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Two approaches are presented in this paper to improve the quality of digital images over the sensor resolution using super-
resolution techniques: iterative super-resolution (ISR) and noniterative super-resolution (NISR) algorithms. The results show
important improvements in the image quality, assuming that sufficient sample data and a reasonable amount of aliasing are avail-
able at the input images. These super-resolution algorithms have been implemented over a codesign video compression platform
developed by Philips Research, performing minimal changes on the overall hardware architecture. In this way, a novel and feasible
low-cost implementation has been obtained by using the resources encountered in a generic hybrid video encoder. Although a
specific video codec platform has been used, the methodology presented in this paper is easily extendable to any other video en-
coder architectures. Finally a comparison in terms of memory, computational load, and image quality for both algorithms, as well
as some general statements about the final impact of the sampling process on the quality of the super-resolved (SR) image, are also
presented.
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1. INTRODUCTION

Here are two straightforward ways to increase sensor resolu-
tion. The first one is based on increasing the number of light
sensors and therefore the area of the overall sensor, result-
ing in an important cost increase. The second one is focused
on preserving the overall sensor area by decreasing the size
of the light sensors. Although this size reduction increases
the number of light sensors, the size of the active pixel area
where the light integration is performed decreases. As fewer
amounts of light reach the sensor it will be more sensitive to
the shot noise. However, it has been estimated that the min-
imum photo-sensors size is around 50 μm2 [1], a limit that
has already been reached by the CCD technology. A smart so-
lution to this problem is to increase the resolution using algo-
rithms such as the super-resolution (SR) ones, wherein high-
resolution images are obtained using low-resolution sensors
at lower costs. Super-resolution can be defined as a technique
that estimates a high-resolution sequence by using multiple
observations of the scene using lower-resolution sequences.
In order to obtain significant improvements in the result-
ing SR image, some amount of aliasing in the input low-
resolution images must be provided. In other words, if all
the high-frequency information has been removed from the

input images (for instance by using lenses with optical low-
pass filter effect), it will be impossible to recover the edge de-
tails contained in the high frequencies. Some of the most im-
portant applications of SR are as follows.

(i) Still-image improvement [1–4], where several images
from the same scene are obtained and used to con-
struct a higher-resolution image.

(ii) Analog video frame improvement [5, 6]. Due to the
low quality of analog video frames, they are not nor-
mally suitable to directly perform a printed-copy dig-
ital photography. The quality of the image is in-
creased using several consecutive frames combined in
a higher-resolution image by using SR algorithms.

(iii) Surveillance systems [7], where SR is used to increase
the quality in video surveillance systems, using such
recorded sequences as forensic digital video, and even
to be admitted as evidence in the courts of law. SR im-
proves night vision systems when images have been ac-
quired with infrared sensors [8] and helps in the face
recognition process for security purposes [9].

(iv) Text extraction process from image sequences [10] is
highly improved if the regions of interest (ROI) con-
taining the text are first super-resolved.
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(v) Medical image acquisition [11]. Manymedical types of
equipment as the computer-aided tomography (CAT),
the magnetic resonance images (MRI), or the echogra-
phy or ultrasound images allow the acquisition of sev-
eral images, which can be combined in order to obtain
a higher-resolution image.

(vi) Improvement of images from compressed video [12–
15]. For example, in [16] the images high-frequency
information recovery, lost in the compression process,
is addressed. The missing data are incorporated from
transform-domain quantization information obtained
from the compressed video bit stream. An excellent
survey of SR algorithms from compressed video can
be found in [17].

(vii) Improvement of radar images [18, 19]. In this case SR
allows a clearer observation of details sometimes crit-
ical for air or maritime security [20] or even for land
observations [21–24].

(viii) Quality improvement of images obtained from the
outer space. An example is exposed in [4] with images
taken by the Viking satellite.

(ix) Image-based rendering (IBR) of 3D objects uses cam-
eras to obtain rich models directly from the real-
world data [26]. SR is used to produce high-resolution
scene texture from an omnidirectional image sequence
[26, 27].

This paper addresses low-cost solutions for the imple-
mentation of SR algorithms on SOC (system-on-chip) plat-
forms in order to achieve high-quality image improvements.
Low-cost constrains are accomplished by reusing a video en-
coder, rather than developing a specific hardware. This en-
coder can be used either in the compression mode or in the
SR mode as an added value to the encoder. Due to this rea-
son, SR is used in the video encoder as a smart way to per-
form image zooming of regions of interest (ROI) without us-
ing mechanical parts to move the lenses, thus saving power
dissipation. It is important to remark that although the SR
algorithms presented in this paper have been implemented
on an encoder architecture developed by Philips Research,
the same SR algorithms can be easily adapted to other hybrid
video encoder platforms.

The SR approaches that will be depicted consist of gather-
ing information from a set of images in the spatial-temporal
domain in order to integrate all the information (when pos-
sible) in a new quality-improved super-resolved image. This
set is composed of several images, where small spatial shifts
have been applied from one image to the other. This is
achieved by recording a video sequence at high frame rates
with a hand-held camera.

The reconstruction problem using SR can be defined as
the objective of reconstructing an image or video sequence
with a higher quality or resolution from a finite set of lower-
resolution images taken from the same scene [28, 29], as
shown in Figure 1. This set of low-resolution images must be
obtained under different capturing conditions of the image,
from different spatial positions, and/or from different cam-
eras. This reconstruction problem is an aspect of the most
general problem of sensor fusion.

Pixels
adjustment

Super-resolution

Low-resolution
observed images

Images
acquisition

Reconstruction
process

Reconstructed image Original image

Figure 1: Model of the reconstruction process using super-res-
olution.

The rest of the paper is organized as follows. Firstly, the
most important publications directly related to this work are
reviewed, followed by a brief description of the hybrid video
compression architecture where the developed SR algorithms
have been mapped. In the second section the bases of the
ISR algorithms are established while in Section 3 the mod-
ifications needed to be implemented onto the video encoder
are described. In Section 4 the experimental setup to eval-
uate the quality of the iterative and noniterative algorithms
is presented, and based on it, a set of experiments is devel-
oped in Section 5 in order to assess the correct behavior of
the ISR algorithm, showing as a result an important increase
in the super-resolved output images. As far as an iterative be-
havior seriously jeopardizes a real-time implementation, in
Section 6 a novel SR algorithm is described, where the pre-
vious iterative feature has been removed. In the same sec-
tion, the adjustments carried out in the architecture in or-
der to obtain a feasible implementation are explained, while
Section 7 shows the results achieved with this noniterative al-
gorithm. In Section 8 the advantages and drawbacks of the
described ISR andNISR algorithms are compared and finally,
in Section 9, themost remarkable results of this work are pre-
sented.

1.1. Super-resolution algorithms

The possibility of reconstructing a super-resolved image
from a set of images was initially proposed by Huang and
Tsay in [30], although the general sampling theorems previ-
ously formulated by Yen in [31] and Papoulis in [32] showed
exactly the same concept (from a theoretical point of view).
When Huang and Tsay originally proposed the idea of the
SR reconstruction, they faced the problem, with respect to
the frequency domain, of demonstrating the possibility of
reconstructing an image with improved resolution from sev-
eral low-resolution undersampled images without noise and
from the same scene, based on the spatial aliasing effect.
They assume a purely translational model and solve the dual
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problem of registration and restoration (the registration im-
plies estimating the relative shifts among the observations
and the restoration implies the estimation of samples on
a uniform grid with a higher sampling rate). The restora-
tion stage is actually an interpolation problem dealing with
nonuniform sampling. From the Huang and Tsay proposal
until the present days, several research groups have devel-
oped different algorithms for this task of reconstruction, ob-
tained from different strategies or analyses of the problem.

The great advances experimented by computer technol-
ogy in the last years have led to a renewed and growing inter-
est in the theory of image restoration. The main approaches
are based on nontraditional treatment of the classical restora-
tion problem, oriented towards new restoration problems of
second generation, and the use of algorithms that are more
complex and exhibit a higher computational cost. Based
on the resulting image, these new second-generation algo-
rithms can be classified into problems of an image restora-
tion [30, 33–36], restoration of an image sequence [37–40],
and reconstruction of an image improved with SR [41–47].
This paper is based on the last mentioned approach, both for
the reconstruction of static image as for the reconstruction
of image sequences with SR improvements.

The classical theory of image restoration from blurred
images and with noise has caught the attention of many re-
searchers over the last three decades. In the scientific liter-
ature, several algorithms have been proposed for this clas-
sical problem and for the problems related to it, contribut-
ing to the construction of a unified theory that comprises
many of the existing restoration methods [48]. In the im-
age restoration theory, mainly three different approaches ex-
ist that are widely used in order to obtain reliable restoration
algorithms: maximum likelihood estimators (MLE) [48–50],
maximum a posteriori (MAP) probability [48–51], and the
projection onto convex sets (POCS) [52].

An alternative classification [53] based on the process-
ing approach can be made, where the work on SR can be di-
vided into two main categories: reconstruction-based meth-
ods [46, 54] and learning-based methods [55–57]. The theo-
retical foundations for reconstruction methods are nonuni-
form sampling theorems, while learning-based methods em-
ploy generative models that are learned from samples. The
goal of the former is to reconstruct the original (supersam-
pled) signal while that of the latter is to create the signal
based on learned generative models. In contrast with recon-
struction methods, learning-based SR methods assume that
corresponding low-resolution and high-resolution training
image pairs are available. The majority of SR algorithms be-
long to the signal reconstruction paradigm that formulates
the problem as a signal reconstruction problem from multi-
ple samples. Among this category are frequency-based meth-
ods, Bayesian methods, back-projection (BP) methods, pro-
jection onto convex set (POCS) methods, and hybrid meth-
ods. From this second classification, this paper is based on
the reconstruction-based methods, as it seeks to reconstruct
the original image withoutmaking any assumption about the
generative models and assuming that only the low-resolution
images are available.

The problem of a specific image reconstruction from a set
of lower-quality images with some relative movement among
them is known as the static SR problem. On the other side
is the dynamic SR problem, where the objective is to obtain
a higher-quality sequence from another lower-resolution se-
quence, seeking that both sequences have the same length.
These two problems also can be denominated as the SR prob-
lem for static images and the SR problem for video, respec-
tively [58]. The work presented in this paper only deals with
static SR as the output sequences do not have the same length
of the input low-resolution sequences.

Most of the proposedmethodsmentioned above lack fea-
sible implementations, leaving aside the more suitable pro-
cess architectures and the required performances in terms of
speed, precision, or costs. Although some important optimi-
sation effort has been done [59], most of the previous SR
approaches demand a huge amount of computation, and for
this reason, in general they are not suitable for real-time ap-
plications. Until now, none of them have been implemented
over a feasible hardware architecture. This paper addressed
this fact and offers a low-cost solution. The ISR algorithm
exposed in this paper is a modified version of [60], adapted
to be executed inside a real video encoder, that is, restricting
the operators needed to those that can be found in such kind
of platforms. New operator blocks to perform the SR process
have been implemented inside the existing coprocessors in
order to minimize the impact on the overall architecture, as
will be demonstrated in the next sections.

1.2. The hybrid video encoder platform

All the algorithms described in this paper have been imple-
mented in an architecture developed by Philips Research.
This architecture is shown in Figure 2. The software tasks
are executed on an ARM processor and the hardware tasks
are executed on the very long instruction word (VLIW) pro-
cessors (namely, pixel processor, motion estimator processor,
texture processor, and stream processor). The pixel processor
(PP) communicates with the pixel domain (image sensor or
display) and performs input lines to macroblock (MB) con-
versions. The motion estimator processor (MEP) evaluates
a set of candidate vectors received from the software part
and selects the best vector for full-, half-, and quarter-pixel
refinements. The output of the MEP consists of motion
vectors, sum-of-absolute-difference (SAD) values, and tex-
ture metrics. This information is processed by the general-
purpose embedded microprocessor ARM to determine the
encoding approach for the current MB.

The texture processor (TP) performs the MB encoding
and stores the decodedMBs in the loop memory. The output
of the TP consists of variable-length encode (VLE) codes for
the discrete cosine transform (DCT) coefficients of the cur-
rent MB. Finally, the stream processor (SP) packs the VLE-
coded coefficients and headers generated by the TP and the
ARM processor, respectively.

Communications among modules are performed by two
buses, a control bus and a data bus, each of them controlled
by a bus control unit (BCU), with both buses communicating
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through a bridge. Images that will be processed by the ISR
and NISR algorithms come from the data bus.

2. ITERATIVE SUPER-RESOLUTION ALGORITHMS

In this section the bases for the formation of super-resolved
images starting from lower-resolution images are exposed.
For this purpose, if f (x̆, y̆, t) represents the low-resolution
input image, and it is assumed that all the input subsystem
effects (lenses filtering, chromatic irregularities, sample dis-
tortions, information loss due to format conversions, system
blur, etc.) are included in h(x, y), the input to the iterative
algorithm is obtained by the two-dimensional convolution
expressed as

g(x, y, t) = f (x̆, y̆, t)∗∗h(x, y), (1)

where a lineal behavior for all the distortion effects has been
supposed. Denoting SR(x̆, y̆) as the SR algorithm, the image
obtained S(x̆, y̆, t) after applying this algorithm is as follows:

S(x̆, y̆, t) = g(x, y, t)∗∗ SR(x̆, y̆), (2)

where (x, y) are the spatial coordinates in the low-resolution
grid, (x̆, y̆) are the spatial coordinates in the SR grid, and “t”
represents the time when the image was acquired. These rela-
tionships are summarized in Figure 3(a) concerning the real
system and are simplified in Figure 3(b).

The algorithm characterized by SR(x̆, y̆) starts supposing
that a number of “p” low-resolution images of size N ×M
pixels are available as g(x, y, ti), where “ti” denotes the sam-
pling time of the image. The possibility of increasing the
size of the output image in every direction on a predefined
amount, called scale factor (SF), has been considered. There-
fore, the output image has a size of SF ·N × SF ·M. As the
algorithm refers to only the last “p” images, from now on the
index “l”, defined as l = i mod p, will be used to refer to the
images inside the algorithm’s temporal window (Figure 4).
Thus, the memory image g′l (x, y) is linked to g(x, y, ti) as fol-
lows:

g′l (x, y) =
g
(
x, y, ti

)

l
= i mod p. (3)

In this way, ḡ′l (x, y) represents the average input image,
as given in (4), which is used as the first reference in the fol-
lowing steps:

ḡ′(x, y) = 1
p

p−1∑

l=0

(
1

N ·M ·
N−1∑

i=0

M−1∑

j=0
g′l (i, j)

)

, ∀x, y. (4)

The average error for the first iteration is then obtained
by computing the differences between this average image and
each of the input images, as shown in (5), where the super-
script denotes the iteration number (first iteration in this
case):

el(x, y)(1) = g′l (x, y)− ḡ′(x, y), l = 0, . . . , (p − 1). (5)

This error must be transformed to high-resolution coor-
dinates bymeans of a nearest-neighbor replication interpola-
tor (6) of size SF. It is essential to use this type of interpolator
as it will preserve the necessary aliasing required for the SR
process. In Section 5, the undesirable effect of using a bilinear
interpolator will be shown:

el(x̆, y̆)(1) = upsample
(
el(x, y)(1), SF

)
, l = 0, . . . , (p − 1).

(6)

Once the upsample process has been completed, the error
must be adjusted to the reference frame by shifting the error

image Δδl(x, y)
(1)
(fr2ref) and Δλl(x, y)

(1)
(fr2ref) amounts in the hor-

izontal and vertical coordinates, respectively, where (fr2ref)
means that the displacement is computed from every frame
to the reference and (ref2fr) means that the displacement is
computed from the reference to every frame. In principle,
these displacements are applied to every pixel individually,
depending upon the employedmotion estimation technique.
As far as these displacements will be used in high resolution,
they must be properly scaled by SF as shown:

Δδl(x̆, y̆) = SF ·Δδl(x, y),
Δλl(x̆, y̆) = SF ·Δλl(x, y). (7)

When all the errors have been adjusted to the reference,
they are averaged, taking this average as the first update of
the SR image, as shown:

S0(x̆, y̆)(1)

= 1
p
·
p−1∑

l=0
el
(
x̆ + Δδl(x̆, y̆)

(1)
(fr2ref), y̆ + Δλl(x̆, y̆)

(1)
(fr2ref)

)(1)
.

(8)

Equation (8) reflects the result of the first iteration, where
S0(x̆, y̆)(1) is the first version of the SR image, corresponding
to t = t0, being upgraded with each iteration. The nth iter-
ation begins obtaining a low-resolution version of this im-
age by decimation, followed by the computation of the dis-
placements between every one of these inputs images and this
decimated image and vice versa, that is, between the deci-
mated image and the input images. In this way, the displace-

ments of the nth iteration will be available: Δδl(x, y)
(n)
(fr2ref),

Δλl(x, y)
(n)
(fr2ref), Δδl(x, y)

(n)
(ref2fr), and Δλl(x, y)

(n)
(ref2fr). The low-

resolution version of the image obtained in high resolution
is given by (9).

S0(x, y)(n) = downsample
(
S0(x̆, y̆)(n−1), SF

)
. (9)

The downsample operation is defined in the following
where only pixels in certain coordinates given by SF are kept:

g(x, y) = downsample
(
f (x̆, y̆), SF

)
,

g(x, y) = f (SF ·x, SF ·y). (10)

The next step is to compensate for the motion of the
high-resolution image towards the input frames using the
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Pixel
processor Bridge

Motion
estimator
processor

Texture
processor

Data-bus

Stream
processor

Ctrl-bus

Image
memory

BCU

BCU

Outside
communications

ARM ARM
memory

Figure 2: Architecture for the multistandard video/image codec developed in Philips Research.
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displacements Δδl(x, y)
(n)
(ref2fr) and Δλl(x, y)

(n)
(ref2fr), converting

them to low-resolution and getting the error with respect to
every input image, as shown:

el(x, y)(n) = g′l (x, y)

− S0
(
x + Δδl(x, y)

(n)
(ref2fr), y + Δλl(x, y)

(n)
ref2fr

)(n)
,

l = 0, . . . , (p − 1).
(11)

This low-resolution error image must be transformed
again into a high-resolution one through interpolation and
compensate for its motion again towards the reference. The
average of these “p” errors constitutes the nth incremental
update of the high-resolution image, as shown:

S0(x̆, y̆)(n)= S0(x̆, y̆)(n−1) +
1
p

·
p−1∑

l=0
el
(
x̆+Δδl(x̆, y̆)

(n)
(fr2ref), y̆+Δλl(x̆, y̆)

(n)
(fr2ref)

)(n)
.

(12)

The convergence is reached when the changes in the av-
erage error are negligible, that is, when the variance of the
average error is below a certain threshold determined in an
empirical procedure.

Once the SR image is obtained for time t0 with the first
“p” images, the process must be repeated with the next “p”
images to obtain the next SR image using a previously es-
tablished number of iterations or iterating until convergence
is reached. To obtain an SR image implies the use of “p”
low-resolution images, hence, at instant ti, the SR image
k = integer(i/p) is generated. In such case, (11) must be gen-
eralized to

Sk(x̆, y̆)(n)= Sk(x̆, y̆)(n−1) +
1
p

·
p−1∑

l=0
el
(
x̆+Δδl(x̆, y̆)

(n)
(fr2ref), y̆+Δλl(x̆, y̆)

(n)
(fr2ref)

)(n)
.

(13)

This equation shows the SR image at instant k as a com-
bination of “p” low-resolution images after “n” iterations.

3. MODIFICATIONS FOR THE IMPLEMENTATION ON
A VIDEO ENCODER

3.1. Algorithmmodifications

The modifications to the ISR algorithm previously presented
are intended to adapt the algorithm in terms of basic actions
that are easily implemented on a video encoder, as will be
detailed in this section. First of all, instead of starting with an
average image as indicated in (4) several experiments carried
out have demonstrated that it is faster and easier to start with
an upsampled version of the first low-resolution input image.
Therefore, the final SR image will be aligned with the first
image, whose motion is well known.

The straightforward way in a video encoder to determine
the displacements between pictures is by using the motion
estimator, which is normally used to code interpictures of
type P or B in many video coding standards such as MPEG
or H.26x. Furthermore, as the displacements computation is
one of the most sensitive steps in the ISR algorithm, as well
as in all the SR algorithms found in the literature, it has been
decided to use a motion estimator with a quarter-pixel pre-
cision for this task. Consequently, the motion compensator
must be also prepared to work with the same precision in
order to displace a picture. The main drawback is that the
ISR algorithm presented is intended to work on a pixel ba-
sis, while the motion estimator and compensator of the com-
pressor work on a block basis. This mismatch produces qual-
ity degradation when the motion does not match the block
sizes, that is, when the object is smaller that the block size or
when more than one moving object exist inside the block.

Another problem found in order to map the ISR algo-
rithm into the video encoder architecture is derived from
the fact that the addition of two N-bit numbers produces an
N +1 bit number. Every pixel inside the encoder architecture
is represented as an 8- bit number. Inside the co-processors,
the pixel values are processed performing several additions,
and for this reason the precision of the adders has been in-
creased. On the other hand the results must be stored in an
8- bit image memory. For video compression, this precision
loss is not a significant problem, but when reusing the same
architecture for general image processing, the limitation of
storing the intermediate results in 8- bit memories becomes
an important issue. Due to that, the following solutions have
been adopted [61]:

(i) implement as many arithmetic operations as possible
inside the coprocessor, increasing the precision;

(ii) rearrange the arithmetic operations in such a way
that, when storing the intermediate results, these are
bounded, as close as possible, to 8- bit numbers.

The implemented algorithm shown in Algorithm 1 includes
these two modifications for SF = 2. All memories are 8-
bit wide, except for HR A, which must be 9- bit wide. This
memory must be wider because it must store arithmetic re-
sults able to overflow 8- bits, especially in the beginning of
the iterations. LR I[·] are the low-resolution input frames;
HR B is the SR image result; LR B is the low-resolution ver-
sion of HR B; HR T is a temporal high-resolution image to
avoid overlapping while performing the motion compensa-
tion and due to the pipeline of the video encoder [62]; HR A
accumulates the average error that will be used as an up-
date for the SR image; HR S stores the error between the
SR image (HR B) shifted to the input frame position and
the upsampled input image; and finally, MV ref2fr[·] and
MV fr2ref[·] are the motion-vector memories storing the
motion between the reference and the input frames and vice
versa. The number of frames to be combined to create a
higher-resolution image is “nr frames,” while “nr iterations”
stands for the maximum number of preestablished itera-
tions. The algorithm is split up in the following main steps
[63].
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(1) LR B = LR I[0]
(1) HR B = Upsample (LR I[0])

FOR it = 0, . . . ,nr iterations−1
(2) IF (it �= 0) LR B = Downsample (HR B)
(3) MV fr2ref[0] = 0
(3) MV ref2fr[0] = 0
FOR fr = 1, . . . ,nr frames−1
(4) MV fr2ref[fr] = Calc Mot Estimation (LR I[fr], LR B)
(4) MV ref2fr[fr] = −MV fr2ref[fr]
(5) MV fr2ref[fr] = 2×MV fr2ref[fr]
(5) MV ref2fr[fr] = 2×MV ref2fr[fr]

END FOR
(6) HR A = 0
FOR fr = 0, . . . ,nr frames−1
(7) HR S =Motion Compensation (HR B, MV ref2fr[fr])
(8) HR S = Upsample (LR I[fr])−HR S
(9) HR T =Motion Compensation (HR S, MV fr2ref[fr])
(9)HR A=HR A + HR T/nr frames

END FOR
(10) HR B =HR B +HR A
(11) variance = variance (HR A)
(11) If (variance < variance threshold) Then break

END FOR

Algorithm 1: Pseudocode of the ISR algorithm implemented on the video encoder.

(1) Initially, the first low-resolution image is stored in
LR B, used as the low-resolution version of the super-
resolved image that will be stored in HR B. The super-
resolved image HR B is initialized with an upsampled ver-
sion of the first low-resolution image.

(2) The iterative process starts obtaining LR B as a down-
sampled version of the super-resolved image in HR B, except
for the first iteration, where this assignation has been already
made.

(3) The motion vectors from the frame being processed
to the reference frame are set to zero for frame zero, as the
frame zero is now the reference.

(4) The remainingmotion vectors are computed between
the other low-resolution input frames and the low-resolution
version of the super-resolved image, named LR B (the refer-
ence). Instead of computing again the inverse motion, that is,
the motion between the reference and every low-resolution
frame, the approximation of considering this motion as the
inverse of the previous computed motion is made. Firstly,
a great amount of computation is saved due to the men-
tioned approximation, and secondly, as far as the motion is
computed as a set of translational motion vectors in hori-
zontal and vertical directions, the model is mathematically
consistent.

(5) As the motion vectors are computed in the low-
resolution grid, they must be properly scaled to be used in
the high-resolution grid.

(6) The accumulative image HR A is set to zero prior to
the summation of the average shifted errors. These average
errors will be the update to the super-resolved image through
the iterative process.

(7) Now the super-resolved image HR B is shifted to the
position of every frame, using the motion vectors previously
computed for every frame.

(8) In such a position, the error between the current
frame and the super-resolved frame in the frame position is
computed.

(9) The error image is shifted back again to the super-
resolved image position, using the motion vectors previously
computed and these errors are averaged in HR A.

(10) The super-resolved image is improved using the av-
erage of all the errors between the previous super-resolved
and the low-resolution frames, computed in the frame posi-
tion and shifted to the super-resolved image position, as an
update to the super-resolved image.

(11) If the variance of the update is below a certain
threshold, then very few changes will be made in the super-
resolved image. In this case, continuing the iterative process
makes no sense and therefore it is preferable to abort the pro-
cess.

(12) Anyhow, the iterative process will stop when the
maximum number of preestablished iterations is reached.
Figure 5 shows the ISR algorithm data flow, using the mem-
ories and the resources available in the hybrid video encoder
platform. The previous step numbers have been introduced
between parentheses as labels at the beginning of the appro-
priate lines for clearness. ThememoryHR A is in boldface to
remark the different bit width when compared to the other
image memories.

As the motion estimation is the most expensive opera-
tion in terms of time and power consumption, it has been as-
sumed that the motion between the reference and the frame
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Figure 5: ISR algorithm data flow.

Table 1: Memory requirements of the ISR algorithm as a function of the number of the input image macroblocks.

Label
ISR algorithm memory

Luminance (bits) Chrominance (bits) Total (bits)

HR A (2 ·MB x · 2 ·MB y · 16 · 16 · 9) (2 ·MB x · 2 ·MB y · 8 · 8 · 2 · 9) 13, 824 ·MB x ·MB y

HR B (2 ·MB x · 2 ·MB y · 16 · 16 · 8) (2 ·MB x · 2 ·MB y · 8 · 8 · 2 · 8) 12, 288 ·MB x ·MB y

HR S (2 ·MB x · 2 ·MB y · 16 · 16 · 8) (2 ·MB x · 2 ·MB y · 8 · 8 · 2 · 8) 12, 288 ·MB x ·MB y

3-stripe HR (2 · 3 · 2 ·MB y · 16 · 16 · 8) (2 · 3 · 2 ·MB y · 8 · 8 · 2 · 8) 36, 864 ·MB y

LR B (MB x ·MB y · 16 · 16 · 8) (MB x ·MB y · 8 · 8 · 2 · 8) 3, 072 ·MB x ·MB y

LR I[0] (MB x ·MB y · 16 · 16 · 8) (MB x ·MB y · 8 · 8 · 2 · 8) 3, 072 ·MB x ·MB y

LR I[1] (MB x ·MB y · 16 · 16 · 8) (MB x ·MB y · 8 · 8 · 2 · 8) 3, 072 ·MB x ·MB y

LR I[2] (MB x ·MB y · 16 · 16 · 8) (MB x ·MB y · 8 · 8 · 2 · 8) 3, 072 ·MB x ·MB y

LR I[3] (MB x ·MB y · 16 · 16 · 8) (MB x ·MB y · 8 · 8 · 2 · 8) 3, 072 ·MB x ·MB y

MV mem[0] (MB x ·MB y · 8) 0 8 ·MB x ·MB y

MV mem[1] (MB x ·MB y · 8) 0 8 ·MB x ·MB y

MV mem[2] (MB x ·MB y · 8) 0 8 ·MB x ·MB y

MV mem[3] (MB x ·MB y · 8) 0 8 ·MB x ·MB y

Total (bits) MB y · (35, 872 ·MB x + 24, 576) MB y · (17, 920 ·MB x + 12288) MB y · (53, 792MB x + 36, 864)

is the inverse of the motion between the frame and the ref-
erence, increasing in this way the real motion consistency. It
is interesting to highlight that the presence of aliasing in the
low-resolution input images largely decreases the accuracy of
the motion vectors. Due to this reason a spatial lowpass filter
of order three has been applied to the input images prior to
performing the motion estimation.

3.2. Implementation issues

Table 1 summarizes the memory requirements that the im-
plementation of the ISR algorithm demands for nr frames
= 4 and SF = 2 as a function of the input MBs. The number

of MBs in columns has been labeled as MB x, and the num-
ber of MBs in rows has been labeled as MB y. For instance,
the HR A memory has a number of macroblocks equal to
(2 ·MB x)× (2 ·MB y). Because it is a high-resolution im-
age, its size is doubled in both directions. As every macro-
block has 16 × 16 luminance pixels and 8 × 8 chrominance
pixels and, furthermore, there exist two chrominance com-
ponents, the blue and the red ones, the overall pixel num-
ber is (2 · MB x · 2 · MB y · 16 · 16) for the luminance
and (2 ·MB x · 2 ·MB y · 8 · 8 · 2) for the chrominance
components. Nevertheless, it must be taken into account that
the HR A memory is 9- bit wide, and for this reason, it is
necessary to multiply each pixel by 9- bit in order to obtain
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Table 2: Memory requirements of the ISR algorithm for different
sizes of the input image.

Size MB x MB y Memory (KB)

SQCIF (128× 96) 8 6 342.1875

QCIF (176× 144) 11 9 690.5742

CIF (352× 288) 22 18 2681.2968

VGA (640× 480) 40 30 8014.6875

4CIF (704× 576) 44 36 10 563.1875

the total number of bits. The remaining memories will be
multiplied by 8- bit per pixel. These requirements include
four input memories as the number of frames to be com-
bined has been settled upon as four. Also, a buffer containing
three rows of macroblocks for reading the input images, as
part of the encoder memory requirements, has been included
[64]. These memory requirements also take into account the
chrominance and the additional bit of HR A. The total mem-
ory requirements, as a function of the number of MBs, is
MB y · (6724 · MB x + 4608), expressed in bytes. Table 2
summarizes the memory requirements for the ISR algorithm
with the most common input sizes. It must be mentioned
that the size of the output images will be doubled in every di-
rection, thus having a super-resolved image four times larger.

To perform the upsample and downsample operations,
it is necessary to include upsampling and downsampling
blocks in hardware, being in charge of performing these op-
erations on an MB basis. A hardware implementation is de-
sirable as the upsample/downsample processes are very in-
tensive computational tasks in the sense that they are per-
formed on the entire image MBs. A software implementa-
tion of these blocks could compromise the real-time per-
formance, and for this reason these two tasks have been in-
cluded in the texture processor. Upsampling is performed by
nearest-neighbor replication from an (8 × 8)-pixel block to
a (16× 16)-pixel MB. Downsampling is achieved by picking
one pixel from every set of four neighbor pixels, obtaining an
8× 8 block from a 16× 16 MB.

The motion estimation and motion compensation tasks
are performed using the motion estimator and the motion
compensator coprocessors. These coprocessors have been
modified to work in quarter-pixel precision because, as it
was previously established, the accuracy of the computed
displacements is a critical aspect in the ISR algorithm. The
arithmetic operations such as additions, subtractions, and
arithmetic shifts are implemented on the texture processor.
Finally, the overall control of the ISR algorithm is performed
by the ARM processor which was shown in Figure 2.

4. EXPERIMENTAL SETUP

A large set of synthetic sequences have been generated with
the objective of assessing the algorithm itself, independently
of the image characteristics, and to enable the measurement
of reliable metrics. These sequences share the following char-
acteristics. Firstly, in order to isolate the metrics from the im-
age peculiarities, the same frame has been replicated all over
the sequence. Thus, any change in the quality will only be due

to the algorithm processing and not to the image entropy.
Secondly, the displacements have been randomly generated,
except for the first image of the low-resolution input set, used
as the reference for the motion computation, where a null
displacement is considered. This frame is used as the refer-
ence in the peak signal-to-noise ratio (PSNR) computation.
Finally, in order to avoid the border effects when shifting the
frame, large image formats together with a later removal of
the borders have been used in order to compute reliable qual-
ity metrics. Figure 6 depicts the experimental setup to gener-
ate the test sequences [65].

The displacements introduced in the VGA images in pixel
units are reflected in the low-resolution input pictures di-
vided by four, that is, in quarter-pixel units. As this is the
precision of the motion estimator, the real (artificially intro-
duced) displacements and the ones delivered by the motion
estimator are compared, in order to assess the goodness of
the motion estimator used to compute the shifts among im-
ages. Several sets of 40 input frames from 40 random mo-
tion vectors have been generated. These synthetic sequences
are used as the input for the SR process. The ISR algorithm
initially performs 80 iterations over every four-input-frame
set. The result is a ten-frame sequence, where each SR output
frame is obtained as the combination of four low-resolution
input frames.

Figure 7(a) shows the reference picture Kantoor together
with the subsampled sequences that constitute the input
low-resolution sequence (b), and the nearest-neighbor (c)
and bilinear interpolation images (d) obtained from the
first low-resolution frame (frame with zero motion vec-
tor). Figure 8(a) shows the reference picture Krant together
with the subsampled sequences that constitute the input
low-resolution sequence (b) and the nearest-neighbor (c)
and bilinear interpolations (d) obtained from the first low-
resolution frame (frame with zero motion vector).

The pictures obtained with the SR algorithms are always
compared to the ones obtained with the bilinear and nearest-
neighbor replication interpolations in terms of PSNR. In this
work, the quality of the SR algorithms are compared with
the bilinear and nearest-neighbor interpolation algorithms
as they suppose an alternative way to increase the image res-
olution without the complexity that SR implies. The main
difference between interpolation and SR is that the later adds
new information from other images while the former only
uses information from the same picture. The PSNR obtained
with interpolation methods represents a lower bound in the
sense that a PSNR above the interpolation level implies SR
improvements.

In order to demonstrate the quality increase in the SR im-
age when combining several low-resolution images, the ex-
periment denoted in Figure 9 has been designed. In this ex-
periment, referred to as the incremental test, a set of 12 dis-
placement vectors have been generated, wherein the first is
the zero vector and the remaining are eleven random vec-
tors. The first displacement vector is (0, 0) to assure that
the resulting image will remain with zero displacement with
respect to the reference, enabling reliable quality measure-
ments. From this vector set, the first three are applied to
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Figure 6: Experimental setup for the test sequence generation.

(a) (b) (c) (d)

Figure 7: (a) Reference Kantoor picture, (b) the low-resolution input sequence derived from it, (c) the nearest-neighbor, and (d) bilinear
interpolations.

(a) (b) (c) (d)

Figure 8: (a) Reference Krant picture, (b) the low-resolution input sequence derived from it, (c) the nearest-neighbor, and (d) bilinear
interpolations.
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Figure 9: Incremental test for assessing the SR algorithms.
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Figure 10: Luminance PSNR for 80 iterations of the Kantoor se-
quence combining 4 input frames. The output sequence has 10
frames.

the first frame of the Krant sequence in order to generate
the low-resolution input image set, from which the super-
resolved image zero is obtained. After that, a new vector is
added to the previous set and these four vectors are applied
again to the frame 0 of Krant to generate the super-resolved
image one, based on four input low-resolution images. This
process is repeated until a super-resolved image based on 12
low-resolution input frames is generated. In total, a number
of 3 + 4 + 5+ · · ·+ 12 = 75 low-resolution frames have been
used as inputs to the SR algorithms in order to generate 10
output frames.

5. ISR ALGORITHM RESULTS

In this section the test procedures exposed in the previous
section have been applied to the ISR algorithm. Figure 10

shows the luminance PSNR evolution of each frame for the
Kantoor sequence during the iterative process. From this
chart, it is noticeable that for certain frames (frames 2 to 6)
the quality rises up to a maximum value as the number of
iterations increases, while for the other frames, the quality
starts to rise and after a few iterations it drastically drops. The
reason for this unexpected result is that the displacements
were randomly generated and so, the samples presented in
each frame are randomly distributed. If the samples contain
all the original information (fragmented over the four input
frames) then the SR process will be able to properly recon-
struct the image. If some data is missing in the sampling
task, then the SR process will try to adapt the SR image to
the available input set, including the missing data that has
been set to zero values. Higher or lower PSNR values will
be obtained depending on the missing data, decreasing be-
low the interpolation level (frames 7 and 9) when the avail-
able data is clearly insufficient. In such cases, the ISR algo-
rithm tries to match the available information to the miss-
ing information within the SR frame, producing undesirable
artefacts when there is a lack of information. These artefacts
cause the motion-vector field between the low-resolution
version of the SR image and the low-resolution inputs to get
worse with the number of iterations due to the error feed-
back.

In Figure 11 a classification of the SR frames depending
on the available input samples is proposed. The best case is
obtained for frames of “a-type” where all the samples are
present and the worst cases are for “d-type” frames, where
four equivalent motion vectors are generated picking up the
same (or equivalent) sample positions four times. According
to this classification and inspecting themotion vectors gener-
ated for each low-resolution input set, frames 2 to 6 are clas-
sified as “a,” frames 0 and 1 as “c.2,” frames 7 and 9 as “c.6”
and “c.5,” respectively, and frame 8 as “c.1,” as it is shown in
Figure 10.
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Figure 11: SR frame classification depending on the available sam-
ples.
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Figure 12: Luminance PSNR for 80 iterations of the Kantoor se-
quence using nearest-neighbor and bilinear interpolations for the
upsampling process.

As discussed in Section 2, Figure 12 shows the PSNR of
the Kantoor sequence luminance when the upsampling has
been implemented using a nearest-neighbor interpolator or a
bilinear interpolator. In the second case, the quality of the se-
quence is lower due to the aliasing removal of the bilinear in-
terpolator. Therefore, for this application a nearest-neighbor
interpolator that keeps substantial amounts of aliasing across
the SR process is required.

In Figure 13 can be seen the average error of the motion-
vector field, computed as the absolute difference between the
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Figure 13: Average error of the motion-vector field for 80 iterations
of the Kantoor sequence.

real motion vectors and the motion-vectors obtained by the
motion estimator. The error is averaged between the hori-
zontal and vertical coordinates and among all the frames.
Equations (14) summarize the motion-vector error as it
has been computed in this paper, where “p” is the num-
ber of frames to be combined; “MB x” and “MB y” are
the number of MBs in the horizontal and vertical direc-
tions, respectively, and depend on the size of MB upon which
the motion estimator is based; “mv ·x(l)[mv x,mv y]”
is the motion vector computed for the MB located at
(mb x,mb y) of frame “l” in the horizontal coordinate and
“mv ·y(l)[mv x,mv y]” is the counterpart in the vertical
coordinate. After the errors in the horizontal (error x) and
vertical (error y) directions have been computed, they are
averaged in a single number (error). It is clear how the er-
ror decreases with the iterations for images of type “a.” For
the “c.2” and “c.1” image types, the motion error drops in
the beginning but it rises after a few iterations. For “c.6” and
“c.5” image types, the motion error increases from the first
iteration:

error x = 1
p
·
p−1∑

l=0

1
MB x ·MB y

·
MB y−1∑

mb y

MB x−1∑

mb x=0

∣
∣mv ·x(l)[mb x,mb y]

−mv real · x(l)[mb x,mb y]
∣
∣,

error y = 1
p
·
p−1∑

l=0

1
MB x ·MB y

·
MB y−1∑

mb y

MB x−1∑

mb x=0

∣∣mv ·y(l)[mb x,mb y]

−mv real · y(l)[mb x,mb y]
∣
∣,

error = error x + error y

2
.

(14)

Taking into account that all the necessary datamay not be
available (“b,” “c,” and “d” cases), it is better to abort the iter-
ative process after a few initial iterations in order to avoid the
quality drops that appear in Figure 10. After examining sev-
eral sequences, a number of 8 iterations have been selected as
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Figure 14: Kantoor frame number 4 of “a-type” in (a1) the spatial domain and in (b1) the frequency domain in magnitude, with their
associated errors ((a2) and (b2), resp.).

(a1) (b1) (a2) (b2)

Figure 15: Krant frame number 4 of “a-type” in (a1) the spatial domain and in (b1) the frequency domain in magnitude, with their
associated errors ((a2) and (b2), resp.).

a reasonable tradeoff between quality and computation effort
for the average cases.

If all input data are available, a maximum PSNR of
34.56 dB for frame number 4 (“a-type”) is reached for the
Kantoor sequence and 37.59 dB for the Krant sequence.
Figure 14 shows the spatial- and frequency-domain images
for Kantoor frame number 4 after 80 iterations together
with the associated errors with respect to the reference, and
Figure 15 shows the same for frame 4 of the Krant sequence.
It is clearly appreciated that the low frequencies, located
in the central part of image, exhibit lower errors than the
high frequencies. The reconstruction process tries to recover
as much high-resolution frequencies as possible, but the
low-frequency information is easier to recover, mainly be-
cause almost all of such information is present prior to the
SR reconstruction process.

Figure 16 shows the PSNR for the Kantoor sequence but
by limiting the number of iterations to eight. It is easy to see
that finally all the frames but one exhibit PSNR above the in-
terpolation levels. Only frame 7 of type “c.6” is below such
levels, whereas frame 9 of type “c.5” is just at the interpola-
tion level.

Figures 17 and 18 show some enlarged details of the Kan-
toor and Krant sequences, respectively, after 80 iterations
combining 4 low-resolution frames per SR output frame. In
both cases, (a) is the nearest-neighbor interpolation, (b) is
the SR image, and (c) is the bilinear interpolation, and also
in both cases an important recovery of the high-frequency
details is noticeable, as the edge recovery reveals.

Finally, the incremental test described in Figure 9 was ap-
plied to the ISR algorithm using the Krant sequence. Initially,
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Figure 16: PSNR of the luminance for frame 4 of the Kantoor se-
quence after 8 iterations.

an amount of 80 iterations were settled for every output
frame, obtaining the luminance PSNR shown in Figure 19.
As the motion among frames has been randomly generated,
the probability of having the entire original input data dis-
tributed among the low-resolution frames available to the SR
algorithm increases with the number of incoming frames. In
this case, after the combination of 9 low-resolution frames,
the ISR algorithm is able to deliver a type “a” image, man-
ifested in a quality increase as the number of iterations in-
creases. Once again, if the iterations are limited to 8 in or-
der to preclude from an excessive quality dropping, the PSNR
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(a) (b) (c)

Figure 17: Enlarged details of the Kantoor sequence for frame number 4 after 80 iterations, combining 4 low-resolution frames per SR
frame. Image (a) is the nearest-neighbor interpolation, image (b) is the SR image combining 4 low-resolution input frames, and image (c) is
the bilinear interpolation of the input image.

(a) (b) (c)

Figure 18: Enlarged details of the Krant sequence for frame number 4 after 80 iterations, combining 4 low-resolution frames per SR frame.
Image (a) is the nearest-neighbor interpolation, image (b) is the SR image combining 4 low-resolution input frames, and image (c) is the
bilinear interpolation of the input image.

represented in Figure 20 is obtained. In the two cases (8 and
80 iterations), both the final and the maximum PSNR values
are shown.

In Figure 21 the SR frame number 9 is shown, as a result
of the combination of 12 low-resolution frames. Image (a1)
is the SR frame in the spatial domain, and (a2) is the error
image when compared with the original one. Major errors
are located in the edge zones, that is, in the high frequencies.
The bidimensional Fourier transform in magnitude is shown
in (b1) and the error image is in (b2). As expected, the cen-
tral zone of the magnitude, corresponding to the lower spa-
tial frequencies, exhibits the lower errors. The phase of the
image is shown in (c1) together with the associated error in
the frequency domain (c2). Once again, the error is mini-
mal in the lower-frequency zones. Three enlarged details of
the pencils of the Krant frame are shown in Figure 22: (a) the
nearest-neighbor interpolation, (b) the SR image, and (c) the
bilinear interpolation of the input low-resolution sequence.

6. NONITERATIVE SUPER-RESOLUTION

Although the iterative version previously described offers
very good image quality when mapped onto a hybrid video
encoder, the challenge is to create a new type of algorithm

that, using the same resources, could operate in a single step,
that is, a noniterative algorithm suitable for real-time appli-
cations. The underlying idea is based on the following con-
siderations:

(i) every new image adds fresh information that must be
combined into a new high-resolution grid;

(ii) it is impossible to know “a priori” (for the SR algo-
rithm scope) the position of the new data and whether
or not they contribute with new information.

Based on these considerations, a novel noniterative
super-resolution (NISR) algorithm has been developed. This
algorithm performs its operations by considering the follow-
ing steps.

(1) Initially, the first low-resolution image is translated
into a high-resolution grid, leaving the unmatched pixels to
a zero value. This process will be named as “upsample holes.”
As the size increases by a factor of two, both in the hori-
zontal and vertical directions, the location and relationship
among the pixels of high and low resolution are as shown in
Figure 23.

(2) Next, the contributions of the pixels are generated.
These contributions represent the amount of information
that each low-resolution pixel provides to its corresponding
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Figure 19: PSNR of the Krant sequence with 10 incremental output frames using the ISR algorithm with 80 iterations.
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Figure 20: PSNR of the Krant sequence with 10 incremental output frames using the ISR algorithm and 8 iterations.

neighbours in the high-resolution grid. As several low-
resolution images are initially combined in a grid 2-by-2
times bigger, an initial contribution of 4, for (1/2)-pixel pre-
cision in low resolution, will be enough in order to keep
contributions as integer values. If the resolution of the mo-
tion estimator is increased or the motion estimation is per-
formed in high resolution, higher values will be necessary.
These contributions are expressed over the high-resolution
grid. The contributions of the image in Figure 23 are shown
in the left part of Figure 24(b), pointing out that the original
pixels have maximum contribution (four) while the rest have
zero value.

(3) The relative displacements between the next input
image and the first image, considered as the reference one,
are estimated. These displacements are stored in a memory,
as they will be used later on.

(4) Steps (1) and (2) are applied to the new input im-
age, that is, it is adapted to the high-resolution grid, leaving

the missing pixels to zero and generating the initial contribu-
tions.

(5) In this step, both the new image over the high-
resolution grid and its associated contributions are motion
compensated towards the reference image. The real contribu-
tions of the new pixels to the high-resolution reference image
will be reflected in the compensated contributions.

(6) The arithmetical addition between the initial image
and the compensated images is performed. The same process
is completed with initial and compensated contributions.
This summation assures further noise reduction in the re-
sulting image.

(7) Steps (3) to (6) are applied to the next incoming im-
ages.

(8) Once step (7) is finished, a high-resolution image
with the summation of all the compensated pixels (stored in
HR A) and a memory with the summation of all the com-
pensated contributions (HR Cont) are obtained. Then the
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(a1) (b1) (c1)

(a2) (b2) (c2)

Figure 21: Super-resolved image after combining 12 low-resolution frames in (a1) the spatial domain, in (b1) the magnitude frequency
domain, and in (c1) the phase frequency domain, together with their associated errors ((a2), (b2), and (c2)) for the Krant sequence.

(a) (b) (c)

Figure 22: Enlarged details of the nearest-neighbor interpolation of (a) the input image, (b) the SR image after combining 12 low-resolution
input frames, and (c) the bilinear interpolation of the input image for the Krant sequence.

high-resolution image is adjusted depending on the contri-
butions, as it is indicated in (15), where N is the number of
frames to be combined, SR(i, j) is the SR image, LR I is the
low-resolution input image and contributions represents the
contributions memory.

SR(i, j) = N

·
∑N

fr=1 Motion Compensate
(
Upsample Holes

(
LR I[fr]

))

∑N
fr=1 Motion Compensate

(
contributions[fr]

) .

(15)

Assigning to the accumulative memory HR A a length of
12 bits, 16 frames can be safely stored in it. In the worst case,
an accumulation of a value of 255 will be performed, which
multiplied by 16 gives 4080, fitting in 12 bits.

(9) After the adjustment, it is possible that some pixel po-
sitions remain empty, because certain positions from the in-

put image set did not add new information. This case will be
denoted by a zero, both in the high-resolution image position
and in the contributions. The only solution to this problem
is to interpolate the zeroes with the surrounding informa-
tion. However, the presence of a zero in the image does not
necessarily implies that such value must be interpolated, be-
cause zero is a possible and valid value in an image. Due to
this reason, a pixel will be interpolated only if its final contri-
bution is zero.

(10) As HR B will store the final super-resolved image,
its values cannot be neither below zero nor above 255. There-
fore, a clip of the final pixel values between 0 and 255 is made.

The NISR algorithm is presented in Algorithm 2, where
the previous step numbers have been introduced between
parentheses as labels at the beginning of the appropriate lines
for clearness. In Figure 25 the NISR algorithm data flow is
shown, using the memories and the resources of the hybrid
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Table 3: Memory requirements of the NISR as a function of the number of the input image macro-blocks.

Label
NISR algorithm memory

Luminance (bits) Chrominance (bits) Total (bits)

HR A (2 ·MB x · 2 ·MB y · 16 · 16 · 12) (2 ·MB x · 2 ·MB y · 8 · 8 · 2 · 12) 18, 432 ·MB x ·MB y

HR B (2 ·MB x · 2 ·MB y · 16 · 16 · 8) (2 ·MB x · 2 ·MB y · 8 · 8 · 2 · 8) 12, 288 ·MB x ·MB y

HR S (2 ·MB x · 2 ·MB y · 16 · 16 · 8) (2 ·MB x · 2 ·MB y · 8 · 8 · 2 · 8) 12, 288 ·MB x ·MB y

HR S2 (2 ·MB x · 2 ·MB y · 16 · 16 · 8) (2 ·MB x · 2 ·MB y · 8 · 8 · 2 · 8) 12, 288 ·MB x ·MB y

HR Cont (2 ·MB x · 2 ·MB y · 16 · 16 · 8) (2 ·MB x · 2 ·MB y · 8 · 8 · 2 · 8) 12, 288 ·MB x ·MB y

3-stripe HR (2 · 3 · 2 ·MB y · 16 · 16 · 8) (2 · 3 · 2 ·MB y · 8 · 8 · 2 · 8) 36, 864 ·MB y

LR I[0] (MB x ·MB y · 16 · 16 · 8) (MB x ·MB y · 8 · 8 · 2 · 8) 3, 072 ·MB x ·MB y

LR I[1] (MB x ·MB y · 16 · 16 · 8) (MB x ·MB y · 8 · 8 · 2 · 8) 3, 072 ·MB x ·MB y

MV mem[0] (MB x ·MB y · 8) 0 8 ·MB x ·MB y

Total (bits) MB y · (49, 160 ·MB x + 24, 576) MB y · (24, 576 ·MB x + 12288) MB y · (73, 736MB x + 36, 864)

Lowresolution Highresolution

Figure 23: Mapping of the low-resolution pixels in the high-
resolution grid, leaving holes for the missing pixels.

Table 4: Memory requirements of the NISR algorithm for different
sizes of the input image.

Size MB x MB y Memory (KB)

SQCIF (128× 96) 8 6 459.0468

QCIF (176× 144) 11 9 931.5966

CIF (352× 288) 22 18 3645.3867

VGA (640× 480) 40 30 10 936.1718

4CIF (704× 576) 44 36 14 419.5468

video encoder. Memory HR A is in boldface to remark the
different bit width when compared to the other memories.
The block-diagram has been divided into two different parts:
on the left side is the zone dedicated to the image processing,
which makes use of memories HR A, HR T , HR S, LR I 0,
and LR I , besides storing the motion vectors in MV ref2fr.
On the right side is the zone dedicated to the contributions
processing, which makes use of memories HR S2, HR T2,
and HR Cont. In order to clarify the relationships among
them, the image data flow has been drawn in solid lines, the

Y

C

(a)

Luminance

contributions:

4

0

0

0

Chrominance

contributions:

4

4

4

4

(b)

Figure 24: (a) Mapping of the chrominance C to the high-
resolution grid by means of replicating the pixels and its relation-
ship with the luminance Y. (b) Initial contributions of the lumi-
nance and chrominance images.

contribution data flow in dotted lines, and themotion-vector
flow in dashed lines. Moreover, the functions “upsample”
and “motion compensation” have been superscripted with
an asterisk to point out their different behaviors when they
are executing in the SR mode.

6.1. Implementation issues

In order to fit the NISR algorithm into the video encoder
originally developed by Philips Research, it is necessary to
perform additional changes in the architecture, mainly in
the motion compensator and in the chrominance treatment,
thereby creating a more flexible SOC platform.
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(1)HR A.lum = Upsample Holes (LR I 0.lum)

(1)HR A.chrom = Upsample Neighbours (LR I 0.chrom)

(2) HR Cont = Create image contributions

(7) FOR fr = 1, . . . ,nr frames−1
(3) MV = Calc Motion Estimation (LR I , LR I 0)

(3) MV = 2.∗MV

(4) HR S.lum = Upsample Holes (LR I.lum)

(4) HR S.chrom = Upsample Neighbours (LR I.chrom)

(4) HR S2 = Create image contributions

(5) HR T =Motion Compensation (HR S, MV)

(5) HR T2 =Motion Compensation (HR S2, MV)

(6)HR A =HR A + HR T

(6) HR Cont =HR Cont + HR T2

(7) END FOR

(8)HR A = 4∗ HR A/HR Cont

(9) If (HR Cont(i, j) = 0) Then HR B = Interpolate (HR A (i, j))

(9) ELSE HR B =HR A

(10) Clip (HR B, 0, 255)//result image in HR B

Algorithm 2: Pseudocode of the NISR algorithm implemented on the video encoder.

Motion
estimation �2 MV ref2fr

mv

Motion
compensation� HR T2

LR I Upsample� HR S
Motion

compensation�
Create

contributions

HR T HR S2

Images
+ � HR Cont +

LR I 0
reference Upsample�

HR A �4

Contributions

HR B Interpolate

Figure 25: NISR algorithm data flow.

Table 3 summarizes the memory requirements that the
NISR algorithm requests. Compared with the ISR it can be
appreciated that now there are five high-resolution memo-
ries instead of three, although the low-resolution andmotion
estimation memories have been reduced from four to two
and from four to one, respectively. Table 4 summarizes the
memory requirements of the NISR algorithm for the most
common input sizes.

6.1.1. Adjustments in themotion compensator

The motion compensator implemented in the existing video
encoder was designed to avoid visual distortions in the re-
sulting images when decompressing them, and in that sense,
when an image is shifted out of the physical boundaries it
fills the empty zone by replicating the borders. As the mo-
tion vectors are usually small compared with the image size
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Y

C

Figure 26: Relationship between the chrominance and the lumi-
nance for sampling format YCbCr 4 : 2 : 0.

and due to the lower attention of the human eye to the bor-
ders when compared with the centre of the images, this effect
is negligible. However, to obtain SR improvements the artifi-
cial introduction of nonexisting data results in quality degra-
dation in the borders. The solution is to modify the motion
compensator to fill the empty values with zeroes, so that the
NISR algorithm has an opportunity to fill the holes with valid
values coming from other images.

6.1.2. Adjustments in the chrominances

Due to the different sampling schemes used for the lumi-
nance and the chrominance components, it is necessary to
perform some modifications on the proposed NISR algo-
rithm to obtain SR improvements also in the chrominance
images.

First of all, for the chrominance pixels, the way to per-
form the upsampling process cannot be the same as the one
used with the luminance. This fact is reflected in Figure 26,
where it can be seen how each chrominance pixel affects four
luminance pixels. Therefore, when the chrominance high-
resolution grid is generated, every pixel must be replicated
four times in order to keep the chromatic coherence as shown
in Figure 24(a).

For the same reason, the initial chrominance contribu-
tions cannot be the same as the luminance ones. As there
is no zero-padding, all the chrominance pixels must ini-
tially have the same contribution weights, as is shown in
Figure 24(b) where the initial contributions for the lumi-
nance and the chrominances are presented.

7. NONITERATIVE RESULTS

In order to enable a suitable comparison between the ISR
and the NISR algorithms, firstly the results of combining four
low-resolution frames per output SR frame will be shown for
both sequences. In Figure 27 the PSNR resulting from apply-
ing the NISR algorithm to the Kantoor sequence is shown
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Figure 27: PSNR of the NISR when combining four low-resolution
images per frame for the Kantoor sequence.
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Figure 28: PSNR of the NISR when combining four low-resolution
images per frame for the Krant sequence.

and Figure 28 shows the SR results for the Krant sequence.
As far as the introduced shifts have been the same for both
sequences, they exhibit a very similar behavior. The first one
has an average PSNR of 36.07 dB, while the second one has
an average PSNR of 38.47 dB. The quality differences are due
to the inherent nature of these two images: in the same con-
ditions, a lower entropy image will always have higher PSNR.
In Figure 29 is shown the resulting frame number 4 in the
case of the Kantoor sequence, as it exhibits the higher quality
of the ten-frame sequence. As it was commented in Section 5,
the error is again lower in the low-frequency region. Com-
pared with the ISR algorithm, the error image for the NISR
algorithm is more uniform both in the spatial and in the fre-
quency domain for the same number of combined frames.
A detailed observation of the same frame for the Krant se-
quence offers the same results, as it can be seen in Figure 30.
At the same time, some details of these last images contain-
ing edges are shown both for Kantoor and Krant sequences
in Figures 31 and 32, respectively, increasing in both cases the
perceptual quality.

The qualities resulting from applying the incremental test
to the Krant sequence are shown in Figure 33. As it was
expected, as the number of input frames to be combined
increases, the PSNR increases until it reaches a maximum of
38.45 dB when combining 12 low-resolution input frames.
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(a1) (b1) (c1)

(a2) (b2) (c2)

Figure 29: PSNR of the NISR when combining four low-resolution frames for the Kantoor sequence.

(a1) (b1) (c1)

(a2) (b2) (c2)

Figure 30: PSNR of the NISR when combining four low-resolution frames for the Krant sequence.

The perceptual quality exhibits few variations after combin-
ing 6 input frames, that is, when 34.57 dB is reached. In ad-
dition, it can be seen that the largest increment in the quality
(the greatest PSNR slope) takes place in the first four output
frames. All the established facts lead to the conclusion that a
NISR system can be limited to combine 5 or 6 input frames,
depending on the available resources and the desired output
quality.

The results from the combination of 12 low-resolution
frames are show in Figure 34, where it can be noticed that
the error image in the spatial domain (a2) is highly uni-
form, indicating a low error with respect to the reference
image. The magnitude of the bi-dimensional Fourier trans-
form shows an almost complete removal of the aliasing (less
overlap of the high-energy bands), revealing a minimal im-
age error in the high-power spectral bands (b2). Theminimal



Gustavo M. Callicó et al. 21

(a) (b) (c)

Figure 31: Enlarged detail of the Kantoor sequence with 10 output frames when four low-resolution frames are combined.

(a) (b) (c)

Figure 32: Enlarged detail of the Krant sequence with 10 output frames when four low-resolution frames are combined.
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Figure 33: Incremental test of the Krant sequence with 10 output
frames.

phase spectral error (c2) follows the same trend. When com-
paring these results with the ones shown in Figure 35 (which
have been obtained combining only 3 low-resolution frames)
higher amounts of aliasing and consequently, higher error
with respect with the original image, are perceived.

In Figure 36 an enlarged detail of the frame shown in
Figure 34 is shown, obtained as the gathering of 12 frames
by the NISR algorithm. In (a) the nearest-neighbor interpo-
lation is shown, in (b) the SR image and in (c) the bilinear in-
terpolation. The quality improvement of the image, is clearly
manifested, especially for those letters on the top right side
of the super-resolved image.

8. ALGORITHMS COMPARISON

The two developed SR algorithms have been compared
through three main features: the simulation time (measured
in milliseconds), the obtained quality (measured in PSNR
dB), and the memory requirements (measured in MB).

Figure 37 shows the simulation time of both algorithms
applied to two of the test video input sequences: Kantoor
and Krant. In all the cases 10 output frames have been gen-
erated. The results of the ISR algorithm are obtained from
the iteration of 40 low-resolution frames, while the results
of the NISR algorithm come from the incremental combina-
tion of three to twelve low-resolution frames, that is, a total
combination of 75 input frames. Even though the NISR al-
gorithm has processed a higher number of input frames, the
total amount of time inverted in the execution of the NISR
algorithm is five times lower than that of the ISR algorithm,
placing the former in a best situation for a real-time execu-
tion scenario.
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(a1) (b1) (c1)

(a2) (b2) (c2)

Figure 34: Super-resolved frame after combining 12 low-resolution frames in (a1) the spatial domain, in (b1) the frequency domain in
magnitude, and in (c1) phase, together with their associated errors((a2), (b2), and (c2)).

(a1) (b1) (c1)

(a2) (b2) (c2)

Figure 35: Super-resolved frame after combining 3 low-resolution frames in (a1) the spatial domain, in (b1) the frequency domain in
magnitude, and in (c1) phase, together with their associated errors ((a2), (b2), and (c2)).

With respect to the quality exhibited by each SR algo-
rithm, it is interesting to remark that it is important to con-
sider not only the absolute value of the PSNR achieved by
the algorithm but also the quality increase with respect to
the interpolation levels, as it represents the SR gain with re-
spect to a cheaper and faster method to increase the image
size. In Figure 38 a comparison between the quality obtained

by the NISR algorithm (Figure 33) and the best results of the
ISR algorithm (maximum values are the same for 8 and 80
iterations) is presented. It is clear how the NISR algorithm
outperforms the ISR algorithm when the number of low-
resolution frames is above four frames. The larger PSNR dif-
ference occurs when 12 low-resolution frames are combined,
getting a gain of 5.54 dB for the NISR over the ISR algorithm.
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(a) (b) (c)

Figure 36: Enlarged detail of (a1) the nearest-neighbor interpolation of the input image, (b1) the SR image combining 12 low-resolution
input frames, and (c1) the bilinear interpolation of the input image for the Krant sequence.
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Figure 37: Execution time comparison between the ISR and NISR
algorithms presented in this paper.

The average difference is of 3.08 dB from the combination of
3 to 12 low-resolution frames.

In Figure 39 a quality comparison between Kantoor and
Krant sequences for eight iterations of the ISR algorithm is
presented. As the Kantoor sequence has several different fo-
cal planes, it is more difficult to compute a motion-vector set
that accurately matches the real motion vectors. In the case
of the Krant sequence, many MBs belong to objects in the
same focal plane and share the samemotion-vectors, thus in-
creasing the motion vector consistency and the overall super-
resolved quality. Due to this reason, a higher quality is ob-
tained for the Krant sequence for all the output frames. The
SR enhancement with respect to the bilinear interpolation
level, for frame six, has been marked with two arrows, be-
ing 8.45 dB in the case of the Krant sequence and 1.55 dB in
the case of the Kantoor sequence. Figure 40 shows the quality
comparison between the same two sequences for the NISR
algorithm. Once again, the quality of the Krant sequence is
always above the quality of the Kantoor one. For instance,
after combining 7 frames the Krant sequence exhibits an SR
enhancement of 11.37 dB and the Kantoor sequence an SR
enhancement of 9.3 dB.

One of the most restrictive hardware resources in the en-
coder platform is the memory, as it plays a crucial role in

the final integrated circuit cost and in the power consump-
tion. Figure 41 shows a comparison of the total memory re-
quirements of the two algorithms. Although until now the
NISR algorithm has exhibited better time responses and bet-
ter qualities than the ISR algorithm, this fact comes at the
cost of higher memory requirements. The memory needed
by the NISR algorithm is 1.36 times above the ISR memory.
This is mainly due to the introduction of the high-resolution
memories HR Cont and HR S2.

It is important to note that although the SR algorithms
have been applied both to the luminance and the chromi-
nance, the major improvements with respect to the interpo-
lation levels have been obtained for the luminance compo-
nent. This is mainly due to the lower entropy of the chromi-
nances in the YCbCr 4 : 2 : 0 sampling format, which does
not allow an accurate edge reconstruction as in the lumi-
nance case. In other words, the chrominances have deficient
high frequency information to reconstruct a high-resolution
colour image with a quality higher than the interpolated
counterparts.

Finally, in Figure 42 the memory used by the ISR algo-
rithm for different magnification factors ranging from ×2 to
×8 and for several input image sizes is shown. In Figure 43
the memory demanded by the NISR for the same magnifica-
tion factors and input image sizes is shown. Taking into ac-
count that the hardware platform cannot allocate more than
1Mbyte of SRAM internal memory in order to achieve low-
cost goals, only QCIF at ×2 or SQCIF at ×2 and ×3 can be
addressed in this implementation.

9. CONCLUSIONS

High-resolution images are often required in nowadays mul-
timedia services and applications. The achievement of high-
quality images using low-cost SR techniques mapped onto
a generic hybrid video encoder has been presented in this
paper. Low-cost constraints are accomplished by perform-
ing minimal changes on the architecture, such as using sub-
pixel motion estimation, enough loop memory, and addi-
tional block-level operator and accumulators. Two differ-
ent SR algorithms are proposed in this work. The first one,
named iterative super-resolution (ISR) algorithm, presents a
much higher performance than classical image interpolation
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Figure 38: PSNR of the Krant sequence with 10 incremental output frames using the NISR and the ISR algorithms with 80 iterations.
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Figure 39: PSNR comparison between Kantoor and Krant sequences for the ISR algorithm (8 frames, ten iterations per frame).
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Figure 40: PSNR comparison between Kantoor and Krant sequences for the NISR algorithm.
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Figure 41: Memory requirements for the ISR versus NISR algo-
rithm.
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Figure 42: Memory requirements for the ISR algorithm.

methods. However, it is not always possible to achieve SR im-
provements by using this approach, because if all the sampled
data are not present, the quality decreases with the number of
iterations due to the lack of additional “a priori” information
included in the algorithm. In that sense, it is preferable to re-
strict the number of iterations, as it has been stated in this
paper. Although the ISR algorithm exhibits a good behavior
and robustness in presence of noise and/or inaccurate mo-
tion knowledge as well as low memory utilization, real-time
conditions are not guaranteed due to its iterative nature. In
order to solve this drawback, a noniterative super-resolution
(NISR) algorithm has been developed. The experiments car-
ried out reveal a clear quality increase of the super-resolved
image as the numbers of low-resolution frames to be com-
bined are increased. The introduction of the contribution
concept allows the algorithm to be independent of problems
related to the image borders and, at the same time, supposes
adaptive weights for every pixel, depending on the motion
and therefore on the new incoming information. The NISR
algorithm allows obtaining higher image qualities than the
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Figure 43: Memory requirements for the NISR algorithm.

ones obtained by the ISR algorithm in a single step, but at
the expense of using higher amounts of memory.

The SR algorithms developed have been successfully im-
plemented onto a HW/SW platform by reusing a generic hy-
brid video encoder instead of developing a specific SR sys-
tem. The results obtained in the implementation process in
terms of simulation time, memory usage, and image qual-
ity for both cases have been also presented in this paper, es-
tablishing a detailed comparison among the two algorithms.
The applied methodology assures that the platform can be
used both in coding mode and/or in SR mode, opening
new avenues in the field of high-performance multiproces-
sor system-on chip (MPSoC) video platforms.
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José Fco. López obtained the five-year de-
gree in physics (specialized in electronics)
from the University of Seville, Spain, in
1989. Since then, he has conducted his in-
vestigations at the Research Institute for Ap-
plied Microelectronics (IUMA), where he is
part of the Integrated Systems Design Di-
vision. He also lectures at the School of
Telecommunication Engineering, the Uni-
versity of Las Palmas de Gran Canaria
(ULPGC), being responsible for the courses on analogue circuits

and VLSI circuits. In 1994, he obtained the Ph.D. degree and
was awarded by the ULPGC for his research in the field of high-
speed integrated circuits. He was by Thomson Composants Mi-
croondes (now United Monolithic Semiconductor (UMS)), Or-
say, France, in 1992. In 1995 he was with the “Center for Broad-
band Telecommunications” at the Technical University of Denmark
(DTU) and in 1996, 1997, 1999, and 2000 he was funded by the
Edith Cowan University (ECU), Perth, Western Australia, to make
research on low-power, high-performance integrated circuits and
image processing. He has been actively enrolled in more than 15
research projects funded by the European Community, Spanish
Government, and international private industries. He has written
around 70 papers in national and international journals and con-
ferences.
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