continuous, positive, and decreasing function
of R, for every R € R.. In a similar fashion, assume that
the fraction of distortion reduction due to motion compen-
sation is provided by a continuous decreasing function c¢(R)
and that the curve corresponding to the products D;C; de-
fines a function C(R) with derivative C'(R) = D’(R)c(R),
which will have properties similar to those of D’ (R).? For any
rate interval [y, 2], let yr, pp, yic denote the following quan-
tities:

prllrr)) = [ dr=r-n,
pp([r,r2]) = Jrz D'(r)dr = D(r;) — D(r1), (23)

pc(lri,rl]) = Jrl c(r)D'(r)dr = C(r,) — C(r1).

sl

In practice, the number of intervals of the form [ry, 7] is
always finite (with an upper bound equal to the number of
bits in the compressed bitstream). Obviously, the measure of
a union of a finite number of disjoint intervals of the form
[r1,72] would equal the sum of the measures of these inter-
vals. Thus, a continuous version of the discrete maximization
problem described by (18) and (19) may now correspond-
ingly be formulated as follows.

Continuous maximization problem

Find disjoint sets S, S, C R4 maximizing

D(8+,8.) =(2-p) [uc(Sn) +up(Sn)] +up(Su)  (24)

3 In other words, D’(R) corresponds to the ratios D;/R; and ¢(R) to the
coefficients C;.

subject to the constraint
E(SQ,S\_‘) = zl/lR(Sm) +‘uR(Su) < RB. (25)

With the further reasonable assumption that S, and S, are
unions of closed intervals, properties stronger than Lemma 1
may be established for the continuous problem, leading to
optimal solutions.

Lemma 5. If S, is fixed, the optimal S, comprises the
“smallest-rate region” of the remaining space Ry \ S, that is,

§5 = [0,Ra] N (R \ SL), (26)

for some positive rate Rp.

Proof. We will outline the general concept behind (26). As-
sume that (26) does not hold. Then there exist § > 0 and
r, > 11 = 0 such that the interval [r;, r; + &] is lying outside
Sh (ie., [r1,7r1 + 8] NS = @) and the interval [ry, 7> + 8] is
contained in S (i.e., [r2, 72 + 8] C Sn). If we replace S, with
gn £ (Sy\ [r2, 12 +8]) U [r1, 11 + 8] (remove the second inter-
val and add the first), then the rate constraint will still be met

and the increase in expected distortion reduction (24) will
be

D(5+,5.) = D(Sn,S0)
= (2= p)(uc([ri,r +8]) +up([r,mn +8])

—pic([r2sr2+8]) — uc([r2, 12 +6]))

=(2-p) (ﬂﬂ; D’(r)[l+c(r)]dr—JZ+8 D’(r)[1+c(r)]dr>

ri+d

(g) (2—p)< D'(r+r—r)[1+c(r+r—r)ldr

r

240

- D' (r)[1 +c(r)]dr)

r

® 2-p) ( Jms C'(p)dp — e C’(r)dr) =0,

2 2

(27)

where () results from r, — r; > 0 and the fact that D'(+)
and c¢(-) are decreasing and (f3) involves a simple change of
integration variable. It follows, therefore, that S, will not be
optimal (since it is outperformed by S-) unless it is given by
(26) for some Rn. O

In a similar manner, it is possible to establish an equiva-
lent property for S,..

Lemma 6. If S, is fixed, the optimal S, comprises the
“smallest-rate region” of the remaining space Ry \ Sn, that is,
S¥ = 8~ U [0, R] for some positive rate R,.
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Furthermore, the concavity of D(-) implies the following.

Lemma 7. If ry < 13, § > 0 and [r1,r1 + 6] € Sy, [r2,72 +
8] € Sn, then the sets §m L S, \ [rr + 0] U [r,71 + 6]
and §u 28\ [r, 11 +8] U [r2, 12+ 8] yield smaller expected
distortion reduction.

Proof. This is true because the contribution of S in the ex-
pected distortion reduction (24) involves the factor2 — p > 1
and the function C(R) = D(R), R € R.. Hence, incorporat-
ing the smaller-rate interval [ry, r; + 8] in S and the higher-
rate interval [r;, 7, + 8] in S, will yield smaller expected dis-
tortion, as is easily be verified. O

Lemmas 5, 6, and 7 suggest that the jointly optimal sets

S#, S5 will be intervals of the form
S% =1[0,Rn], S% = [Ra, Ry, (28)
for some R, = R > 0.

In terms of the original maximization problem, (28)
would provide the optimal solution if the (0-1) constraint
for x is relaxed, namely, if assignment of partial blocks is al-
lowed.

In view of (28), the equivalent continuous problem may
be restated as follows.

Continuous maximization problem

Find positive rates R, = R4 = 0 maximizing

D(R~,Ry) = (2= p)[C(R~) + D(Rn)] + D(R,) — D(RA)
(29)
subject to the constraint
E(Rﬂ’RRu) =Rn+ RRu < Rp. (30)

This is a simple Lagrangian maximization problem with op-
timal solution R%, Ry = satisfying the constraint (30) at the
boundary. The optimal R} should satisfy

(2 - p)[C'(RY) +D'(RY)] - D'(Rs - RY) = D'(RY) = 0,
(31)

which after some simple manipulations translates to the con-
dition

2 D'(Rg — R})

DR (2=p)c(RY) =1-p.  (32)

$(R7)

Observe that, since D'(-) and c(-) are decreasing, ¢(-) will
be continuous and increasing in the interval [0, Rp/2] and
the continuous maximization problem will not involve lo-
cal maxima. Also, the smallest value of ¢(-) will be ¢(0) =
D'(Rg)/D'(0) — (2 — p)c(0) and the largest value will be

Ly =max{le1I: ZLI R; < Rp/2} (index corresponding to
Rs/2)
L, =max{l€1: ZLI R; < R} (index corresponding to Rg)
if¢p(1,L2) >1 — p,set L* =0, L} = L2 and exit (case
1—p<¢(0)in(33))
if ¢(L1,L1) <1 — p,set LX = L1, L = L1 and exit (case
1-p>¢(Rp/2)in (33))
L, =1, L, = L2 (initial values)
while L, < L,
while Z,-le R; >R — Efjl R; decrease L,
(find largest L,, satisfying rate constraint)
if¢(Ln, L) >1—psetLr =Ln, LY = L, and exit
(crossed 1 — p line)
increase L (next value of L)
endwhile
L* = L1, L} = L1 (if this point is reached, ¢(Ln, L,) never
crossed the 1 — p line)

ALGorIiTHM 3: Fast search algorithm.

¢(Rp/2) = 1 — (2 = p)c(Rp/2). Therefore, if (1 — p) €
[4(0), p(Rp/2)], the optimal value for RY will be ¢~1(1 — p).
Otherwise (32) does not have a solution and optimality is
achieved either at 0 or Rg/2. In general, we can write

0, if 1 — p < ¢(0),
¢~ ' (1-p), ifl-pe[¢p(0),¢(Rs/2)], (33)
Rp/2, if1 - p>¢(Rp/2),

RY =

while R* = Rp — R%.

Returning to the discrete maximization problem, it is rea-
sonable to assume that a near-optimal solution will resem-
ble that of the equivalent continuous maximization prob-
lem, especially for large values of L. This means that a near-
optimal choice for the index assignment sets would be I, =
{L,...,L X}, I, = {LX +1,...,L}}, where L* and LY, would
be such that

Lx L
> Ri~Rg— > R, (34)
i=1 i=1

Drx/Rp

¢(LA,LE) £ -@2-p)Crr=1-p, (35

DL;/RL;

This consideration suggests Algorithm 3 above.

The advantage of this algorithm lies in that it involves
fewer calculations and terminates sooner that the improved
exhaustive search algorithm. It is clear, however, that the
price paid for its reduced complexity, which is important
in cases of real-time applications, is its inferior performance
compared to the exhaustive search algorithms.

Let us also note that the implementation of the fast search
algorithm involves serial search through all values from 0 to
the terminating, estimated optimal, value of L%. A further
improvement would involve a binary search modification of
this algorithm, according to the actual values of ¢(L, L) at
the boundaries of the binary-search interval.
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TaBLE 1: Description size (bytes) ratio and PSNR ratio of the two
descriptions, for several frames of the sequence “Foreman” (p =
0.9, Riotar = 128 Kbps).

Foreman
Frame . .
Bytes ratio PSNR ratio
1 1.015 1.005
2 1.020 1.006
3 0.950 0.985
4 0.972 0.993
5 0.989 1.003

8. EXPERIMENTAL RESULTS

The proposed multiple description video coding scheme
was experimentally evaluated for the transmission of the Y
component (15 frames/second) of the standard test sequence
“Foreman” over two channels. Each frame was coded in
two descriptions. Motion vector information was duplicated
in both descriptions. The proposed redundancy allocation
Algorithm 3 of the preceding section was applied for video
transmission over two channels of total capacity 128 Kbps
and for three different probabilities of description arrival:
p = 0.8,0.9,0.95, or equivalently three probabilities of de-
scription loss equal to 20%, 10%, 5%. The number of frames
in each GOP was chosen with respect to p as suggested in
[28]. The target rate Rp for each frame was determined by
allocating to intra-frames a rate equal to four times the rate
allocated to interframes. The resulting descriptions, as shown
in Table 1 for the first five frames of the sequence, are remark-
ably “balanced,” that is, they have approximately equal size
and yield almost equal reconstruction qualities.

In the present work, we assume that descriptions that ar-
rive at the decoder do not contain bit errors. We examine two
types of transmission scenarios: in the first scenario, we as-
sume that the channels retain their status during the entire
transmission. In this case, the parameter p serves as a means
to control the redundancy and is not directly associated with
the condition of the channel. In the second scenario, we as-
sume that the channels go on and off during transmission.
In the latter scenario, it is possible that both descriptions of
a frame are lost. In such a case, the decoder uses the most
recent reference frame that is available. For each frame, the
peak-signal-to-noise-ratio is used as a measure of the recon-
struction quality (in dB)

2
PSNR = 10log,, % (36)

Following the approach adopted in [29, 30], the reported
mean PSNR values are computed by averaging decoded MSE
values and then converting the mean MSE to the correspond-
ing PSNR value rather than averaging the PSNR values di-
rectly.

In the first transmission scenario, the coding of the
“Foreman” sequence into two descriptions is simulated un-
der the respective assumption that the channels are available
or unavailable during the entire transmission. As expected,
the central distortion in the proposed scheme that allows

drift accumulation, which we will term multiple descrip-
tion wavelet video coder (MDWVC), is superior in compari-
son to the proposed drift-free system, termed DF-MDWVC.
This was expected since when both descriptions are avail-
able, drift is eliminated anyway. On the other hand, the side
distortion appears to be lower in the drift-free system. The
performance of MDWVC is shown in Figure 6. The redun-
dancy rate-distortion performance of our coders is shown in
Figure 7. As seen, DE-MDWVC and MDWVC reach similar
performances for redundancy greater than 15%. For lower
redundancies, the drift-free system performs worse due to
the very low quality of the reference frames.

In the second simulation, in which the channels may
go on and off from frame to frame, we tested our systems
under identical description loss patterns. For each frame,
one, two, or none of the descriptions was lost. As seen from
Figure 8 and Tables 2 and 3, the drift-free system is much
more reliable and demonstrates no abrupt changes in its per-
formance, contrary to MDWVC which demonstrates signif-
icant variations in the video quality it delivers. In addition,
both schemes demonstrate significant gains over the sin-
gle description scheme which appears to collapse very fre-
quently due to description losses. In Figure 8(d), we report
the performance of a scheme that is based on H.264 and uses
the FMO for transmission of video over two channels. This
scheme uses P-frames and two FMO slices. As seen, despite
the fact that the H.264-based scheme uses advanced error
concealment techniques at the decoder, the reconstruction
quality it delivers exhibits significant variations in compari-
son to the quality achieved by our drift-free scheme.

Reconstructed frames obtained by simulating the trans-
mission of 180 frames of the “Foreman” sequence at
15 frames/second over two channels of total capacity
128 Kbps and probability of description arrival equal to 0.9
using the above systems are displayed in Figure 9. The recon-
struction displayed in Figure 9(c), achieved using the drift-
free system, is qualitatively more pleasant than the recon-
struction using MDWVC. This proves that, in practical cases,
the drift-free system can be a better choice even though
MDWVC operates better at low error rates. The image re-
constructed using the single description scheme exhibits the
worst performance.

In Figure 10, we present the reconstruction quality ob-
tained using the drift-free system for the case of transmission
over four channels of total capacity 128 Kbps and probabili-
ties of description loss equal to 20%.

9. CONCLUSIONS

We presented a wavelet-based framework for the encoding
of video in multiple descriptions. The generation of multi-
ple descriptions was performed so that drift is eliminated at
the decoder side. The proposed framework is flexible and al-
lows the encoding of video into an arbitrary number of de-
scriptions. The resulting framework is endowed with the ca-
pability for drift-free reconstruction regardless of the num-
ber of descriptions that arrived at the decoder. Three al-
gorithms were also presented for the optimal allocation of
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---- Side distortion
(a) . .
redundancy. Experimental results for the transmission of
38 video using two descriptions demonstrated the efficiency of
the proposed method.
APPENDICES
) A. INTEGER (0-1) PROGRAMMING FORMULATION
~
gzz Let x{" = 1;.(i), xf' = 11,(i), i = 1,...,L denote binary-
valued variables, where 14 is the indicator function of set
A, thatis, 14(x) = 1ifx € Aand 1,(x) = 0if x & A.
Then, the sets I, and I, are determined by the vectors x" £
j [x0s...,x7 )T and x” £ [x7,...,x']7, respectively, where AT
20 T — denotes the transpose of matrix A. If we adopt this notation,
0 20 40 60 80 100 120 140 160 180 .
(18) may be written as
Frame number
— Central distortion D) _ (7 _ T, N T , U
---- Side distortion D(In, 1) = (2 pe -x+d - x, (A.1)
(b)
withc £ [Di(1+Cy),...,Di(1+C)IT,d £ [Dy,...,Di]7,
38 and constraint (19) as
36 |
347 R(In, 1) = 2r"7 - x" + 1T - xY < Rg, (A.2)
321
@ 30 . a T .
) withr = [Ry,...,R;]". Property I, C I, may be written as
~ 28
Z A
L 26 n u
. ! x"+xY <1, (A.3)
241
21 where 17 is the L X 1 unity vector and inequalities involving
207 vectors are meant in the percomponent sense.
18 P —— In order to find the optimal solution, it suffices to find
0 20 40 60 80 100 120 140 160 180

Frame number

— Central distortion
--—- Side distortion

(c)

FIGURE 6: Reconstruction quality for the “Foreman” sequence using
the MDWVC coder: (a) 20% probability of loss, (b) 10% probability
of channel loss, and (c) 5% probability of loss.

binary-valued vectors x" and x"' minimizing (A.1) subject
to the constraints (A.2) and (A.3). This is an integer (0-1)
programming problem and can be formulated by defining
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FIGURE 7: Redundancy rate-distortion performance of the proposed schemes: (a) drift, (b) drift-free.

where I, is the L X L identity matrix, x and d are 2L x 1
vectors, Cisa (L+1) X L matrix,and bisa (L +1) x 1 vector.
In view of these definitions, the maximization problem may
be expressed as an integer-programming problem.

Integer (0-1) programming problem

Find (0-1)-valued vector x such that

T
maxd - x, (A.5)
Cx <b.

Although several techniques exist for the solution of
integer-programming problems, it is well known that
integer-programming problems are, in general, NP-complete
and, most of the times, exhaustive search over all possible
realizations of binary-valued vector x is the only procedure
that guarantees optimal solution. Even if a cutting-plane or
branch-and-bound technique is used, it does not guarantee
that the number of operations will be less than exponential
in L.

B. THE GENERAL MULTIPLE DESCRIPTION PROBLEM

In the general case, the original frame comprises L lay-
ers and we need to form K > 2 descriptions so that a
rate constraint is met and the expected distortion reduc-
tion at the decoder is maximized. Conforming to the no-
tation used for the double-description case, we define the
index sets Iy, k = 1,...,K, where each I; describes the as-
signment of layers to description k, and the events Ay =
{Description k reaches the decoder}, k = 1,..., K.

The index-assignment sets Iy, k = 1,...,K define 2K dis-
joint subsets of the index set I = {1,...,L}, which can be
written as

K
k=NI* xe{o1}¥,
k=1

(B.1)

where the subscript x = [x1,...,xx]7 isa (K x 1) binary-
valued vector and

I,
f%{
Ik,

For every x € {0, 1}K, the set ]Nx comprises the indices be-
longing to the sets I; with x; = 1. The original index-
assignment sets Iy, k = 1,...,K can then be expressed in
terms of the collection { ]i}xe{o,l}x as

Iy = U T

x€{0,1}K:x;=1

b=1,

k=1,...,K.
b=0,

(B.2)

k=1,...,K. (B.3)

Let w(x) £ SX, x denote the weight of the binary-
valued vector x and for every index set A C I define

R(A)2 >R,  D(A)=> D,
i€EA i€EA

(B.4)

representing the total rate and distortion reduction of the
layers with indices in A. The total rate sent to the decoder
can be expressed as

=
——
Pl
——
"
m
s
=
I
M=
=
=
M=

= > wR(),

xe{0,1}K

(B.5)

where (&) comes from (B.3) and the fact that the sets J, are
mutually disjoint and we can derive () by observing that
each sum >, R; appears exactly w(x) times in the previous
expression of the total rate.

For a given x € {0, 1}X, assume that Xj = = Xy =

1 and the rest are zero. In order to express the expected
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FIGURE 8: Reconstruction quality for the “Foreman” sequence when the channels go on and off during transmission and a probability of
error equal to (a) 5%, (b) 10%, (c) 20%, and (d) transmission based on H.264 using flexible macroblock ordering.

distortion reduction at the decoder in terms of the collec-  probability
tion {Jx }xefo,11x, we observe that the distortion at the decoder

will improve by D(J,) (layers with indices in J, will be used)

— _ c
whenever the event Ay = {description j, description j, or PriAs} =1-PriAj}
-+« description j,(x) is delivered} occurs, that is, e (B.7)
=1-Pri (A, =1-(1-p)"™.
=1
(x)
Ax = eL:Jl Aje (B.6) If we also define C(A) £ Y., D;C; for A C I, the distor-

tion reduction due to motion compensation based on the
layers common to all descriptions will be C( i «)» 1k being the
Assuming that the events Ay, k = 1,...,K are indepen- (K % 1) unity vector. The distortion reduction due to motion
dent and Pr{Axz} = 1 — Pr{A;} = p, we can calculate its compensation is conditional on the event A;, (at least one
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(c)

(d)

FIGURE 9: Reconstructed frame for the transmission of the “Foreman” sequence, p = 0.9, over two channels of total capacity 128 Kbps: (a)
original “Foreman” frame, (b) reconstructed using the coder without drift control (25.84 dB), (c) reconstructed using the drift-free coder
(28.81dB), and (d) reconstructed using the single description coder (25.78 dB).

of the descriptions reaches the decoder) whose probability is
1 — (1 — p)X. Therefore, the overall expected distortion re-
duction at the decoder will be

D({x}xeqone) = PriAn}CUr )+ > PriAdD()

xe{0,1}1K
=[1-(1-pXIc(h,)
+ > [1-1-p)"™]D(Jy).

xe{0,1}K

(B.8)

At this juncture, observe that both the total rate (B.5) and
the expected distortion reduction (B.8) can be expressed as
linear functions of the {R(]NX)}XG{O,I}K and {D(ﬁ)}xe{o)l}K, re-
spectively, with coefficients depending only on the weight of
the index vector x. Therefore, we can group all sets ]Nx with
the same weight and define the new (fewer) sets

]k: U ]:/() k:())"'JKJ

x€{0,1Hw(x)=k

(B.9)

each set Ji containing the layer indices assigned to exactly k
descriptions. Also, observe that the set ]No = Jo has a zero coef-
ficient in both (B.5) and (B.8); hence, it does not contribute
to the total rate or expected distortion reduction.

30
29+
28 1

PSNR (dB)

23}
22t
21¢
20

0 20 40 60 80 100 120 140 160 180

Frame nmber

—— Four descriptions (drift-free)

FIGURE 10: Reconstruction quality obtained using the drift-free sys-
tem with four descriptions transmitted over channels with proba-
bility of loss equal to 20%.

By reformulating (B.5) and (B.8), the maximization
problem for the general multiple description case may be
stated as follows.
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General maximization problem

Find disjoint sets Ji,...,Jx C I maximizing

D(Ji,....Jk) = [1 - (1 - p)X]C(Jk)

K
(B.10)
+ 2. [1= (1= p)* DK
k=1
subject to the constraint
_ K
R(Ji,...,Jk) = > kR(Jk) < Rp. (B.11)
k=1

The integer-programming formulation of the general
maximization problem would involve K binary-valued L X 1
vectors Xx, k = 1,..., K, with

1)
Xk,i = 0,

and the requirement that the Ji, k
be written as

ifi € J,

k=1,...,K,i=1,...,L,
lfléjk’ :

(B.12)

1,..., K be disjoint can

X+ -+ xg < 1. (B13)
Let us define
Xé I:XT Xk X}; T,
dg 2 [pdT- - (1-(1-p))d” (1-a-p9)er]’,
Co & I I; I
K= | ¢T krT KrT |°

(B.14)

where x and dg are KL x 1 vectors, Cx is a (L + 1) x KL
matrix, bg is a (L + 1) X 1 vector and the L X 1 vectors
r, d, ¢ are those defined in the double-description integer-
programming formulation. Then, the integer-programming
formulation of the general multiple description problem will
be as follows.

General integer (0-1) programming problem

Find (0-1)-valued vector x such that

i
maxdyg - % (B.15)
CKX < bK.

As is clear from the integer-programming formulation,
the complexity of the general maximization problem may
be as high as 2K, Heuristics similar to those proposed for
the double-description case may be used for an estimate of
the optimal index-assignment scheme, based on the general
equivalent continuous problem, which can be easily formu-
lated from (B.10) and (B.11). It is reasonable to conjecture

that the heuristics stemming from the equivalent continuous
general maximization problem will provide solutions deviat-
ing from the optimal one even more as K increases.
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