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In stereophonic acoustic echo cancellation (SAEC) problem, fast and accurate tracking of echo path is strongly required for stable
echo cancellation. In this paper, we propose a class of efficient fast SAEC schemes with linear computational complexity (with re-
spect to filter length). The proposed schemes are based on pairwise optimal weight realization (POWER) technique, thus realizing
a “best” strategy (in the sense of pairwise and worst-case optimization) to use multiple-state information obtained by preprocess-
ing. Numerical examples demonstrate that the proposed schemes significantly improve the convergence behavior compared with
conventional methods in terms of system mismatch as well as echo return loss enhancement (ERLE).
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1. INTRODUCTION

The ultimate goal of this paper is to develop an efficient adap-
tive filtering scheme, with linear computational complex-
ity, to stably cancel acoustic coupling, from loudspeakers to
microphones, occurring in telecommunications with stereo-
phonic audio systems. This acoustic coupling is commonly
called acoustic echo (we just call it echo in the following). The
stereophonic acoustic echo cancellation (SAEC) problem has
become a central issue when we design high-quality, hands-
free, and full-duplex systems (e.g., advanced teleconferenc-
ing, etc.) [1–13]. A direct application of a monaural echo
cancelling algorithm to SAEC usually results in unaccept-
ably slow convergence [1–3], and this phenomenon is math-
ematically clarified in [5], showing that the normal equation
to be solved for minimization of residual echo is often ill-
conditioned or has infinitely many solutions due to inherent
dependency caused by highly cross-correlated stereo input
signals (see Section 2.2).

Decorrelation of the inputs is a pathway to fast and ac-
curate tracking of echo paths (impulse responses), which is
necessary for stable echo cancellation [6, 8, 14, 15]. A great
deal of effort has been devoted to devise preprocessing of
the inputs [3, 5, 14–22] (see Appendix A). In other words,
these preprocessing techniques relax the ill-conditioned situ-
ation with use of additional information provided artificially
by feeding less cross-correlated input signals. Based on the

preprocessing [5], real-time SAEC systems have been effec-
tively implemented, for example, in [8, 13]. Under rapidly
time-varying situations, however, further convergence ac-
celeration is strongly required. Unfortunately, an increase
of decorrelation effects by preprocessing may cause audible
acoustic distortion or loss of stereo sound effects, thus the
preprocessing is strictly restricted to only slight modification
of the input signal. The remaining major challenges in SAEC
with preprocessing are twofold: (i) fast tracking of the echo
paths within the above restriction on audio effects and (ii)
low computational complexity due to necessity to adapt 4
echo cancelers with a few thousand taps [7] (see Figure 1).
Now, the time is ripe to move from the early stage of devising
preprocessing techniques to the next stage: utilize the addi-
tional information provided by preprocessing to the fullest
extent possible.

Effective utilization of the additional information is a key
to achieve the goal shown in the beginning of this introduc-
tion. We formulate the SAEC problem as a time-varying set-
theoretic adaptive filtering, that is, approximate the estiman-
dum h∗ (system to be estimated, true echo paths) as a point
in the intersection of multiple closed convex sets that are de-
fined with observable data and contain h∗ with high proba-
bility (see Section 3.1). As a preliminary step [23], we found
a clue to maximally utilize the information given by the pre-
processing [14, 15]. The preprocessing in [14, 15] alternately
generates certain two states of inputs (see Appendix A) and it
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Figure 1: Stereophonic acoustic echo cancelling scheme; unit 1 is a preprocessing unit (see Appendix A). Note that the system is not limited
to this special structure but can be any appropriate structure.

is reported that it achieves faster convergence in system mis-
match,1 at the expense of slower convergence in echo return
loss enhancement (ERLE), than other major preprocessing
techniques such as in [5]. The scheme2 proposed in [23] uti-
lizes the information from the two states of inputs simulta-
neously at each iteration. The two states can be associated
with two states of solution sets (mathematically linear vari-
eties [5]), sayV and Ṽ. By using the adaptive parallel subgra-
dient projection (PSP) algorithm [28] (see Section 3.1), the
scheme fairly reduces the zigzag loss3 shown in Figure 2(b),
and the direction of its update is governed by certain weight-
ing factors (see Figure 2(c)). However, the update direction
realized by the uniform weights does not sufficiently approx-
imate ideal one. Recently, an efficient strategic weight design
called the pairwise optimal weight realization (POWER) was
developed in [31, 32] for the adaptive PSP algorithm. The
POWER technique realizes a best strategy (in the sense of
pairwise and worst-case optimization) for the use of multiple
information to determine the update direction. This suggests
that further drastic acceleration is highly expected by exploit-
ing POWER (see Figure 3).

In this paper, we propose a class of efficient fast SAEC
schemes that further accelerate the method in [23] by em-
ploying POWER with keeping linear computational com-
plexity. In fact, the POWER technique exerts far-reaching
effects in a general adaptive filtering application, especially

1 Recall that the fast and accurate estimation of h∗ is necessary in SAEC,
hence system mismatch is a very important criterion.

2 The scheme is derived from the adaptive projected subgradient method
[24, 25], a unified framework for various adaptive filtering algorithms,
which has also been applied to the multiple-access interference suppres-
sion problem in DS/CDMA systems successfully [26, 27].

3 The loss is caused by the “small” angle between V and Ṽ due to the re-
striction of “slight”modification in preprocessing (see, e.g., [29, page 197]
for angle between subspaces or linear varieties). Similar zigzag behavior
can be observed for alternating projection methods known as Kaczmarz’s
method or, more generally, the projections onto convex sets (POCS) in
convex feasibility problem; find a point in the nonempty intersection of
fixed closed convex sets (see, e.g., [30] and Section 3.1). In the case of two
subspaces M1 and M2, the rate of convergence of alternating projection
methods is exactly given as (cos(M1,M2))2n−1 [29, Theorem 9.31], where
cos(·, ·) denotes the cosine of the angle between two subspaces and n the
iteration number. This provides theoretical verification to slow conver-
gence caused by the zigzag loss when the angle between two subspaces is
small.
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Figure 2: A geometric interpretation of existing methods: (a)
straightforward: straightforward application of monaural scheme,
(b) conventional: preprocessing-based approach with just one
state of inputs at each iteration, (c) UW (uniform weight)-PSP:
preprocessing-based approach with two state information at each
iteration [23]. The solution set V is periodically changed into Ṽ by
preprocessing (V and Ṽ are linear varieties). Note that each arrow
of “conventional” stands for the update accumulated during a half-
cycle period in which the state of inputs is constant.

when the input signals are highly correlated. Hence, as seen
from Figure 2, POWER is particularly suitable for the SAEC
problem. The POWER technique is based on a simple for-
mula to give the projection onto the intersection of two
closed half-spaces4 that are defined by three vectors (see
Proposition 1). We propose two schemes in the proposed
class. The first scheme (Type I) exploits the formula in a
combinatorial manner (see Figure 4(a)). The second scheme
(Type II), on the other hand, exploits the formula just once
after taking respective uniform averages of projections corre-
sponding to each state of inputs (see Figure 4(b)). The lat-
ter scheme is computationally more efficient than the for-
mer one, while overall complexities, including the weight de-
sign, of both schemes are kept linear with respect to the filter
length (see Remark 1(a)).

4 Given v ∈ H (H : real Hilbert space) and a closed subspace M ⊂ H , the
translation ofM by v defines the linear variety V := v+M := {v+m : m ∈
M}. IfM⊥ := {x ∈H : 〈x,m〉 = 0, ∀m ∈M} satisfies dim(M⊥) = 1, V
is called hyperplane, which can be expressed as V = {x ∈ H : 〈a, x〉 = c}
for some (0 	=)a ∈ H and c ∈ R. Π− := {x ∈ H : 〈a, x〉 ≤ c} is called a
closed half-space with its boundary V .
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Figure 3: The direction of this paper.

Numerical examples demonstrate that notable improve-
ments are achieved, in system mismatch as well as in ERLE,
by the use of POWER in place of the uniform weights. Other
possible ways to reduce the zigzag loss would be to employ
the affine projection algorithm (APA) [33, 34] or the recur-
sive least-squares (RLS) algorithm [35, 36] (the essential dif-
ference between our approach and APA is clearly described in
Section 3.2). The proposed schemes are also compared with
such other schemes, all of which employ the same prepro-
cessing technique as the proposed schemes do. From our nu-
merical experiments, we verify superiority of the proposed
method. Moreover, we confirm that the proposed schemes
exhibit excellent tracking behavior after a change of the echo
paths.

2. PRELIMINARIES

2.1. Stereo acoustic echo cancellation problem

Throughout the paper, the following notations are used. Let
L∈N∗ :=N\{0} denote the length (of the impulse response)
of the transmission path and N ∈ N∗ the length of the echo
path. For simplicity, let the length of the adaptive filter be N
(analyses for more general cases are presented in [5]). Refer-
ring to Figure 1, the signals at time k ∈ N are expressed as
follows (the superscript T stands for transposition):

(i) speech vector: sk ∈ RL;
(ii) ith transmission path: θ(i) ∈ RL (i = 1, 2);

(iii) ith input: u(i)k := sTk θ(i) ∈ R;

(iv) ith input vector: u(i)k := [u(i)k ,u(i)k−1, . . . ,u
(i)
k−N+1]

T ∈ RN ;

(v) preprocessed version of u(1)k : ũ(1)k ∈ RN ;

(vi) input vector: uk := [
ũ(1)k

u(2)k

] ∈H := R2N ;

(vii) input matrix: Uk := [uk,uk−1, . . . ,uk−r+1] ∈ R2N×r

(r ∈ N∗);
(viii) ith echo path: h∗(i) ∈ RN (i = 1, 2);

(ix) estimandum: h∗ := [
h∗(1)
h∗(2)

] ∈H ;

(x) adaptive filter (echo canceler): hk := [
h(1)k

h(2)k

] ∈H ;

(xi) noise: nk := [nk,nk−1, . . . ,nk−r+1]T ∈ Rr ;
(xii) output: dk := UT

k h
∗ + nk ∈ Rr ;

(xiii) residual error function: ek(h) := UT
k h− dk ∈ Rr .
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Figure 4: Simple system models with eight parallel processors (q =
4) to implement (a) POWER I and (b) POWER II. For notational
simplicity, define the current control sequence I(c)

k = {1, 2, 3, 4} and
the previous control sequence I

(p)
k = {5, 6, 7, 8}. This type of design

of control sequences for POWER I is called binary-tree-like con-
struction. It is seen that POWER II is more efficient in computation
than POWER I.

Here, H(:= R2N ) is a real Hilbert space equipped with the
inner product 〈x, y〉 := xTy, ∀x, y ∈ H , and its induced
norm ‖x‖ := (xTx)1/2, ∀x ∈ H . For any nonempty closed
convex set C ⊂ H , the projection operator PC : H → C is
defined by ‖x − PC(x)‖ = miny∈C ‖x − y‖, ∀x ∈ H . The
notation |S| stands for the cardinality of a set S.
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The goal of the SAEC problem is to cancel the echo stably,
that is, uTk h

∗ − uTk hk ≈ 0, for all k ∈ N. Since only uk and dk
are observable, a common alternative goal is to suppress the
residual echo; that is, ek(hk) ≈ 0, for all k ∈ N.

2.2. Nonuniqueness problem

In 1991, Sondhi and Morgan found unacceptably slow con-
vergence phenomena in SAEC [2] and, in 1995, Sondhi et
al. showed that the primitive solution set, obtained from the
normal equation to be solved for minimization of the resid-
ual echo, is too large and it depends on the transmission
paths (due to inherent dependency caused by highly cross-
correlated stereo input signals) [3]. This fundamental diffi-
culty, deeply seated in SAEC, is commonly referred to as the
nonuniqueness problem, which has earned recognition as an
intrinsic burden not existing in the monaural echo cancel-
lation. In 1998, Benesty et al. further clarified this problem,
and showed that the normal equation is often ill-conditioned
or has infinitely many solutions [5].

Let us simply explain the nonuniqueness problemmathe-

matically. The input sequence (u(i)k )k∈N, i = 1, 2, can be writ-
ten as

u(i)k = sk ∗ θ(i), (1)

where ∗ denotes convolution. Considering the case of N = L,
for simplicity,

h̆ :=
[
h̆(1)

h̆(2)

]
:= h∗ + α

[
θ(2)
−θ(1)

]
, α ∈ R, (2)

satisfies ∑
i=1,2

u(i)k ∗ h̆(i) =
∑
i=1,2

u(i)k ∗ h∗(i), (3)

which implies, under noiseless environments, that ek(h̆) = 0.
This is the basic mechanism of the nonuniqueness problem
[5] (precise analysis is possible by using z-transform of (3)
with (1); see, e.g., [10]). From (2), we see that filter coeffi-
cients that cancel the echo depend on the transmission paths
θ(1) and θ(2). This implies that, without well-approximating
h∗, echo will relapse by change of θ(1) and θ(2) due to talker’s
alternation, and so forth (see also [23, Appendix A]). Hence,
it is strongly desired to keep hk close to h∗ before the trans-
mission paths change drastically.

3. PROPOSED CLASS OF STEREO ACOUSTIC
ECHO CANCELLATION SCHEMES

In this section, we present a class of set-theoretic SAEC
schemes based on the POWER weighting technique. The
proposed approach utilizes parallel projection onto certain
closed convex sets. First, we provide a brief introduction of
set-theoretic adaptive filtering and define the closed convex
sets. Then, we show the relationship between the proposed
approach and the APA-based method. Finally, we present the
proposed schemes in a simple manner.

3.1. Set-theoretic adaptive filtering and
convex set design

We briefly introduce the basic idea of the set-theoretic [24,
25, 28, 37, 38]/set-membership [39, 40] approaches in the
adaptive filtering. Let us first start with the set-theoretic ap-
proach5 in the static convex feasibility problem [30, 37, 38,
41]; find a point in the nonempty intersection of fixed closed
convex sets Si, i ∈ I ⊂ N. Each set Si is designed based on
available information, such as noise statistics and observed
data, so that Si contains the estimandum h∗ with high prob-
ability. Suppose that h∗ ∈ Si, for all i ∈ I. Then, it is a nat-
ural strategy to find a point in

⋂
i∈I Si as an estimate of h∗.

Due to the nonlinear nature of the problem, certain succes-
sive numerical approximations by utilizing the information
on each set Si infinitely many times are, in general, necessary.

In [28], the adaptive filtering problem is translated into a
time-varying version of the convex feasibility problem, where

multiple closed convex sets S(k)i , i ∈ Ik ⊂ N, are defined
by multiple observable data, hence being time-varying (a
unified framework for this approach is found in [24, 25]).

Namely, the collection of convex sets (S(k)i )i∈Ik used at time
k is varying based on data incoming from one minute to the
next (also h∗ is possibly time-varying). Especially in rapidly
time-varying environments, it should be reasonable to use

a limited number of sets (S(k)i )i∈Ik that are defined with re-
cently obtained data. This strategy agrees with saving the
computational complexity, another requirement in adaptive
filtering. This is the basic idea of the set-theoretic adaptive
filtering approach.

The adaptive PSP algorithm [28] was proposed as an ef-
ficient set-theoretic adaptive filtering technique. The algo-
rithm adopts subgradient projections as approximations of the
exact projections onto the convex sets for saving the compu-
tation costs. Themultiple (subgradient) projections are com-
puted in parallel, hence the algorithm can save, by engaging
parallel processors, the time consumption for each update.
Finally, the update direction of filter is determined by taking
a weighted average of the projections.

The first step is to define closed convex sets that contain
h∗ with high probability. A possible choice is as follows [28]:

Cι(ρ) :=
{
h ∈H

(
:= R2N) : gι(h) := ∥∥eι(h)∥∥2 − ρ ≤ 0

}
,

∀ι ∈ Ik ⊂ N, ∀k ∈ N,
(4)

where ρ ≥ 0 and Ik is the control sequence at time k (see
Section 3.3). Assignment of an appropriate value to ρ raises
the membership probability Prob{h∗ ∈ Cι(ρ)} and, at the
same time, keeps Cι(ρ) sufficiently small (see Section 3.2
for detailed discussion). Since the projection onto Cι(ρ) re-
quires, in general, very high computational complexity, we

5 The difference is clearly stated in [37] between the set-theoretic approach
and the conventional approach, that is, optimize an objective function
with or without constraints.
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instead employ the projection onto the closed half-space6

[28] H−
ι (hk) := {x ∈ H : 〈x − hk,∇gι(hk)〉 + gι(hk) ≤ 0} ⊃

Cι(ρ), which has the following simple closed-form expres-
sion:

PH−
ι (hk)(h)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
h+
−gι
(
hk
)
+
(
hk−h

)T∇gι(hk)∥∥∇gι(hk)∥∥2 ∇gι
(
hk
)

if h 	∈H−
ι

(
hk
)
,

h otherwise.
(5)

Here, ∇gι(hk) = 2Uιeι(hk) and PH−
ι (hk)(h)

∼= PCι(ρ)(h); see
[28, Figure 3]. It should be remarked that PH−

ι (hk)(h) requires
O(N) complexity. Choosing specially h = hk, we have

PH−
ι (hk)(hk)

=

⎧⎪⎪⎨⎪⎪⎩
hk − gι

(
hk
)∥∥∇gι(hk)∥∥2∇gι

(
hk
)

if hk 	∈ H−
ι

(
hk
)
,

hk otherwise.

(6)

3.2. Relationship to APA-basedmethod and
robustness issue against noise

The popular APA [34] can be viewed in the time-varying
set-theoretic framework [28] with the linear varieties Vk :=
argminh∈H ‖ek(h)‖2 (∀k ∈ N). The APA generates a se-
quence of filtering vectors (hk)k∈N ⊂ H(:= R2N ) by (see
[28])

hk+1 = hk + λk
(
PVk

(
hk
)− hk

)
, ∀k ∈ N, (7)

where λk ∈ (0, 2). In particular, for r = 1, (7) is nothing but
the normalized least-mean-square (NLMS) algorithm [43],
where r is the dimension of affine projection (see Section 2.1
for the definitions of Uk ∈ R2N×r and dk ∈ Rr). A simple
comparison ofVk withCk(ρ) in (4) implies thatVk = Ck(δk),
where δk := minh∈H ‖ek(h)‖2. Note here that we most likely
have δk ≈ 0, since we often have 2N � r due to long impulse
responses of acoustic paths.

The remains of this section is devoted to the robustness
issue against noise by highlighting the membership h∗ ∈
Ck(ρ), which ensures the monotone approximation property
(for stability), that is, ‖hk+1 − h∗‖ ≤ ‖hk − h∗‖. Noting that
h∗ ∈ Ck(ρ)⇔ ‖ek(h∗)‖2 = ‖nk‖2 ≤ ρ, we see that ρ governs
the reliability on the membership h∗ ∈ Ck(ρ) by

∫ ρ
0 fr(ξ)dξ,

where fr(ξ) is the probability density function (pdf) of the
random variable ξ := ‖nk‖2, ( fr(ξ) is given in [28, Equation
(9)]). Under the assumption that the noise process is a zero-
mean i.i.d. Gaussian random variable N (0, σ2), the random
variable ξ follows a χ2 distribution (of order r), where σ2 is

6 Tighter closed half-spaces are also presented in [42], which can also be
used with the proposed schemes.

the variance of noise. The pdf fr(ξ) is strictly monotone de-
creasing over ξ ≥ 0 for r = 1, 2, whereas for r ≥ 3, it has its
unique peak at ξ = (r − 2)σ2 and fr(0) = limξ→∞ fr(ξ) = 0.
Recall that we most likely have δk ≈ 0. The above facts im-
ply that for r ≥ 3, Prob{h∗ ∈ Ck(δk)(= Vk)} is expected
to be small, which causes serious sensitivity of the APA to
noise for r ≥ 3 (see Section 4). For r = 1, 2, on the other
hand, Prob{h∗ ∈ Ck(δk)} is expected to be relatively large,
which suggests robustness of the APA (r = 1, 2) against noise
(this agrees with theH∞ optimality [44] of the NLMS, a spe-
cial case of the APA for r = 1). By designing appropriate ρ
based on statistics of noise process (see [28, Example 1]),
the proposed schemes can fairly raise Prob{h∗ ∈ Ck(ρ)};
note that Prob{h∗ ∈ H−

k (hk)} ≥ Prob{h∗ ∈ Ck(ρ)} because
H−

k (hk) ⊃ Ck(ρ). This brings about the noise robustness of
POWER I/II in Section 3.3.

3.3. Novel POWER-based stereo echo canceler

Given q ∈ N∗, define the control sequence consisting of the q
latest time indices as I(c)

k := {k, k− 1, . . . , k− q+1} ⊂ N. Let
Q ∈ N∗ denote the cycle period of preprocessing [14, 15],
that is, every Q/2 iterations, the state of inputs is switched.
Then, k − Q/2 (∀k > Q/2) always belongs to the state op-
posite to k. To utilize data from both states of inputs, we use

I(c)
k ∪ I

(p)
k as in [23], where

I
(p)
k :=

⎧⎪⎪⎨⎪⎪⎩
∅, 0 ≤ k ≤ Q

2
,

I(c)
k−Q/2, k >

Q

2
.

(8)

Note that the definitions of I(c)
k and I

(p)
k can be generalized

to any index sets consisting of arbitrary indices chosen from
the current and previous states, respectively (see [45]). For
simplicity, however, we focus on the above specific definition
in the following.

The most important definition is now given: three-point
expression of projection onto the intersection of two closed
half-spaces. For convenience, let us define that for all a,b ∈
H ,

Π−(a,b) := {y ∈H : 〈a− b, y − b〉 ≤ 0
} ⊂H , (9)

where Π−(a,b) is a closed half-space if a 	= b. Then, for
a given ordered triplet (s, a,b) ∈ H3 such that Π−(s, a) ∩
Π−(s,b) 	= ∅, we define

P (s, a,b) := PΠ−(s,a)∩Π−(s,b)(s), (10)

namelyP (s, a,b) denotes the projection of s ontoΠ−(s, a)∩
Π−(s,b) in H . How to compute P (s, a,b) is given in
Appendix C.
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We propose a new class of SAEC schemes that utilizeP (s,
a,b) (Proposition 1) to realize better weights in the method
proposed in [23] (see Appendix B). Two schemes in the pro-
posed class are presented below, where two families of closed
half-spaces, {H−

ι (hk)}ι∈I(c)
k

and {H−
ι (hk)}ι∈I(p)

k
, are used in

different ways.

3.3.1. POWER Type I

A scheme that exploits the POWER technique in a combi-
natorial manner is presented below (see Figure 4(a)). Define

I(1)
k := {(k − i + 1, k − Q/2 − i + 1) : i = 1, 2, . . . , q} ⊂
{(ι1, ι2) : ι1 ∈ I(c)

k , ι2 ∈ I
(p)
k }. Also define inductively the

control sequences used in each stage as I(m)
k ⊂ {(ι1, ι2) :

ι1, ι2 ∈ I(m−1)
k , ι1 	= ι2}, ∀m ∈ {2, 3, . . . ,M}, for all k ∈ N,

satisfying 1 = |I(M)
k | � |I(M−1)

k | ≤ · · · ≤ |I(2)
k | ≤ |I(1)

k | = q.
The scheme is given as follows.

Scheme 1 (POWER Type I). Suppose that a sequence of
closed convex sets (Ck(ρ))k∈N ⊂ H is defined as in (4). Let
h0 ∈H be an arbitrarily chosen initial vector. Then, define a
sequence of filtering vectors (hk)k∈N ⊂ H through multiple
stages.

0th stage: projection onto 2q half-spaces

h(0)k,ι := PH−
ι (hk)

(
hk
)
, ∀k ∈ N, ∀ι ∈ I(c)

k ∪ I
(p)
k , (11)

where PH−
ι (hk)(hk) is computed by (6).

1st ∼ Mth stage: find good direction

for m := 1 toM do

h(m)
k,ι :=

⎧⎪⎪⎨⎪⎪⎩
hk if η(m)

k,ι = −
√
ξ(m)
k,ι ζ

(m)
k,ι 	= 0,

P
(
hk,h

(m−1)
k,ι1 ,h(m−1)k,ι2

)
otherwise,

∀k ∈ N, ∀ι = (ι1, ι2) ∈ I(m)
k ,
(12)

where η(m)
k,ι := 〈h(m−1)k,ι1 − hk,h

(m−1)
k,ι2 − hk〉, ξ(m)

k,ι := ‖h(m−1)k,ι1 −
hk‖2, and ζ (m)

k,ι := ‖h(m−1)k,ι2 − hk‖2.
end.

Final stage: update to good direction

hk+1 := hk + λk
(
h(M)
k,ι − hk

)
, ∀k ∈ N, (13)

where λk ∈ [0, 2] is the step size.

Through the multiple stages, the direction of update is
improved thanks to the operator P (·, ·, ·) (see [32] for de-
tails).

3.3.2. POWER Type II

A simple and efficient scheme that exploits the POWER tech-
nique just once is given as follows (see Figure 4(b)).

Scheme 2 (POWER Type II). Suppose that a sequence of
closed convex sets (Cι(ρ))ι∈I ⊂H is defined as in (4), where

I := ⋃
k∈N(I

(c)
k ∪ I

(p)
k ). Let h0 ∈ H be an arbitrarily cho-

sen initial vector. Then, define a sequence of filtering vectors
(hk)k∈N ⊂H through the following two stages.

1st stage: uniformly averaged directions

h
(g)
k

:=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
hk +M

(g)
k

⎛⎜⎝ ∑
ι∈I(g)

k

w
(g)
k PH−

ι (hk)
(
hk
)− hk

⎞⎟⎠ if I
(g)
k 	= ∅,

hk otherwise,

∀k ∈ N, ∀g ∈ {c, p},
(14)

where w
(g)
k := 1/|I(g)

k | = 1/q (∀ι ∈ I
(g)
k ) and

M
(g)
k

:=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
ι∈I(g)

k
w
(g)
k

∥∥PH−
ι (hk)

(
hk
)−hk∥∥2∥∥∥∑

ι∈I(g)
k
w
(g)
k PH−

ι (hk)
(
hk
)−hk∥∥∥2 if hk 	∈

⋂
ι∈I(g)

k
H−

ι

(
hk
)
,

1 otherwise.
(15)

2nd stage: reasonably averaged direction by POWER

hk+1 :=
⎧⎪⎨⎪⎩
hk if ηk=−

√
ξkζk 	=0,

hk+λk
{
P
(
hk,h

(c)
k ,h

(p)
k

)
−hk

}
otherwise,

(16)

for all k ∈ N, where λk ∈ [0, 2] is the step size, ηk := 〈h(c)k −
hk,h

(p)
k − hk〉, ξk := ‖h(c)k − hk‖2, and ζk := ‖h(p)k − hk‖2.

In the 1st stage, for saving the computational complex-

ity, the uniform averages h(c)k and h
(p)
k are computed for two

groups corresponding to I(c)
k and I

(p)
k . In the 2nd stage, the

POWER technique is exploited to find a good direction of

update based on three kinds of information: hk, h
(c)
k , and h

(p)
k

(see [32] for details).
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H−
k−Q/2(hk)

Π−(hk ,h
(p)
k )

H−
k−Q/2−1(hk)

h(1)k,(k,k−Q/2) hIIk+1

h(c)k

V(θ1)

h∗

hk

H−
k (hk)

Π−(hk ,h
(c)
k )

H−
k−1(hk)

hIk+1
h(1)k,(k−1,k−Q/2−1)

h
(p)
k

V(θ̃1)

Figure 5: A geometric interpretation of the proposed schemes.
POWER I: hI

k+1, POWER II: hII
k+1. The control sequences are defined

as I(c)
k = {k, k − 1} and I

(p)
k = {k − Q/2, k − Q/2 − 1}. The dotted

area shows
⋂

ι∈I(c)k ∪I(p)k
H−

ι (hk).

Remark 1. (a) Simple system models to implement the pro-
posed schemes with q = 4 are shown in Figure 4. The
structure of POWER I is named binary-tree-like construction
with its number of stages M = �log2 q� + 1; in this case,
M = 3 (see [31, 32]). We see that POWER II is more ef-
ficient in computational complexity than POWER I, since
it utilizes the POWER technique just once. The projections
{PH−

ι (hk)(hk)}ι∈I(c)
k ∪I(p)

k
, for all k ∈ N, in (11) and (14) are,

respectively, computed simultaneously with 2q concurrent
processors. This implies that the proposed schemes are in-
herently suitable for implementation with concurrent pro-
cessors. With such processors, the number of multiplications
imposed on each processor is (3M + 2r + 1)N + 21M + r
(M = �log2 q� + 1) for POWER I and (2r + 6)N + r for
POWER II for q ≥ 2; for q = 1, it is reduced to (2r + 4)N + r
for POWER I/II (see [32]). In other words, the complexity
is kept O(N), which is a desired property especially for real-
time implementation.

(b) Discussions about convergence of the adaptive PSP
algorithm are found in the adaptive projected subgradient
method [24, 25], a more general framework. A geometric
interpretation illustrated in Figure 5 will be rather help-
ful from a standpoint of application. For simplicity, we
set q = 2 and λk = 1. In the figure, the estimandum
h∗ (see Section 2.1) is assumed to belong to the dotted
area, that is, h∗ ∈ ⋂

ι∈I(c)
k ∪I(p)

k
H−

ι (hk). This assumption

holds if Ck(ρ) is defined appropriately (for details, see [28]).
We see that the schemes realize good directions of update.

For visual clarity, the half-spaces Π−(hk,h
(1)
k,(k,k−Q/2)) and

Π−(hk,h
(1)
k,(k−1,k−Q/2−1)) are omitted. It is not hard to see that

hk+1 = P (hk,h
(1)
k,(k,k−Q/2),h

(1)
k,(k−1,k−Q/2−1)) = h(1)k,(k,k−Q/2) in

this simple example.
(c) The proposed schemes realize strategic weight designs

for the method in [23] in the sense that the schemes give op-
timal weights, based on a certain max-min criterion, in each
stage, see Appendices C and D.
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Figure 6: The input signals (u(1)k )k∈N and (u(2)k )k∈N. The signals are
generated from a speech signal, sampled at 8 kHz, of an English na-
tive male.

4. NUMERICAL EXAMPLES

This section presents numerical examples of the proposed
schemes, the UW-PSP [23] (see Appendix B), APA [33, 34],
NLMS [43], and fast RLS (FRLS) [36, 46] algorithms. All
the methods are performed with a common preprocessing
technique in [14, 15] that periodically delays input signals
in the 1st channel with the cycle of preprocessing Q =
2000. The tests are conducted, for estimating h∗ ∈ H :=
R2000(N = L = 1000), under the noise situation of SNR :=
10 log10(E{z2k}/E{n2k}) = 25 dB, where zk := 〈uk,h∗〉 and
E{·} denote pure echo (i.e., echo without noise) and expec-
tation, respectively. We utilize a recorded speech signal of an
English native male7 shown in Figure 6, for (sk)k∈N, which
was sampled at 8 kHz. For numerical stability against the
poorly excited inputs observed in Figure 6, all the algorithms
are regularized. The APA is regularized by following the way
in [47] with exactly the same parameter as in [28]. The
NLMS is regularized by following the way in [35, Equation
(9.144)] with the regularization parameter δ = 1.0 × 10−1

for better performance. Because the original RLS algorithm
is computationally intensive for acoustic echo cancellation
applications [11, page 77], a simplified implementation of
the regularized RLS [46] is employed with ξ2k = 20σ2u and
φk = 1 (∀k ∈ N), where σ2u is the variance of (uk)k∈N. For the
proposed schemes and the UW-PSP, the projection in (6) is

7 The speech sample is provided by “Special Research Project of the Ty-
pological Investigation into Languages & Cultures of the East & West
(LACE)” in University of Tsukuba, Japan.
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Figure 7: Proposed schemes versus UW-PSP for r = 1 and λk = 0.4 under SNR = 25 dB. For a comparison, the performance of NLMS (a
special case of the proposed method for q = 1) is shown for λk = 0.2.

regularized as

P(δ)
H−

ι (hk)
(hk)

:=

⎧⎪⎪⎨⎪⎪⎩
hk − gι

(
hk
)∥∥∇gι(hk)∥∥2 + δ

∇gι
(
hk
)

if hk 	∈ H−
ι

(
hk
)
,

hk otherwise,
(17)

where δ is set to 1.0 × 10−6. In addition to the regulariza-
tion for numerical stability against poor excitation, while the
signal power is less than a common threshold, we stop the
update for all algorithms throughout the simulations (this is
the reason of the observable flat intervals in the figures).

To measure the achievement level for echo-path identifi-
cation as well as echo cancellation, the following criteria are
evaluated:

system mismatch (k) := 10 log10

∥∥h∗ − hk
∥∥2∥∥h∗∥∥2 , ∀k ∈ N,

ERLE (k) := 10 log10

∑k
i=1 z

2
i∑k

i=1
(
zi −

〈
ui,hi

〉)2 , ∀k ∈ N.

(18)

Simulations are conducted under several conditions.

4.1. Proposed schemes versus UW-PSPwith different q

First, we examine the performance of the proposed schemes

and the UW-PSP with (|I(c)
k |= |I(p)

k |=)q=4, 16 in Figure 7.
For a comparison, the curve of NLMS with the step size λk=
0.2 is drawn, which is a special case of POWER I for q =
1, r = 1, ρ = 0, λk = 0.4, I(0)

k = I(c)
k = {k}, I(1)

k = {(k, k)}
(M = 1), and I

(p)
k = ∅. For the proposed schemes, we set

λk = 0.4 (∀k ∈ N), r = 1, and ρ = max{(r − 2)σ2, 0} = 0,
see Section 3.2 and [28]. The control sequences for POWER
I are designed in the same manner as shown in Figure 4.

For POWER II and the UW-PSP, the curves of q = 4
are omitted for visual clarity, since the difference between
q = 4 and q = 16 is not significant. Referring to Figure 7,
we see that the increase of q for POWER I significantly im-
proves the convergence speed without serious degradation in
steady-state performance in both criteria. We also see that
POWER I for q = 4 exhibits faster convergence than the UW-
PSP for q = 16. The above observation suggests that weight
design is the key to attain better performance by increasing q.

4.2. APA-basedmethodwith different r

Next, we examine the performance of the APA for r =
2, 4, 8, 16 in Figure 8, where r is the dimension of affine pro-
jection (see Section 3.2). The APA-based method using data
from one state of inputs at each iteration is referred to as
“APA-I.” The step size for r = 2 is set to λk = 0.2 for better
performance. For r = 4, 8, 16, two step sizes are employed;
one is fixed to λk = 0.2 (the same step size as r = 2), for all
r, and the other is individually tuned, for each r, so that the
steady-state performance in system mismatch is almost the
same as r = 2 with λk = 0.2.

Referring to Figure 8, the increase of r for the APA-I
raises the initial convergence speed at the expense of seri-
ous degradation in the steady-state performance in system
mismatch, which causes gain loss in ERLE especially for r =
8, 16. For the tuned step size, on the other hand, no distinct
difference is observed among all r in systemmismatch, since,
for large r, the small step size for good steady-state perfor-
mance decreases the initial convergence speed. Comparing
Figure 8 with Figure 7, it is seen that POWER I successfully
alleviates the tradeoff problem between convergence speed
and steady-state performance.

It should be remarked that these results do not contradict
the results in other publications as mentioned below. Under
high-SNR situations, it is reported that the increase of r in
the APA raises the speed of convergence, especially for highly
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Figure 8: APA-I for r = 2, 4, 8, 16 under SNR = 25 dB. For r = 2, we set λk = 0.2. For r = 4, 8, 16, we use the same step size λk = 0.2 and
individually tuned one; λk = 0.1 for r = 4, λk = 0.04 for r = 8, and λk = 0.022 for r = 16.
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Figure 9: Proposed schemes versus UW-PSP, NLMS, and APA-I under SNR = 25 dB. For the NLMS, λk = 0.2. For the APA-I, r = 2 and
λk = 0.15. For the FRLS, γ = 1− 1/18N . For the proposed schemes and the UW-PSP, r = 1, λk = 0.4, and q = 8.

colored excited input signals, without severely deteriorating
the steady-state performance (see, e.g., [48–51]). Under low-
SNR situations, on the other hand, it is theoretically verified
that the increase of r in the APA decreases the membership
probability h∗ ∈ Vk (especially for r ≥ 3, Prob(h∗ ∈ Vk) ≈
0) [28, Section III], which causes serious noise sensitivity of
the APA for r ≥ 3 (see also Section 3.2).

4.3. Proposed schemes versus UW-PSP, APA, NLMS,
and FRLSwith fixed and time-varying echo paths

The proposed schemes are now compared with the UW-PSP,
APA-I, NLMS, and FRLS algorithms in Figures 9 and 10. For
the proposed schemes and the UW-PSP, the parameters are
exactly the same as in Figure 7 except that q = 8. For the

NLMS, the step size is set to 0.2 to attain better steady-state
performance. For the APA-I, we set r = 2 and λk = 0.15 so
that the initial convergence speed is the same as the UW-PSP.
For the FRLS, the forgetting factor is set to γ = 1−1/18N for
the best performance among our experiments. We remark
that the FRLS algorithm exhibits severe sensitivity against the
choice of the forgetting factor or the regularization parame-
ter ξ2k ; for example, once we tried to employ γ = 1 − 1/15N ,
the speed of convergence was a little faster but the filter di-
verged around the iteration number 500000. In this simula-
tion, although the steady-state performance is not the same
as the proposed schemes, the parameters are tuned care-
fully.

Figure 9 depicts the results under the condition of fixed
echo paths. We observe that the proposed schemes attain
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Figure 10: Proposed schemes versus UW-PSP, NLMS, and APA-I with the echo paths changed at the iteration number 1.6× 105. The other
conditions are the same as in Figure 9.

Table 1: Time needed to achieve the system mismatch level of
−20 dB.

Method POWER I POWER II UW-PSP FRLS APA-I NLMS

Second 25 31 43 28 50 75

much faster convergence as well as better steady-state per-
formance than the NLMS, APA-I, and FRLS algorithms. The
time for POWER I to achieve the system mismatch level of
−20 dB is approximately 25 second. The time for each algo-
rithms is summarized in Table 1. POWER I is approximately
45 second, 25 second, and 3 second faster than the NLMS, the
APA-I, and the FRLS, respectively. Figure 10 depicts the re-
sults under the condition where the echo-paths are changed
at the iteration number 1.6 × 105. We see that the proposed
schemes exhibit excellent tracking behavior against echo path
variation. In Figures 9 and 10, the FRLS exhibits poor ERLE
performance due to the observable instability in system mis-
match at the beginning of adaptation. For fairness, we also
draw the curves of the FRLS in a different ERLE criterion
in which the summations are taken (not from i = 1 but)
from the moment when its system mismatch becomes less
than 0 dB (this new ERLE criterion is referred to as “fair
ERLE”).

It is reported that the RLS algorithm exhibits, besides its
high computational complexity, an instability issue especially
for (nonstationary) speech signals, and thus has been dis-
couraged to be used in acoustic echo cancellation [11, page
77]. Also the FRLS algorithms inherit the instability issue, as
pointed out in a considerable amount of literature, for exam-
ple, [7, page 40], [52–55]. Moreover, the observable slow ini-
tial convergence of the FRLS stems from the same reason as
its tracking inferiority, under nonstationary environments,
to the LMS-type algorithms, as remarked, for example, in
[44, 56, 57].

4.4. Proposed schemes versus APA with simultaneous
use of data from two states

Finally, POWER I is compared, in Figure 11, with the re-
maining possibility to resolve the zigzag loss (see Section 1),
that is, the APAwith simultaneous use of data from two states
of inputs. Namely, for all k ≥ Q/2 + r/2, ẽk(h) := ŨT

k h − d̃k
is used to define Vk (see Section 3.2) instead of ek(h), where
Ũk := [uk · · ·uk−r/2+1uk−Q/2 · · ·uk−Q/2−r/2+1] ∈ R2N×r and
d̃k := ŨT

k h
∗ + ñk ∈ Rr with ñk := [nk, . . . ,nk−r/2+1,nk−Q/2,

. . . ,nk−Q/2−r/2+1]T . This new APA method is referred to as
“APA-II.” For the proposed scheme, the parameters are the
same as in Figure 7 (or in Figure 9) for q = 4, 8. For the APA-
II, for fairness, r = 8, 16 are employed with the tuned step
sizes λk = 0.04, 0.022, respectively. For a comparison, the
curves of APA-I and II with r = 2 and λk = 0.2 are also
drawn.

In Figure 11, we observe that the proposed scheme
achieves faster initial convergence and better steady-state
performance than the APA-II in both criteria. Moreover, for
the APA-II, the increase of r improves the initial convergence
speed at the expense of unignorable deterioration in ERLE.
On the other hand, for the proposed scheme, the increase of
q improves the performance in both criteria, as also shown
in Figure 7.

5. CONCLUSION

This paper has presented a class of efficient fast stereophonic
acoustic echo cancelling schemes based on the POWER
weighting technique. The proposed schemes successfully ac-
celerate the convergence with keeping linear complexity and
good steady-state performance. Numerical examples have
verified the efficacy of the proposed schemes. The results of
the extensive simulations suggest that the POWER technique
is significantly effective especially for the challenging stereo-
phonic echo cancelling problem.
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Figure 11: Proposed schemes (q = 4, 8) versus APA-II (r = 2, 8, 16) under SNR = 25 dB. For the proposed schemes, we employ the same
parameters as in Figure 7. For APA-II, λk = 0.2, 0.04, 0.022 for r = 2, 8, 16, respectively. For APA-I, r = 2 and λk = 0.2.

APPENDICES

A. PREPROCESSING TECHNIQUES

As stated in Section 2.2, the difficulty of nonuniqueness has
been known to be inherent in the SAEC problem. To al-
leviate this difficulty, several excellent preprocessing tech-
niques8 were proposed; half-wave rectifier [5] (see [22] for
an improved version), comb filtering [3, 17], additive noise
[18, 19], and time-varying filtering [14–16], (see [21] for a
generalized version of [14]); another nonlinear preprocess-
ing technique is also proposed in [20]. Indeed, efficacy of sev-
eral nonlinear preprocessing techniques was quantified with
mutual coherence of the stereo inputs [62].

Figure 12 illustrates a simple example of the preprocess-
ing unit generating two states of inputs (see also Figure 1).
In [14, 15], it is reported that periodic one-sample delays, in

one side of stereo inputs (i.e., u(1)k in Figure 1), realize accu-
rate echo-path identification without audible degradation in

speech. Since u(1)k is generated by convolution of the talker’s
speech sk with the transmission path θ(1), the periodic de-
lays virtually give one-sample shift to θ(1). In other words,
the preprocessing technique introduces a slightly modified
state of input and alternates two9 (modified and nonmod-
ified) states of inputs periodically, leading to alternation of

two states of transmission path, say θ(1) and θ̃(1). As a result,
since the solution set depends on transmission paths as men-
tioned above, two slightly different solution sets,V(θ(1)) and

V(θ̃(1)) (corresponding to V and Ṽ in Figure 2, resp.), are
generated alternately.

8 Some nonpreprocessing techniques were also proposed with an advantage
of no degradation in input signals [58–61], however, their tracking speed
of echo paths is somewhat inferior to some preprocessing techniques.

9 Although the number of states could be generalized to more than two by
generating more than one modified state, we adopt two states for simplic-
ity.

ũ(1)k
+

ck

1− ck

u(1)k−1

u(1)k

Z−1

Figure 12: A preprocessing unit called input sliding. The factor ck
slides between 0 and 1 periodically, and thus, ũ(1)

k := cku
(1)
k + (1 −

ck)u
(1)
k−1 is a periodically delayed version of u(1)

k .

B. SAEC SCHEME PROPOSED IN [23]

Scheme 3 (see [23]). Suppose that a sequence of closed con-
vex sets (Cι(ρ))ι∈I ⊂ H is defined as in (4), where I :=⋃

k∈N(I
(c)
k ∪ I

(p)
k ). Let h0 ∈ H be an arbitrarily chosen

initial vector. Then, define a sequence of filtering vectors
(hk)k∈N ⊂H by

hk+1 := hk + λkMk

⎛⎜⎝ ∑
ι∈I(c)

k ∪I(p)
k

w(k)
ι PH−

ι (hk)
(
hk
)− hk

⎞⎟⎠ ,

(B.1)
for all k ∈ N, where λk ∈ [0, 2] is the step size, (w(k)

ι )ι∈I(c)k ∪I(p)
k
,

for all k ∈ N, are the weights satisfying w(k)
ι ∈ [0, 1], and∑

ι∈I(c)
k ∪I(p)

k
w(k)
ι = 1, and

Mk :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
ι∈I(c)

k ∪I(p)
k
w(k)
ι
∥∥PH−

ι (hk)
(
hk
)− hk

∥∥2∥∥∥∑
ι∈I(c)

k ∪I(p)
k
w(k)
ι PH−

ι (hk)
(
hk
)− hk

∥∥∥2
if hk 	∈

⋂
ι∈I(c)

k ∪I(p)
k
H−

ι

(
hk
)
,

1 otherwise.

(B.2)

If w(k)
ι = 1/2q (∀ι ∈ I(c)

k ∪ I
(p)
k , ∀k ∈ N), the scheme is

called UW-PSP.
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C. COMPUTATIONOFP (s, a,b) AND
PAIRWISE-OPTIMALITY

The following proposition gives an efficient way to calculate
P (s, a,b) with given (s, a,b) ∈H3.

Proposition 1 (projection onto intersection of two half-
spaces [32]). Given (s, a,b) ∈ H3 s.t. Π−(s, a) ∩Π−(s,b) 	=
∅, let ξ := ‖a − s‖2, ζ := ‖b − s‖2, and η := 〈a − s,b − s〉.
Then,

P (s, a,b) = s + μ∗
{
ω∗a +

(
1− ω∗

)
b− s

}
, (C.1)

where

μ∗ :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if η ≥ ξ or η ≥ ζ ,

2ξζ − (ξ + ζ)η
ξζ − η2

if η < min{ξ, ζ},

ω∗ :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 if η ≥ ζ ,

0 if ζ > η ≥ ξ,

ζ(ξ − η)
2ξζ − (ξ + ζ)η

if η < min{ξ, ζ}.

(C.2)

Let us define the operatorQ : [0, 1]× [0,∞)×H3 →H
by

Q(ω,μ, s, a,b) := s + μ
{
ωa + (1− ω)b− s

}
. (C.3)

By (C.1) and (C.3), we see that P (s, a,b) = Q(ω∗,μ∗, s,
a,b). An optimality of ω∗ and μ∗ is shown below.

Proposition 2 (optimality of ω∗ and μ∗ [32]). Given (s,
a,b) ∈ H3 s.t. Π−(s, a) ∩ Π−(s,b) 	= ∅, let φ(ω,μ, z) :=
‖s−z‖2−‖Q(ω,μ, s, a,b)−z‖2. Then, (ω∗,μ∗) in Proposition
1 is optimal in the sense of

(
ω∗,μ∗

) ∈ argmax
(ω,μ)∈[0,1]×[0,∞)

min
z∈Π−(s,a)∩Π−(s,b)

φ(ω,μ, z). (C.4)

Intuitively, (ω∗,μ∗) achieves a worst-case optimization,
or, in other words, (C.4) implies that (ω∗,μ∗) is a solution
to the max-min problem of maximizing, over ω and μ, the
minimum of φ(ω,μ, z) over z. A geometric interpretation of
Propositions 1 and 2 is given in Figure 13.

Another proposition is presented below to show an opti-
mality of the weights realized by the proposed schemes.

Proposition 3 (see [32]). Suppose h∗ ∈ ⋂
ι∈I(c)

k ∪I(p)
k
H−

ι (hk),

k ∈ N. Then, the following hold:

(I) h∗ ∈ Π−(hk,h
(m)
k,ι ),∀ι ∈ I(m)

k ,∀m ∈ {1, . . . ,M − 1},
(II) h∗ ∈ Π−(hk,h

(c)
k )∩Π−(hk,h

(p)
k ).

For POWER I, Propositions 2 and 3(I) imply that the di-
rection of update is getting improved step by step through
multiple stages, since the weights realized in each stage are

Π−(s, a)∩Π−(s,b) z

P (s, a,b)

Q(ω,μ, s, a,b)
1− ω∗

a
ω∗

b
Π−(s, a)

1− ω s

ω
Π−(s,b)

Figure 13: A geometric interpretation of Propositions 1 and 2. Let
hk := s and hk+1 := Q(ω,μ, s, a,b). Then, ‖s − z‖ = ‖hk − z‖
and ‖Q(ω,μ, s, a,b) − z‖ = ‖hk+1 − z‖ denote the distance to
z[∈ Π−(s, a) ∩ Π−(s,b)] from the filtering vector before and af-
ter update, respectively. Proposition 2 means that (ω∗,μ∗) given in
Proposition 1 maximizes minz∈Π−(s,a)∩Π−(s,b) ‖hk−z‖2−‖hk+1−z‖2.

optimal in the sense of a solution to a worst-case optimiza-
tion problem. For POWER II, similarly, Propositions 2 and
3(II) imply that the weights realized in the second stage are
optimal.

D. WEIGHT REALIZATION

In this appendix, we show that POWER I and POWER II can
be written in the form of the scheme proposed in [23], which
is given in Appendix B. The weights realized by POWER I are
given as follows.

Proposition 4 (weight realization by POWER I [32]). Let
(hk)k∈N ⊂ H be a sequence of filtering vectors generated by
Scheme 1. Then, hk+1 is represented in the form of Scheme 3

with (w(k)
j =w(k)

j,ι,M) j∈I(c)
k ∪I(p)

k
, for all k∈N, satisfying thatw(k)

j >0

and
∑

j∈I(c)
k ∪I(p)

k
w(k)

j =1, where w(k)
j,ι,M is defined by the following

simple recursive form: if η(m)
k,ι =−

√
ξ(m)
k,ι ζ

(m)
k,ι 	=0, then w(k)

j,ι,m=0

(∀m=1, 2, . . . ,M,∀ι∈I(m)
k ,∀ j∈I(c)

k ∪ I
(p)
k ), otherwise,

w(k)
j,ι,1 :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ω∗ if ι = ( j, ·),

1− ω∗ if ι = (·, j),

0 otherwise,

∀ j ∈ I(c)
k ∪ I

(p)
k , ∀ι ∈ I(1)

k ,

w(k)
j,ι,m := ω∗μ∗L w

(k)
j,ιL,m−1 +

(
1− ω∗

)
μ∗Rw

(k)
j,ιR,m−1

ω∗μ∗L +
(
1− ω∗

)
μ∗R

,

∀ j∈I(c)
k ∪I(p)

k , ∀ι=(ιL, ιR)∈I(m)
k , ∀m=2, 3, . . . ,M,

(D.1)
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where ω∗ for w(k)
j,ι,m (∀m = 1, 2, . . . ,M) denotes the weight to

calculate h(m)
k,ι (= P (hk,h

(m−1)
k,ι1 ,h(m−1)k,ι2 )) and μ∗i (i = L,R) for

w(k)
j,ι,m (∀m = 2, 3, . . . ,M) denotes the relaxation parameter to

calculate h(m−1)k,ιi (see Proposition 1).

Remark 2. It may happen that w(k)
j,ι,M = 0, for all j ∈ I(c)

k ∪
I
(p)
k , when, for instance, η(1)k,ι = −

√
ξ(1)k,ι ζ

(1)
k,ι 	= 0, for all ι =

(ι1, ι2) ∈ I(1)
k . However, noting that η(1)k,ι = −

√
ξ(1)k,ι ζ

(1)
k,ι 	= 0 ⇔

h(0)k,ι1−hk = δ(h(0)k,ι2−hk) 	= 0, there exists δ < 0 (see [32]), such

a case can be neglected. This is because h(0)k,ι1 and h(0)k,ι2 pro-
vide inconsistent information, which implies that the data

are not reliable. All the cases when it happens that w(k)
j,ι,M = 0,

for all j ∈ I(c)
k ∪ I

(p)
k , are caused by frequent occurrence of

η(1)k,ι = −
√
ξ(1)k,ι ζ

(1)
k,ι 	= 0, hence such cases are of no importance.

Except for this kind of situations, the overall weights real-

ized by POWER I satisfies the conditions imposed on w(k)
ι in

Scheme 3.

Next, the weight realization by POWER II is given as fol-
lows.

Proposition 5 (weight realization by POWER II [32]). Let
(hk)k∈N ⊂ H be a sequence of filtering vectors generated by
Scheme 2. Then, hk+1 is represented in the form of Scheme 3

with the weights as follows: if ηk = −
√
ξkζk 	= 0, then w(k)

ι = 0,

for all ι ∈ I(c)
k ∪ I

(p)
k , otherwise,

w(k)
ι :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ω∗k M

(c)
k w(c)

k

αk
∀ι ∈ I(c)

k ,

(
1− ω∗k

)
M

(p)
k w

(p)
k

αk
∀ι ∈ I

(p)
k ,

(D.2)

where αk := |I(c)
k |ω∗k M(c)

k w(c)
k +|I(p)

k |(1−ω∗k )M(p)
k w

(p)
k andω∗k

is the weight to calculate P (hk,h
(c)
k ,h

(p)
k ) (see Proposition 1).

Unless ηk = −
√
ξkζk 	= 0, w(k)

ι > 0 and
∑

ι∈I(c)
k ∪I(p)

k
w(k)
ι =

1. Note that the case of ηk = −
√
ξkζk 	= 0 is of no importance

for the same reason as stated in Remark 2.
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[6] T. Gänsler and J. Benesty, “Stereophonic acoustic echo can-
cellation and two-channel adaptive filtering: an overview,” In-
ternational Journal of Adaptive Control and Signal Processing,
vol. 14, no. 6, pp. 565–586, 2000.

[7] S. L. Gay and J. Benesty, Eds., Acoustic Signal Processing for
Telecommunication, Kluwer Academic, Boston, Mass, USA,
2000.
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[9] T. Gänsler and J. Benesty, “Multichannel acoustic echo can-
cellation: what’s new?” in Proceedings of the 7th International
Workshop on Acoustic Echo and Noise Control (IWAENC ’01),
Darmstadt, Germany, September 2001.

[10] K. Ikeda and R. Sakamoto, “Convergence analyses of stereo
acoustic echo cancelers with preprocessing,” IEEE Transactions
on Signal Processing, vol. 51, no. 5, pp. 1324–1334, 2003.

[11] J. Benesty and Y. Huang, Eds., Adaptive Signal Processing: Ap-
plications to Real-World Problems, Springer, Berlin, Germany,
2003.

[12] A. Sugiyama, A. Hirano, and K. Nakayama, “Acoustic echo
cancellation for conference systems,” in Proceedings of the Eu-
ropean Signal Processing Conference (EUSIPCO ’04), pp. 17–20,
Vienna, Austria, September 2004.

[13] H. Buchner, J. Benesty, andW. Kellermann, “Generalized mul-
tichannel frequency-domain adaptive filtering: efficient real-
ization and application to hands-free speech communication,”
Signal Processing, vol. 85, no. 3, pp. 549–570, 2005.

[14] Y. Joncour and A. Sugiyama, “A stereo echo canceler with pre-
processing for correct echo-path identification,” in Proceedings
of the IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP ’98), vol. 6, pp. 3677–3680, Seattle,
Wash, USA, May 1998.

[15] A. Sugiyama, Y. Joncour, and A. Hirano, “A stereo echo can-
celer with correct echo-path identification based on an input-
sliding technique,” IEEE Transactions on Signal Processing,
vol. 49, no. 11, pp. 2577–2587, 2001.

[16] M. Ali, “Stereophonic acoustic echo cancellation system us-
ing time-varying all-pass filtering for signal decorrelation,” in
Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP ’98), vol. 6, pp. 3689–
3692, Seattle, Wash, USA, May 1998.



14 EURASIP Journal on Applied Signal Processing

[17] J. Benesty, D. R.Morgan, J. L. Hall, andM.M. Sondhi, “Stereo-
phonic acoustic echo cancellation using nonlinear transfor-
mations and comb filtering,” in Proceedings of the IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing
(ICASSP ’98), vol. 6, pp. 3673–3676, Seattle, Wash, USA, May
1998.
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