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1. INTRODUCTION

The continuous Heisenberg-Weyl groups have a long history
in physics [1], in the theory of radar detection [2, 3], and in
signal processing. However, their discrete variants [4–6] have
been scarcely noticed, notable exceptions being [7, 8].

Our interest in the finite Heisenberg-Weyl groups stems
from an attempt to develop an information theory of radar
that is flexible enough to be applied to modern radars. Such
modern radars have the capacity to adaptively switch wave-
forms on a pulse-to-pulse basis and to retain coherence over
many pulses, but these capacities are only just beginning to
be exploited. If we are to fully exploit this waveform agility
in both modern and future radars two important problems
need to be addressed. The first is the representation of the
environment as it pertains to the transmission of radar wave-
forms. This includes both targets and background clutter.
The second important problem is to ensure that one has a
sufficiently flexible set of waveforms to enable the choice of a
waveform optimal for a given situation.

One purpose of the present paper is to show that both
of these problems can be approached to a large extent within
the same mathematical framework, that is, through the the-
ory of the finite Heisenberg-Weyl groups [4–6]. It is well
known that the continuous Heisenberg-Weyl group has ap-
plication to the theory of radar, for example see [2, 3], but
the discrete version of this group has received little attention
in radar. Since, in practical terms, the resolution of a radar is
finite, by choosing a fine enough discretization in range and

Doppler we can treat the radar perfectly well with the one-
dimensional finite Heisenberg-Weyl group. This has a num-
ber of advantages, one of which is that the radar environment
can be represented by a matrix acting on the space of wave-
forms.

In both radar and communications one is interested in
finding unimodular sequences with good auto- and cross-
correlation properties. From the perspective of communica-
tions one is interested in finding large classes of spreading se-
quences with minimal interference, or cross-correlation, be-
tween the sequences (see [9, 10]). More good spreading se-
quences means increased system capacity.

The m-dimensional finite Heisenberg-Weyl group pro-
vides a unifying framework for a number of important se-
quences significant in the construction of phase-coded radar
waveforms, in communications as spreading sequences, and
in the theory of error-correcting codes. Among the sequences
that can be associated with the Heisenberg-Weyl groups are
the first- and second-order Reed-Muller codes, Welti and
other Golay complementary sequences [11–13], and the Ker-
dock and Preparata codes [14, 15], which are nonlinear bi-
nary error-correcting codes containing more codewords for
a given minimum distance than any linear code. Many of
these sequences and codes are associated with decomposition
of the Heisenberg-Weyl group into disjoint maximal Abelian
subgroups.

The overall purpose of this paper is to introduce the fi-
nite Heisenberg-Weyl groups as a useful tool in radar and
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communications, and to demonstrate their power to unify
and simplify a number of concepts in these areas. Accord-
ingly, in many instances throughout the paper we will merely
indicate the relationship of some concepts to the general the-
ory without going into detail.

The paper is organised as follows. In Section 2 we con-
struct the finite Heisenberg-Weyl groups in terms of their
irreducible unitary representations on finite-dimensional
Hilbert spaces, and discuss some of their properties. Then
in Section 3 we briefly develop the theory of discrete radar in
terms of the one-dimensional Heisenberg-Weyl group and
introduce the concept of an ambiguity function of a wave-
form within this framework. In Section 4, we discuss the
representation of linear operators on the Hilbert space sup-
porting an irreducible representation of theHeisenberg-Weyl
group. We define the Weyl transform of an operator and de-
fine the ambiguity function of a Hilbert space vector in this
general setting.

Section 5 provides the main contribution of the paper;
it extends the theory developed in [15] for the extraspe-
cial 2-group, which is the finite Heisenberg-Weyl group of
Section 2 corresponding to p = 2, to the other Heisenberg-
Weyl groups. We develop this theory based on analysis of
the ambiguity functions associated with the irreducible rep-
resentations of the group. We show that the maximal Abelian
subgroups of the Heisenberg-Weyl groups can be associ-
ated with orthonormal bases in the representation space, and
that the angles between the vectors in two such bases are
simply determined by the relationship between their asso-
ciated maximal Abelian subgroups. We then show how the
Heisenberg-Weyl can be decomposed into disjoint maximal
Abelian subgroups with the help of certain symplectic auto-
morphisms, which are defined in Section 6.

In Sections 7 and 8, we relate the general theory to the
known cases of discrete radar and the Z4-Kerdock codes [15].
We find that the theory that leads to the Kerdock codes in the
multidimensional (p = 2) Heisenberg-Weyl group leads to
linear frequency-modulated waveforms when applied to dis-
crete radar. Finally, in Section 9 we briefly consider the con-
nection between the Kerdock sets and the Welti and Budisin
sequences, which are Golay complementary.

2. THE FINITE HEISENBERG-WEYL GROUPS [4]

We begin by defining a configuration space A = Zm
p consist-

ing of m-tuples of elements from the integers modulo p. In
this paper we will take p to be a prime number. Under ele-
mentwise addition A forms an Abelian group. In radar the-
ory the space A, withm = 1, would represent discrete ranges,
while in discrete quantum mechanics the space A might be
used to represent possible discrete positions for a particle.

Define a Hilbert spaceH , having orthonormal basis

{|a〉 : a ∈ A
}
, (1)

which we refer to as the Dirac basis. Note that we use the
“bra-ket” or Dirac notation for elements of the Hilbert space.
An arbitrary element |φ〉 ∈H can be expanded in this basis

as

|φ〉 =
∑

a∈A
〈a |φ〉|a〉, (2)

where 〈·|·〉 is the inner product onH .
The dual group of A, denoted by Â, is comprised of the

homomorphisms from the group A into the unit circle Π in
C, that is, the characters of A (see [16, Chapter 4]). Â is also
an Abelian group (this time under multiplication), and is,
since A is finite, isomorphic to A. This isomorphism is made
explicit through the identification of each b ∈ A with a γb ∈
Â, such that

γb(a) = ωb·a, (3)

for all a ∈ A, where ω = exp(2πi/p) is a specific pth root
of unity and · denotes the usual dot product on Zm

p . We see

from (3) that the elements of Â are just discrete sinusoids, or
multidimensional versions of such. To each element of γb ∈
Â we can assign a vector inH by

| b̂〉 = im/2
√|A|

∑

a∈A
ωb·a|a〉. (4)

The set {| â〉 : a ∈ A} also forms an orthonormal basis for
H , which we refer to as the Fourier basis. We can define the
unitary Fourier transform operator relating this orthonor-
mal basis to (1) by

F = im/2
√|A|

∑

a,b∈A
ωb·a|a〉〈b|, (5)

where |a〉〈b| represents the cross-projection operator onH
whose action on |φ〉 ∈H is |a〉〈b||φ〉 = 〈b|φ〉|a〉.

We will denote the groupA×Â � A×A, which is a vector
space over the field Zp, by E. We will refer to E as the phase
space.

OnH we define the unitary operators {D(a,b) : (a,b) ∈
E} by [17]

D(a,b) =
∑

c∈A
ωb·c|c + a〉〈c|. (6)

Two such operators have the multiplication rule

D(a,b)D(a′,b′) = ωb·a′D(a + a′,b + b′), (7)

from which we have the commutator

D(a,b)†D(a′,b′)D(a,b)D(a′,b′)† = ωa·b′−a′·bI , (8)

where † denotes adjoint and I is the identity operator onH .
Since the D(a,b) are unitary operators, (7) implies that

D(a,b)−1 = D(a,b)† = ωb·aD(−a,−b). (9)

For any of the operators D(a,b), the repeated application of
(7) implies

D(a,b)p = ωp(p−1)a·b/2I =
⎧
⎨

⎩
I if p �= 2,

(−1)a·bI if p = 2.
(10)
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That is, for p = 2, D(a,b)2 can be either ±I . This result
points to a difference in structure between the cases p = 2
and p �= 2.

The set of unitary operators onH defined by

E=
⎧
⎨

⎩

{
T(λ, a,b)=ωλD(a,b) : λ ∈ Zp, (a,b) ∈ E

}
if p �=2,

{
T(λ, a,b)= iλD(a,b) : λ ∈ Z4, (a,b) ∈ E

}
if p=2

(11)
form a representation of the finite Heisenberg-Weyl group on
H . This representation is irreducible [4, 15]. This means that
there are no nontrivial subspaces of H invariant under the
action of E. This representation is referred to as a multiplier
representation of the group A × Â. The finite Heisenberg-
Weyl group itself can be realised abstractly as a central exten-
sion of A× Â by Zp (p �= 2) and by Z4 (p = 2).

Now the centre of the group E is

Z(E) =
⎧
⎨

⎩

{
ωλI : λ ∈ Zp

}
if p �= 2,

{
iλI : λ ∈ Z4

}
if p = 2.

(12)

The factor space E/Z(E) is easily seen to be identified with
the phase space E.

Considering the commutation relation (8), we can define
the symplectic inner product

(
(a,b), (a′,b′)

) = a · b′ − a′ · b, (13)

on the phase space E, and note that two operators D(a,b)
and D(a′,b′) commute if and only if ((a,b), (a′,b′)) = 0.
We may then identify subgroups of E consisting of mutu-
ally commuting sets of operators D(a,b) with isotropic sub-
spaces of E. A subspace H ⊂ E is isotropic if any pair of
points (a,b), (a′,b′) ∈ H satisfy ((a,b), (a′,b′)) = 0. An
isotropic subspace H of E corresponds to the Abelian sub-
group {D(a,b) :(a,b)∈H} of E. We also define the symplectic
dual, or just dual, of any subspace H ⊆ E to be

H
⊥ = {

(a,b) ∈ E :
(
(a,b), (a′,b′)

) = 0, ∀(a′,b′) ∈ H
}
.

(14)

An isotropic subspace satisfies H ⊆ H
⊥
. It is maximal

isotropic if and only if this inclusion is an equality.

3. DISCRETE RADAR

Let us see how the above theory applies to radar. For radar
the configuration space A = Zp consists of a large number p
of discrete time delays or ranges. To make the development
more transparent we label the elements of A by τ ∈ Zp and Â
by ν ∈ Zp, rather than by a and b. ν/p is the digital frequency.
The phase space E in this case is the time-frequency plane.
The vectors |φ〉 ∈ H are our waveforms, and their expan-
sion coefficients in the Dirac basis φ(τ) = 〈τ |φ〉 give their
p-periodic time sequences. The Dirac basis waveforms |τ〉
correspond to impulses at time τ. The Fourier basis corre-
sponds to fixed frequency sinusoidal waveforms, since these

have coefficients 〈τ | ν̂〉 =
√
i/pωντ .

Abstractly, the operation of the radar consists of trans-
mitting a waveform |φ〉 ∈ H , which is reflected by the
environment, or radar scene, and returns as the waveform
|ψ〉 ∈H . Thus, the radar scene can be considered an opera-
tor, S, onH .

Physically we can decompose the radar scene into point
scatters, each of which delays the waveform by a time τ and
Doppler shifts the waveform by ν, with the return being mul-
tiplied by a complex scattering amplitude σ(τ, ν). Mathemat-
ically we write this as

S =
∑

(τ,ν)∈E
σ(τ, ν)D(τ, ν), (15)

where the D(τ, ν) ∈ E are elements of the Heisnberg-Weyl
group. Theorem 1, in the next section, implies that the scat-
terer distribution σ(τ, ν) = Tr(D(τ, ν)†S)/|A|, and that every
operator onH can be written in this form.

Suppose that we have an unknown radar scene S and we
would like to learn something about it. We transmit a wave-
form |φ〉 and note the return |ψ〉. In the absence of noise we
now know that |ψ〉 = S|φ〉, or that

S = |ψ〉〈φ | + R, (16)

where the operator R, which annihilates |φ〉, R|φ〉 = 0, is
undetermined. Thus, as a result of transmitting |φ〉, we now
know the action of the operator

S̃ = S|φ〉〈φ |, (17)

which in terms of scatterer distributions is

S̃ =
∑

(τ,ν)∈E
σ̃(τ, ν)D(τ, ν), (18)

where

σ̃(τ, ν) = Tr
(
D(τ, ν)†S|φ〉〈φ |)

=
∑

(τ′,ν′)∈E
σ(τ′, ν′) Tr

(
D(τ, ν)†D(τ′, ν′)|φ〉〈φ |)

=
∑

(τ′,ν′)∈E
σ(τ′, ν′)Aφ(τ′ − τ, ν′ − ν)ων(τ−τ′),

(19)

and the ambiguity function,A, is given by [2, 3, 18]

Aφ(τ, ν) = Tr
(
D(τ, ν)|φ〉〈φ |) = 〈φ |D(τ, ν)|φ〉. (20)

From (19), the ambiguity function can be considered as a
point spread function on the scatterer distribution σ(τ, ν).
However, the fact that (19) is a representation of the opera-
tor relation (17) should always be kept in mind. We now go
back and consider the ambiguity function in the more gen-
eral setting of Section 2.

4. THE AMBIGUITY FUNCTIONS AND THE
REPRESENTATION OF OPERATORS

In this section, we consider the space of linear operatorsO on
the Hilbert spaceH . These operators form a Hilbert space in
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their own right, with the inner product of two operators R
and S ∈ O defined by

(R, S) = Tr
(
R†S

)
. (21)

This inner product corresponds to the Hilbert-Schmidt or
Frobenius norm

‖S‖ = Tr
(
S†S

)1/2
. (22)

The operators

{
1

√|A|D(a,b) : (a,b) ∈ E
}

(23)

form an orthonormal set in O, as

Tr
(
D(a,b)†D(a′,b′)

) = |A|δa,a′δb,b′ . (24)

Hence, since the set (23) has order |E| = |A|2, we have the
following theorem.

Theorem 1. Any operator S ∈ O can be represented as

S = 1
|A|

∑

(a,b)∈E
Tr
(
D(a,b)†S

)
D(a,b). (25)

The corresponding theorem for the continuous
Heisenberg-Weyl group is given by Folland (see [1, Chap-
ter 1]) and for the general case of the Heisenberg-Weyl
group over locally compact Abelian groups by Feichtinger
and Kozek [19].

The expansion (25) implies that the map

S −→ s(a,b) = 1
√|A| Tr

(
D(a,b)†S

)
(26)

is an isometry from O to L2(E), with the inner products re-
lated by

Tr
(
S†R

) =
∑

(a,b)∈E
s(a,b)r(a,b). (27)

We refer to function s(a,b) and the Weyl transform of the
operator S.

Let |φ〉 ∈ H be a normalised vector. The projection op-
erator into the one-dimensional subspace spanned by |φ〉 is
Pφ = |φ〉〈φ | ∈ O. We assume that |φ〉 is normalised so that
Pφ is an orthogonal projection satisfying P2

φ = Pφ. The effect
of Pφ on any vector |ψ〉 ∈H is

Pφ|ψ〉 = 〈φ |ψ〉|φ〉. (28)

The operator Pφ has the expansion

Pφ = 1
|A|

∑

(a,b)∈E
Aφ(a,b)D(a,b), (29)

where

Aφ(a,b) = Tr
(
D(a,b)Pφ

) = 〈φ |D(a,b)|φ〉. (30)

As it is a direct generalization of the more usual definition
(20) of the ambiguity function for Zp, we will also refer to
the function Aφ ∈ L2(E) as the ambiguity function of the
vector |φ〉, or more correctly of the projection Pφ. It is triv-
ially related to theWeyl transformation of Pφ, pφ ∈ L2(E), by
Aφ =

√|A|pφ. We note that (30) is identical in form to the
short-time Fourier transform when using the same function
as input function and as analysis window. However, as we
have noted above, we consider the ambiguity function to be
a representation of the projection onto the one-dimensional
subspace defined by the vector rather than a transformation
of the vector itself.

Two properties of ambiguity functions that follow di-
rectly from its definition and (9) are

Aφ(0, 0) = 1, Aφ(a,b) = ωa·bAφ(−a,−b), (31)

for all (a,b) ∈ E.
An important property of ambiguity functions is Moyal’s

identity. This follows from a simple property of projection
operators. Suppose that Pφ and Pψ ∈ O are one-dimensional
projection operators. Then

Tr
(
PφPψ

) = ∣∣〈φ |ψ〉∣∣2. (32)

Substituting the expansion (29) in this equation we obtain
Moyal’s identity

1
|A|

∑

(a,b)∈E
Aφ(a,b)Aψ(a,b) =

∣
∣〈φ |ψ〉∣∣2. (33)

A special case of Moyal’s identity is

1
|A|

∑

(a,b)∈E

∣
∣Aφ(a,b)

∣
∣2 = 1. (34)

Suppose we apply the operator D(a,b) ∈ E to the vector
|φ〉 ∈ H to obtain |φ′〉 = D(a,b)|φ〉. Then the projection
Pφ′ is related to Pφ by

Pφ′ = D(a,b)†PφD(a,b), (35)

and so, using (30) and the cyclic property of trace, we have

Aφ′(a′,b′) = Tr
(
D(a,b)D(a′,b′)D(a,b)†Pφ

)

= ωa′·b−a·b′ Tr
(
D(a′,b′)Pφ

)

= ωa′·b−a·b′Aφ(a′,b′),

(36)

for all (a,b) ∈ E. We observe this is just the multiplication of
Aφ by a character of E.

We can extend the conjugate action of the Heisenberg-
Weyl group on projections (35) to the whole of O. For each
D(a,b) ∈ E, this conjugate action maps S → S′ ∈ O, such
that

S′ = D(a,b)†SD(a,b). (37)

Note that the centre of E, Z(E), leaves each operator in O
invariant. Under theWeyl transformation (26), the conjugate
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action (37) on O induces the following action on L2(E): s →
s′ ∈ L2(E), such that

s′(a′,b′) = ωa′·b−a·b′s(a′,b′), (38)

where s and s′ are the Weyl transforms of S and S′, respec-
tively. As we have observed above, the action (38) is just a
multiplication by a character of E.

Ideally in radar one would like to construct an ambiguity
function which is nonzero only at the origin (0, 0). However,
since any ambiguity function is unity at the origin this vio-
lates Moyal’s identity (34). We can, however, set our sights
lower. We will refer to an ambiguity functionAφ as perfect if
its absolute value is constant on E/{(0, 0)}. It turns out that
at least in some circumstances vectors having such ambigu-
ity functions exist. We will give an example below. Moyal’s
identity implies that a perfect ambiguity function satisfies

∣∣Aφ(a,b)
∣∣ =

⎧
⎪⎨

⎪⎩

1 for (a,b) = (0, 0),
1

√|A| + 1
for (a,b) ∈ E/

{
(0, 0)

}
.

(39)

If a vector |φ〉 ∈ H has a perfect ambiguity function then
the set of vectors

{|a,b,φ〉 = D(a,b)|φ〉 : (a,b) ∈ E
}

(40)

satisfy

∣∣〈a,b,φ |a′,b′,φ〉∣∣ = ∣∣〈φ |D(a′ − a,b′ − b)|φ〉∣∣

= 1
√|A| + 1

,
(41)

for (a,b) �= (a′,b′). That is, (40) constitutes a set of
equiangular lines in H . Thus, we see that perfect ambigu-
ity functions are equivalent to sets of equiangular lines in
H . We note that Delsarte, Goethals, and Seidel originated a
method based on orthogonal polynomials that provides up-
per bounds on the size of set of Euclidean lines with pre-
scribed angles [20]. The special case of equiangular lines is
explored by Lemmens and Seidel in [21]. A perfect ambigu-
ity function achieves exactly this bound as there are exactly
|A|2 lines. We can construct a set of equiangular lines for the
case A = Z3

2, as follows.
Consider the vector |η〉 ∈H ,

|η〉 =
√

2
3
(F − I)|0〉 =

√
2
3

(| 0̂〉 − |0〉), (42)

where |0〉 is the Dirac basis vector corresponding to a = 0,
| 0̂〉 is the a = 0 vector in the Fourier basis, and F is the
Fourier transform operator (5). Writing ζ = √

i/8, we ver-
ify that the set {|a,b,η〉 = D(a,b)|η〉 : (a,b) ∈ E} is indeed

equiangular:

〈η |D(a,b)|η〉 = 2
3

(〈0̂|D(a,b)| 0̂〉 + 〈0|D(a,b)|0〉
− 〈0̂ |D(a,b)|0〉 − 〈0|D(a,b)| 0̂〉)

= 2
3
δb,0 +

2
3
δa,0 − 2

3

(
ζ + (−1)b·aζ)

= 1
3

⎧
⎨

⎩
2δb,0 + 2δa,0 − 1 if b · a = 0,

i if b · a = 1,

(43)

where we have used (6) and the fact that ζ + ζ = 1/2 and
ζ − ζ = −i/2.

A set of equiangular lines for this situation was given
by Hoggar [22]. The utility of the Heisenberg-Weyl ap-
proach can be seen by comparing the above construction
and verification with Hoggar’s. Other sets of equiangular
lines have been constructed by Renes et al. [17], for the
one-dimensional Heisenberg-Weyl group corresponding to
A = Zk, for specific values of k. For more information on the
important problem of the construction of sets of equiangular
lines and its relation to a number of important problems in
mathematics and physics the reader is referred to [23].

Finally, we note that the set (40) is an orbit in H under
the Heisenberg-Weyl group. In the next section we will con-
sider the properties of such orbits in detail.

5. COVARIANT TIGHT FRAMES AND
AMBIGUITY FUNCTIONS

We can understand a great deal about the structure of ambi-
guity functions associated with the vectors in H , by under-
standing the orbits inH under the action of the Heisenberg-
Weyl group E. The orbit containing the vector |φ〉 ∈H con-
sists of the set of vectors

{|λ, a,b,φ〉 = T(λ, a,b)|φ〉 : λ ∈ Zq, (a,b) ∈ E
}
, (44)

where q = 4, for p = 2, and q = p otherwise. Such orbits
are called coherent states in the physics literature [24], and as
we demonstrate below they form tight frames [25] of vectors
in H . Here we will refer to these as covariant tight frames
(CTF) and to |φ〉 as the fiducial vector of the CTF.

Of importance in understanding the structure of the or-
bit (44) is the isotropy subgroup of the fiducial vector |φ〉.
The isotropy subgroup of |φ〉 consists of those T that merely
multiply |φ〉 by a phase,

T(λ, a,b)|φ〉 = eiχ(λ,a,b)|φ〉. (45)

Obviously, the isotropy subgroup Hφ of |φ〉 is at least Z(E),
the centre of E, although it may be larger. For example, the
Dirac basis vector |0〉 has an isotropy subgroup H = Z(E)∪
{D(0,b) : b ∈ A}. Given an isotropy subgroupHφ we can de-
fine a corresponding isotropy subspace Hφ = Hφ/Z(E) ⊆ E.

An important property of Hφ is that it is Abelian and so
Hφ is isotropic. This can be seen as follows. Suppose D(a,b)
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and D(a′,b′) are both in Hφ, then

eiχ
′
eiχ|φ〉 = D(a′,b′)D(a,b)|φ〉

= ωa·b′−a′·bD(a,b)D(a′,b′)|φ〉
= ωa·b′−a′·beiχ

′
eiχ|φ〉,

(46)

for some χ, χ′ ∈ [0, 2π), which implies that a ·b′ −a′ ·b = 0.
Let us consider the value of the ambiguity function Aφ

on the isotropy subspace Hφ of |φ〉. If (a,b) ∈ Hφ, then

Aφ(a,b) = 〈φ |D(a,b)|φ〉 = eiχ , (47)

for some χ ∈ [0, 2π). Thus,Aφ is unimodular onHφ. In fact,
on Hφ,

Aφ(a,b)p = 〈φ |D(a,b)p|φ〉 =
⎧
⎨

⎩
1 if p �= 2,

(−1)a·b if p = 2,
(48)

using (10), and so for p �= 2,Aφ(Hφ) ⊆ {ωλ : λ ∈ Zp}, while
for p = 2,Aφ(Hφ) ⊆ {iλ : λ ∈ Z4}.

Now suppose that Hφ is nontrivial, that is, it contains
some (a′,b′) �= (0, 0), and that (a,b) /∈ Hφ, then

Aφ(a,b) = 〈φ |D(a′,b′)†D(a,b)D(a′,b′)|φ〉
= ωa′·b−a·b′Aφ(a,b),

(49)

where we have used (8). Thus, unlessD(a,b) commutes with
every element of Hφ,A(a,b) = 0. Thus, the support ofAφ,

suppAφ ⊆ H
⊥
φ . (50)

Furthermore, for all (a,b) ∈ E, and all (a′,b′) ∈ Hφ, |Aφ(a+
a′,b+b′)| = |Aφ(a,b)|, and so |Aφ| is constant on any coset
of Hφ in E.

The unimodularity ofAφ onHφ along withMoyal’s iden-
tity (34), implies that |Hφ| ≤ |A|. This result can be used to
infer that for any isotropic subspace H ⊂ E, |H| ≤ |A|, for
if |H| > |A|, then by taking |φ〉 to be one of the common
eigenvectors of the Abelian subgroupH = {D(a,b) : (a,b) ∈
H}, we would have Hφ = H and |Hφ| > |A|. Isotropic sub-
spaces which satisfy |H| = |A| are called maximal. Such
maximal isotropic subspaces are self-dual, that is, H

⊥ = H .
Thus, if a vector |φ〉 ∈ H has an isotropy subspace which is
maximal, then suppAφ = Hφ.

Let us now go back and consider the orbit (44). The
isotropy subspace of |φ〉 is Hφ = Hφ/Z(E) ⊂ E and the or-
bit is parameterised by the cosets Cφ = E/Hφ. Thus, given a
fiducial vector |φ〉, we consider the set of vectors

Fφ =
{|a,b,φ〉 = D(a,b)|φ〉 : (a,b) ∈ Cφ

}
. (51)

We note that if the isotropy subgroup of |φ〉 is Z(E), thenFφ

will be parameterised by the whole phase space E.
Following the standard coherent state theory [24], we

construct the operator

B =
∑

(a,b)∈Cφ

|a,b,φ〉〈a,b,φ |. (52)

Then, we note that

D(a,b)BD(a,b)† = B, (53)

and so since E is irreducible, Schur’s lemma implies that
B = cI , a multiple of the identity. Thus, if c is not zero,
then the set of vectors (51) forms a tight frame (CTF), with
the corresponding resolution of unity given by (52), suit-
ably normalised. In fact, taking the trace of (52) we find
c = |Cφ|/|A|, and so we have the resolution of unity

I = |A|
|Cφ|

∑

(a,b)∈Cφ

|a,b,φ〉〈a,b,φ |. (54)

We can restate this result by saying that the set of vectors Fφ

form a tight frame. Note that if a set of coherent states as
defined by Perelomov [24, 26] forms a frame then it is known
that the frame is tight, that is, it gives a resolution of unity.

Now |Cφ| = |E|/|Hφ| = |A|2/|Hφ| and so (54) implies
that Fφ is a tight frame with the redundancy ratio |Hφ|/|A|.
If Hφ is maximal, then |Cφ| = |Hφ| = |A|, and so Fφ is
an orthonormal basis. We note that the restriction that an
isotropy subspacemust satisfy |Hφ| ≤ |A| corresponds to the
condition that an orthonormal basis in an |A|-dimensional
space has no more than |A| elements.

We summarise the above results in the following theo-
rem.

Theorem 2. Let |φ〉 ∈H be a normalised vector with isotropy
subspace Hφ ⊂ E. Then,

(1) Aφ is unimodular on Hφ,

(2) suppAφ = H
⊥
φ ,

(3) |Aφ| is constant on cosets of Hφ in E,
(4) Fφ is a tight frame with the redundancy ratio |A|/
|Hφ|.

In particular, if Hφ is a maximal isotropic subspace, then

(1) suppAφ = Hφ,
(2) Fφ is an orthonormal basis.

Now suppose that we have two vectors |φ〉, |ψ〉 ∈ H
both with maximal isotropy subspaces Hφ and Hψ , respec-
tively. If the intersection Hφ ∩Hψ is nontrivial, what can we
say about the values of the ambiguity functions of |φ〉 and
|ψ〉 on Hφ ∩ Hψ? We know that |φ〉 and |ψ〉 must both be
eigenvectors of any D(a,b), with (a,b) ∈ Hφ ∩ Hψ . Since
D(a,b) is unitary, this implies that unless |φ〉 and |ψ〉 are
orthogonal they must correspond to the same eigenvalue, in
which case

Aφ(a,b) =Aψ(a,b), ∀(a,b) ∈ Hφ ∩Hψ. (55)

On the other hand, if |φ〉 and |ψ〉 are orthogonal, then
because Fψ is an orthonormal basis, there will exist at least

one vector D(ã, b̃)|ψ〉, with (a,b) ∈ Cψ/{(0, 0)}, such that

|φ〉 is not orthogonal toD(ã, b̃)|ψ〉. SinceD(ã, b̃)|ψ〉 has the
same isotropy subgroup as |ψ〉, we have the general result
Aφ(a,b) =Aψ(a,b)ωã·b−a·b̃, ∀(a,b) ∈ Hφ ∩Hψ , (56)
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for some fixed (ã, b̃) ∈ Cψ , such that 〈φ |D(ã, b̃)|ψ〉 �= 0.

Note that if we have alternate choices for (ã, b̃), (ã1, b̃1), and
(ã2, b̃2), say, then we must have (ã1 − ã2, b̃1 − b̃2) ∈ (Hφ ∩
Hψ)⊥.

As a consequence of Moyal’s identity and (56) we also
have the following theorem which relates to the inner prod-
uct between the orthonormal bases associated with two fidu-
cial vectors. Note that the delta function δH : E → {0, 1}, for
any subset H ⊂ E, is defined by

δH(a,b) =
⎧
⎨

⎩
1 if (a,b) ∈ H ,

0 otherwise.
(57)

Theorem 3. Let |φ〉 and |ψ〉 ∈ H have maximal isotropy
subspaces Hφ and Hψ and let (a,b) ∈ Cφ and (a′,b′) ∈ Cψ .

Further, take any (ã, b̃) ∈ Cψ , such that 〈φ | ã, b̃,ψ〉 �= 0, then
the inner product 〈a,b,φ |a′,b′,ψ〉 has magnitude

∣
∣〈a,b,φ |a′,b′,ψ〉∣∣

=
√
√
√√
∣
∣Hφ ∩Hψ

∣
∣

|A| δ(Hφ∩Hψ )⊥
(
a′ − a− ã,b′ − b− b̃

)
,

(58)

and, when |〈a,b,φ |a′,b′,ψ〉| �= 0, has phase

〈a,b,φ |a′,b′,ψ〉
∣
∣〈a,b,φ |a′,b′,ψ〉∣∣

= ω(a′−a)·(bφ−b)−aψ·b̃Aφ(aφ,bφ)Aψ(aψ ,bψ)
〈φ | ã, b̃,ψ〉
∣
∣〈φ | ã, b̃,ψ〉∣∣

,

(59)

where (aφ,bφ) ∈ Hφ and (aψ ,bψ) ∈ Hψ are any vectors satis-
fying

(a′ − a− ã,b′ − b− b̃) = (
aψ ,bψ

)− (
aφ,bφ

)
. (60)

Proof. Moyal’s identity (33) implies

∣
∣〈φ |D(a,b)|ψ〉∣∣2

= 1
|A|

∑

(a′,b′)∈E
Aφ(a′,b′)Aψ(a′,b′)ωa′·b−a·b′

= 1
|A|

∑

(a′,b′)∈Hφ∩Hψ

Aφ(a′,b′)Aψ(a′,b′)ωa′·b−a·b′

= 1
|A|

∑

(a′,b′)∈Hφ∩Hψ

ωa′·(b−b̃)−(a−ã)·b′

=
∣
∣Hφ ∩Hψ

∣
∣

|A| δ(Hφ∩Hψ )⊥(a− ã,b− b̃),

(61)

for any (ã, b̃) ∈ Cψ , such that 〈φ |D(ã, b̃)|ψ〉 �= 0. Here we
have used (56) and the fact that Aφ is unimodular on Hφ.
Thus, since |〈a,b,φ |a′,b′,ψ〉| = |〈φ |D(a′ − a,b′ − b)|ψ〉|,
we obtain (58).

The second part of the proof follows by first noting that
(Hφ∩Hψ)⊥ is the smallest subspace of E containingHφ∪Hψ .
Thus, any (a,b) for which 〈φ |D(a,b)|ψ〉 �= 0 can be decom-
posed as (60). This decomposition is not generally unique as
any element of Hφ ∩ Hψ can be added to both (aψ ,bψ) and
(aφ,bφ). We then have

〈φ |D(a− a′,b− b′)|ψ〉
=ω(b̃−b+b)·ã〈φ |D(aψ − aφ,bψ− bφ

)| ã, b̃,ψ〉
=ω(a′−a−ã)·bφ−(b′−b−b̃)·ã〈φ |D(aφ,bφ

)†
D
(
aψ ,bψ

)| ã, b̃,ψ〉
=ω(a′−a)·bφ−aψ·b̃Aφ

(
aφ,bφ

)
Aψ

(
aψ ,bψ

)〈φ | ã, b̃,ψ〉.
(62)

The result (59) then follows using (58).

We will say that two maximal isotropic subspacesHφ and
Hψ are disjoint if Hφ ∩ Hψ = {(0, 0)}. We have the fol-
lowing corollary of Theorem 3 which relates to the “angle”
between the orthonormal bases associated with two fiducial
vectors having disjoint maximal isotropy subspaces. This fol-
lows from Theorem 3 by noting that if Hφ and Hψ are dis-
joint, then (Hφ ∩Hψ)⊥ = E.

Corollary 1. Let |φ〉 and |ψ〉 ∈ H have maximal isotropic
isotropy subspaces Hφ and Hψ which are disjoint, then

∣
∣〈a,b,φ |a′,b′,ψ〉∣∣ = 1

√|A| , (63)

for all (a,b) ∈ Cφ and (a′,b′) ∈ Cψ .

An example of two disjoint maximal isotropic subspaces
is HD = {(0,b) : b ∈ A} and HF = {(a, 0) : a ∈ A}. HD has
the CTF given by the orthonormal basis (1) and can be asso-
ciated with fiducial vector |0〉, while HF has the CTF given
by the orthonormal basis (4) with fiducial vector | 0̂〉.

6. SYMPLECTIC TRANSFORMATIONS AND
PHASE SPACE COVERINGS

The question arises as to whether it is possible to choose a set
of vectors (waveforms) such that the supports of their am-
biguity functions are nonintersecting (except at (0, 0)), while
jointly covering the whole of phase space. This is equivalent
to covering the whole of the phase space E with disjoint max-
imal isotropic subspaces. At least in certain instances the an-
swer is yes. The construction in these cases works as follows
[15].

We begin by considering the symplectic transformations
on E. Such transformations take the form

(a,b) −→ (Aa + Bb,Ca +Db) (64)

which preserve the symplectic inner product (13). Here A, B,
C, and D are matrices over Zp. We can write the condition
that (13) be preserved in terms of block matrices as

(
A B
C D

)T (
0 I
−I 0

)(
A B
C D

)

=
(
0 I
−I 0

)

, (65)
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where I is the m × m identity matrix on Zp. The matrices
(
A B
C D

)
satisfying (65) form the symplectic group Sp(2m,Zp).

For our purposes the importance of symplectic transforma-
tions on E lies in the fact that they map maximal isotropic
subspaces to maximal isotropic subspaces.

Some interesting subgroups of Sp(2m,Zp) are
{(

A 0
0 A−T

)

: A ∈ GL
(
m,Zp

)
}

, (66)

where GL(m,Zp) is the general linear group of m-
dimensional invertible matrices over Zp,

{(
I 0
P I

)

: P a symmetric matrix over Zp

}

, (67)

{(
I P
0 I

)

: P a symmetric matrix over Zp

}

. (68)

The symplectic transformations allow us to transform
between maximal isotropic subspaces of E. Now as we have
seen, each maximal isotropic subspace of E corresponds to
a maximal Abelian subgroup of E and an orthonormal ba-
sis for H . Thus given a symplectic map on E which maps
between subspaces, we need to find unitary operators on H
which map between the corresponding subgroups by con-
jugation. We now give some examples which we will use to
generate phase space coverings.

The Fourier transform operator F given in (5) transforms
D(a,b) as

F†D(a,b)F = ω−a·bD(b,−a). (69)

Thus, F induces a symplectic action on the phase space given
by f : E → E, such that f (a,b) = (b,−a), corresponding to
the element

(
0 I
−I 0

)

∈ Sp
(
2m,Zp

)
. (70)

This action exchanges themaximal isotropic subspacesHD =
{(0,b) : b ∈ A} and HF = {(a, 0) : a ∈ A}.

For the moment we will assume that p �= 2. The case p =
2 will be considered below. Define a unitary transformation
onH by

W(P) =
∑

c∈A
ω c·Pc |c〉〈c|, (71)

where P is a symmetric matrix on Zp. We have

W(P)†D(a,b)W(P) = ωa·PaD(a,b + 2Pa). (72)

W(P) induces a symplectic action on the phase space wP :
E → E, such thatwP(a,b) = (a,b+2Pa). These unitary trans-
formations onH form a representation of the subgroup (67)
of Sp(2m,Zp), which can be seen by making the change of
parameterization P→ (p + 1)P/2.

The scheme for constructing phase space coverings then
proceeds as follows. Use the operatorsW(P) to generate new
maximal isotropic subspaces HP as

HP = wP(HF) =
{
(a, 2Pa) : a ∈ A

}
. (73)

Two such subspaces corresponding to symmetric matrices P
and Q will intersect only at solutions of (P−Q)a = 0. Thus,
the problem of covering E with disjoint maximal isotropic
subspaces will be solved if we can find a set of |A| − 1 non-
singular symmetric matrices P , over Zp, such that for any
pair of matrices P,Q ∈ P , P −Q is nonsingular. The cover-
ing would then be

E = HD ∪HF ∪
(
⋃

P∈P
wP

(
HF

)
)

. (74)

When this occurs the set of vectors

{|a〉 : a∈A
}∪{| b̂〉 : b ∈ A

}∪ {
W(P)| b̂〉 : b ∈ A, P ∈ P

}

(75)

is such that the magnitude of the inner product of any dis-
tinct pair of vectors in the set is either 0 or 1/

√|A|.
If p = 2 the construction of operators which perform the

function of the W(P)s above is somewhat different. In this
case we define the operator

W2(P) =
∑

c∈A
ic·Pc|c〉〈c|. (76)

Here the subtlety is that the quadratic form TP(a) = c · Pc is
to be interpreted as a Z4-valued quadratic form. A map TP :
Zm
2 → Z4 is called a Z4-valued quadratic form if it satisfies

TP(a + a′) = TP(a) + TP(a′) + 2a · Pa′, (77)

for all a, a′ ∈ Zm
2 [27]. Operationally one just interprets the

element of a and P to be in Z4 and computes the result a ·Pa
in Z4. In this case

W2(P)†D(a,b)W2(P) = i−a·PaD(a,b + Pa), (78)

and the construction follows the p �= 2 case with W2(P) re-
placingW(P).

We discuss two cases in which such a covering can be con-
structed.

7. DISCRETE RADAR REVISITED

We return to the theory of discrete radar as summarised in
Section 3. Since m = 1 in this case, the matrices in P are
just numbers. In fact, since p is prime, we can take P =
{0, 1, . . . , p−1}. The p+1 maximal isotropic subspaces con-
sist of the line {(0, τ) : τ ∈ {0, . . . , p−1}} along with the lines
{(τ, 2nτ) : τ ∈ {0, . . . , p− 1}}, for n ∈ P , in the phase space
or time-frequency plane. This time-frequency plane cover-
ing is displayed in Figure 1, for p = 11. Note that the matrix
that results from stripping off the all-zero column and all-one
row of this figure is a Latin square. In general, the matrices
obtained from the different coverings of the time-frequency
plane form a set of pairwise orthogonal Latin squares. These
find application in cellular systems that employ orthogonal
frequency-division multiplexing (OFDM). Each base station
has its own hopping matrix (Latin square). There will be ex-
actly one time/subcarrier collision for every pair of virtual
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ν

0 11 6 8 9 3 10 4 5 7 2

0 10 11 4 6 5 8 7 9 2 3

0 9 5 11 3 7 6 10 2 8 4

0 8 10 7 11 9 4 2 6 3 5

0 7 4 3 8 11 2 5 10 9 6

0 6 9 10 5 2 11 8 3 4 7

0 5 3 6 2 4 9 11 7 10 8

0 4 8 2 10 6 7 3 11 5 9

0 3 2 9 7 8 5 6 4 11 10

0 2 7 5 4 10 3 9 8 6 11

� 1 1 1 1 1 1 1 1 1 1

τ

Figure 1: Tiling of the time-frequency plane by maximal isotropic
subspaces for p = 11.

channels of two base stations that employ these hopping pat-
terns. See for example [28]. In the radar context such fre-
quency coded waveforms are called Costas coded waveforms
[29].

The vectors (waveforms) corresponding to the above
maximal isotropic subspaces are, for n ∈ P ,

|n, ν̂〉 =W(n)| ν̂〉 =
√

i

p

p−1∑

τ=0
ωnτ2ωντ|τ〉, (79)

for ν ∈ {0, . . . , p− 1}. These are linear frequency-modulated
sinusoid or chirps. The ambiguity function of such a chirped
waveform |n, ν̂〉 is

An,ν̂(τ, ν′) = ωnτ2ωτνA0̂(τ, ν
′ + 2nτ), (80)

for all (τ, ν′) ∈ Zp, whereA0̂ is the ambiguity function of the

waveform | 0̂〉. Thus, the magnitude of the ambiguity (80) is
∣
∣An,ν̂(τ, ν′)

∣
∣ = ∣

∣A0̂(τ, ν
′ + 2nτ)

∣
∣ = δν′+2nτ,0, (81)

for all (τ, ν′) ∈ Zp. We can explicitly see how the waveforms
{|n, ν̂〉 : n ∈ P , ν ∈ {0, . . . , p−1}} along with the Dirac ba-
sis waveform {|τ〉 : τ ∈ {0, . . . , p−1}} have ambiguity func-
tions which disjointly cover the time-frequency plane. Such
sets of waveforms, which have ambiguity functions that cross
only at a single point, are of great utility in the operation of
adaptive radars. In this context sequences of waveforms are
chosen adaptively to obtain optimal results over time.

8. Z4-KERDOCK CODES

Kerdock codes [14, 30] are nonlinear binary error-correcting
codes which contain more codewords for a given minimum
distance than any linear code. It was shown by Hammons
et al. [31] that the Kerdock codes could be constructed as
binary images under the Gray map of linear codes over
Z4. The geometry of these codes was studied extensively by
Calderbank et al. [15] who demonstrated their relationship
to the extraspecial 2-group. This group is identical to the fi-
nite Heisenberg-Weyl group (11) for p = 2, and most of the

theory developed in Section 5 can be found in [15] for this
case. Note that the different othonormal bases appear as mu-
tually unbiased bases in the theory of quantummeasurement
[32] for A = Zp.

Here the configuration space A = Zm
2 consists of the bi-

nary sequences of length m. This case has been studied ex-
tensively in the theory of error correction codes [15]. The
Fourier basis is

| b̂〉 =
(
i

2

)m/2 ∑

(a,b)∈E
(−1)b·a|a〉. (82)

Apart from the normalising constant (i/2)m/2, the coefficients
of the Fourier basis are related to the first-order Reed-Muller
code RM(1,m + 1), in the following sense. If we apply group
E, from (11), to the vector | 0̂〉 we obtain the set of vectors

{
iλ| b̂〉 : λ ∈ Z4, b ∈ A

}
. (83)

In the Dirac basis, neglecting the common normalisation fac-
tor (i/2)m/2, the coefficients of these vectors form RM(1,m +
1) as a linear code of length 2m over Z4. If we then apply the
Gray map,

{
1 −→ 00, i −→ 01, (−1) −→ 11, (−i) −→ 10

}
, (84)

we then obtain the conventional form of RM(1,m + 1) as a
binary code of length 2m+1. In a similar way the second-order
Reed-Muller code RM(2,m+1) corresponds to the set of vec-
tors
{
iλW2(P)| b̂〉 : λ∈Z4, b∈A, P a binary symmetric matrix

}
.

(85)

In this case there are many possible sets of binary sym-
metric matrices P which lead to a disjoint covering of the
phase space with maximal isotropic subspaces [15]. Such sets
are referred to as Kerdock sets in this context. One possibil-
ity consists of a vector space of nonsingular Hankel matrices,
with one binary symmetric matrix with any given diagonal.
Sets of vectors of the form

{
iλW2(P)| b̂〉 : λ ∈ Z4, b ∈ A, P ∈ P

}∪ {|a〉, a ∈ A
}

(86)

are the Kerdock codes. Note that here the zero matrix is inP
and thatW(0) = I . Obviously, this set lies within the second-
order Reed-Muller code (85).

Let us consider the Gray map in a little more detail. This
map takes Z4-valued quadratic forms TP on Zm

2 to quadratic
forms on Zm+1

2 . If QM is a quadratic form on Zm+1
2 for which

the associated bilinear form is u ·Mv then by definition

QM(u + v) = QM(u) +QM(v) + u ·Mv, (87)

for all u, v ∈ Zm+1
2 . Calderbank et al. [15] show that there

exists a bijection between m×m binary symmetric matrices
P and (m + 1) × (m + 1) skew-symmetric matrices M given
by

M =
(
0 dP
dTP dTPdP + P

)

, (88)
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where dP is a row vector consisting of the diagonal of the ma-
trix P. Now the code words within the coset of RM(1,m + 1)
in RM(2,m + 1), corresponding to P, are from (85),

{(
ia·Pa+2b·a+λ : a ∈ Zm

2

)
: λ ∈ Z4, b ∈ Zm

2

}
. (89)

If M is the skew-symmetric matrix corresponding to P
through (88) and we write M = UM + UT

M, where UM is up-
per triangular, then the Z2 representation of the set of code
words (89) is

{(
(−1)v·UMv+u·v : v ∈ Zm+1

2

)
: u ∈ Zm+1

2

}
. (90)

The casem = 3 provides an illustrative example. For this
case, a phase space covering is defined by the vector space of
matricesK spanned by

P001 =

⎛

⎜
⎜
⎝

0 1 0

1 0 0

0 0 1

⎞

⎟
⎟
⎠ , P010 =

⎛

⎜
⎜
⎝

0 1 1

1 1 1

1 1 0

⎞

⎟
⎟
⎠ ,

P100 =

⎛

⎜
⎜
⎝

1 1 0

1 0 1

0 1 0

⎞

⎟
⎟
⎠ .

(91)

Each matrix in the space is specified uniquely by its diagonal.
The skew-symmetric matrix corresponding to P100, say, is

M100 =

⎛

⎜
⎜
⎜
⎜
⎝

0 1 0 0

1 0 1 0

0 1 0 1

0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎠
. (92)

One of the quadratic forms associated withM010 is

Q100(v) = v ·

⎛

⎜
⎜
⎜
⎜
⎝

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠
v = v1v2 + v2v3 + v3v4. (93)

This particular quadratic form is interesting in that the
code words (90) are the Welti sequences [11]. The Welti se-
quences occur in Golay complementary pairs, as defined in
the next section. This connection between Golay comple-
mentary pairs and the Kerdock sets has been mentioned in
a paper by Davis and Jedwab [33]. We will consider this con-
nection in more detail below.

9. GOLAY COMPLEMENTARY PAIRS
AND KERDOCK SETS

Consider two unimodular sequences of complex numbers
x and y of length N . Two such sequences are said to be
Golay complementary if the sum of their respective auto-
correlation functions satisfy

corrk(x) + corrk(y) = 2Nδk,0, (94)

for k = −(N − 1), . . . , (N − 1). Such sequences have an ex-
tensive literature, samples of which are [11–13, 33–37].

The Welti sequences take values in {1,−1}, and can be
written in the form (cf. (90))

{(
(−1)v·UWv+u·v : v ∈ Zm+1

2

)
: u ∈ Zm+1

2

}
(95)

for eachm, where the upper triangular UW takes the form

[
UW

]
i, j = δi+1, j , i, j = 1, . . . ,m + 1, (96)

corresponding to the binary skew-symmetric matrixM, with

[
MW

]
i, j = δi+1, j + δi, j+1, i, j = 1, . . . ,m + 1. (97)

Each sequence in the set (95) has at least one Golay comple-
mentary partner in the set. For each value of m the set (95)
corresponds via the Gray map to the maximal isotropic sub-
space corresponding to the matrix P1000···0, with elements
[
P1000···0

]
i, j = δi,1δj,1 + δi, j+1 + δi+1, j , i, j = 1, . . . ,m. (98)

The Budisin sequences [36] correspond to the permuta-
tions of the skew-symmetric matrix MW given in (97). That
is, denoting by Sm+1 the group of (m + 1)× (m + 1) permu-
tation matrices, we obtain a set of complementary sequences

{(
(−1)v·(SUWST )v+u·v : v ∈ Zm+1

2

)
: u ∈ Zm+1

2

}
, (99)

corresponding to the binary skew-symmetric matrix

MS = SMWST , (100)

for each S ∈ S. As with the Welti sequences, each sequence
in the set (99) has at least one Golay complementary partner
in the set. Not all of the matricesMS in (100) are different. In
particular, the permutation matrix S0 ∈ Sm+1, given by

[
S0
]
i j = δi,m+2− j , i, j = 1, . . . , 2m+1, (101)

leavesMW invariant.
Now as the matrixM traverses the orbit

{
SMWST : S ∈ Sm+1

}
(102)

the corresponding m ×m binary symmetric P, according to
the map (88), traces out some orbit in the space of binary
symmetric matrices. For example, for m = 3, the orbit (103)
has length 12 due to the invariance ofMW ≡M100, under the
permutation S0. In this case, the orbit under S4,

{
SM100ST : S ∈ S4

}
, (103)

corresponds to the orbit in the space of binary symmetric
matrices

{
SP100ST : S ∈ S3

}∪ {
SP011ST : S ∈ S3

}
, (104)

which is equivalent to

{
SP100ST : S ∈ S3

}∪ {
SP100

−1ST : S ∈ S3
}
, (105)

where P100, P011 ∈K are given by (91).
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Finally, we make the intriguing observation that form =
3, the complex sequences

{(
ia·Pa+2b·a+λ : a ∈ Z3

2

)
: λ ∈ Z4, b ∈ Z3

2

}
(106)

are complex Golay complementary sequences for binary
symmetric matrices P in the union of the cosets of the sub-
space of diagonal binary matrices with coset representatives
given by the Kerdock matrices P100, P011, and P111. The other
cosets do not contain any Golay complementary pairs.

10. CONCLUSION

The finite Heisenberg-Weyl groups provide a unifying math-
ematical structure, which has a useful part to play in radar
theory and in communications. Many of the unimodular se-
quences used for spreading sequences in communications,
and proposed as waveforms in radar, are related to its maxi-
mal Abelian subgroups. This mathematical structure for A =
Zm
2 has already been used in the construction of stabiliser

codes for quantum error correction [38] and in the construc-
tion of the Kerdock codes over Z4 [15, 31], and for A = Zk,
in the construction of symmetric informationally complete
positive operator values measures (equiangular lines) [17] in
quantum information theory.

For mathematical convenience and clarity in this paper,
we restricted the configuration space to be A = Zm

p , with p
prime. However, most of the results reported in this paper
follow more generally. In particular, all of the major results
of Sections 2–6 follow with relatively minor modifications
if A is a vector space over a finite field. If A is not a vector
space then Sections 2–5 follow in terms of subgroups and
annihilators rather than subspaces and symplectic duals.

One particularly intriguing aspect of the Kerdock set is its
relationship to the Welti and Budisin sequences, which com-
prise sequences which are Golay complementary pairs. The
relationship of these sequences to the finite Heisenberg-Weyl
groups provides a new tool for studying the origin of their
special properties.
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