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The high-resolution, frequency-stepped chirp signal can be applied to radar systems employing narrow-bandwidth chirp pulses, in
order to enhance the range resolution, and to implement SAR/ISAR imaging capabilities. This paper analyzes the effect of moving
targets on the synthetic high-resolution range profile obtained using this signal waveform. Some constraints are presented for
compensation of the radial motion from shift and amplitude depression of the synthetic range profile. By transmitting two chirp
pulses with the same carrier frequency in a pulse-set, a method of ground clutter cancellation is designed with respect to this signal
format. Finally, our simulation data demonstrate the effectiveness of the proposed method.
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1. INTRODUCTION

Radar range resolution is determined by the bandwidth of
the transmitted pulse. Classically, high range resolution is ob-
tained by either transmitting very short pulses, or modulat-
ing the pulse to achieve the required bandwidth. Frequency-
stepping processing is another kind of a very effective method
to obtain high downrange profiles of targets such as air-
craft, and its applicability has been well documented [1]. The
main advantage of this approach is that the actual instanta-
neous bandwidth of radar is quite small compared with the
total processing bandwidth. This fact allows the transmis-
sion of waveforms with extremely wide overall bandwidth
without the usage of the expensive hardware needed to sup-
port the wide instantaneous bandwidth. Thus, this technique
can be utilized to introduce imaging capability to an ex-
isting narrow-bandwidth radar [2]. However, this method
has the unfortunate drawback that target energy spills over
into consecutive coarse range bins due to the matched-filter
operation. This is the main reason why it is not regarded
as a suitable method to process SAR images [3]. In ad-
dition, radar detection distance of the frequency-stepped
signal is limited under the precondition of the definite
range resolution. By means of synthetic bandwidth gener-
ated by frequency-stepped chirp signals instead of frequency-
stepped narrow pulses, high range resolution can be realized

and the detection distance can also be increased accordingly.
Another advantage of replacing the fix-frequency pulse with
chirp pulses is known to lower the grating lobes that appear
in the range response [4, 15].

Using a synthesized chirp combining N pulses with an
instantaneous bandwidth B;, postprocessing is necessary to
combine the individual chirps. Several methods are known as
“frequency-jumped burst” [5, 17], or “synthetic bandwidth,”
[3, 6]. Concatenation of the individual chirps to one long
chirp can be performed either in the time domain [3, 6, 8],
or in the frequency domain [5], or in a deramp-mode [7].

For further suppression of grating lobes in frequency-
stepped chirp train, several methods and some specific re-
lationships on the signal parameters have been presented in
[4, 6, 15]. Our simulation parameters in this paper follow the
two specific relationships of [4].

We consider the effect of moving targets on the syn-
thetic high-resolution range profile obtained using this signal
waveform and present some constraints for compensation of
the radial motion from the shift and the amplitude depres-
sion of the synthetic range profile. Meanwhile, a cancella-
tion method of ground clutter based on this signal waveform
is presented. We propose to retain the frequency-stepped
chirps signal for high range resolution, but introduce a small
variation to facilitate a simple first-order clutter cancellation
procedure.



2 EURASIP Journal on Applied Signal Processing
Frequency signal be at —T'/2, and the received echo from the target is

a8 . .
. t—iT —1(t . .
sy s(t) = > rect[f()]exp {]ﬂk[t—lT—T(t)]z}

v V% O T =0 !

--------- L Ty |

?<— e e ¢f — x exp {j2minf[t — 7(5)]} exp {j27 folt — (D]},

: - L1

FiGure 1: Sketch of frequency variety as a function of time, where T
is the duration time of the subpulse, T is the pulse-repetition time
(PRT), and fy - iAf is the carrier frequency of the ith subpulse.

In Section 2, the frequency-stepped chirp signal and the
principle of the synthetic high range resolution are briefly
reviewed. Then, some aspects of the chirp frequency-stepped
signal are discussed. In Section 3, some simulations are pre-
sented.

2. FREQUENCY-STEPPED CHIRP SIGNAL

The frequency-stepped chirp signal in the time domain is
written as

N-1
u(t) = \/LN D6t —iT) exp (j2miAft) exp (27 fyt)
i=0

N-1 .
L > rect<t;—1T> exp [ jrk(t —iT)?] =
: 1

x exp(j2miAft) exp (j27 fot),

where u(t) = (1/y/T)rect(t/Ty) exp(jmkt?) is the chirp sub-
pulse, k is the frequency slope, related to the bandwidth
B; > 0 of the single chirp pulse according to

By

k=+—-,
+T1

2)

where a “+4” sign stands for a positive frequency slope and
a “=” sign stands for a negative frequency slope. We as-
sume a positive frequency slope k > 0. T} is the duration
time of the subpulse, T is the pulse-repetition time (PRT),
fo < iAf is the carrier frequency of the ith subpulse, where
i=0,1,...,N — 1, and N is the number of the subpulses

(Figure 1), and Af is the step size. Let the initial time of the

, \KTT - exp <]E> exp(—j2niAft)exp ( — j2nfor), iT+71— h st<iT+71+ 5,
se(i) = 4 2 2

0

(3)

where 7(t) = 2R(t)/c is the delay time of the target, R(?) is the
distance between the target and the radar, and c is the wave
propagation velocity. Mixing the echo with the reference sig-
nal, this yields [10]

N-1 .
s(t) = Z rect [t_ﬂ;w—_T(t)
1

] exp {jmk[t —iT — (0%}
i=0

xexp [ — j2miAfr(t)] exp [ — j2m for(1)].
(4)

It can be seen that the echo of the frequency-stepped chirp
signal can be divided into two parts as follows:

t—iT — 7(t)

Ay = rect
1rec[ T

] -exp {jmk[t —iT — 01}
(5)

Ay =exp| — j2miAfz(t)] - exp [ — j2m for ()],

where A; is a chirp, and A, is the phase variation due to the
stepped variety of the carrier frequency of the signal.

Thus, the signal processing is implemented by the fol-
lowing two steps: (1) the pulse compression of the chirp at
each PRT gives the coarse range profiles; (2) the inverse dis-
crete Fourier transform (IDFT) of the coarse range profile
gives the refined range profile. Assuming that 7(t) = 7 =
2R/c, that is, the target is fixed and the time delay is time-
invariant, the output signal after the first pulse compression
is

N-1 . . .
B > t —iT — 7\ sin [nkT, - (t —iT — 1)]
selt) = % ‘/ﬁre“( T ) kT - (t —iT — 1)
xexp [ — jmk(t —iT — 7)*] exp (]%)
x exp(—j2miAfr)exp ( — j27 fot).
(6)

Taking the sampling time at t = iT - 7,i = 0,...,
N — 1, the sampled digital signal is obtained as fol-
lows:

(7)

otherwise.
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Taking IDFT transform of s.(i) in terms of the discrete-
time variable 7, the high-resolution range profile is obtained

as follows:
|S()| = kT}

2.1. Effect of velocity on range profile

sinz(l — NAfT)
Nsinn(I/N — Af7) |’

(8)

As shown in (4), the echo of the frequency-stepped chirp sig-
nal can be divided into two parts. Therefore, the Doppler
effect on the frequency-stepped chirp signal consists of two
parts: (1) the effect on the chirp subpulse compression, and
(2) the second compression within the frequency-stepped
burst. The effect on the frequency-stepped pulse compres-
sion causes the phase errors [10], where the linear phase er-
ror and the square phase error are, respectively, due to the
movement of the synthetic range profile in the position and
the energy diversion of the synthetic range profile. The phase
error can be compensated in the digital signal sequence. With
respect to the linear phase error, the precision of compensa-
tion should satisfy the constraint of [10]
c

AV < ——+ INfT 9)

The compensation criterion for the square phase error,
which might distort the synthetic range profile, is as follows:

[AV] < (10)

c
8N2AST

Now we discuss the effect on the chirp subpulse compres-
sion. Assuming that the target moves with a relative velocity
V towards the radar, the time delay is

2R-Vt

() = (11)

Sampling is carried out for each PRT at the time iT o
2R/c + t', where t' € (=T,/2,T/2), and it yields

T(t): T—TZT ————— t. (12)

Taking the pulse compression, the coarse range profile is
compressed as

t—iT — 2R/c + (2V/c)iT]
T

ssinm(fai — kt')Th
XK kT

where fgi = (2V/c)(fo — iAf) is the Doppler frequency.
After the first pulse compression, a sinc function in (13)

is produced. Because the signal processing is generally done

in the main lobe of the sinc function with the main lobe

width B; = kT, the small phase error caused by the non-

linear variable mkt'? is actually negligible. This can be seen

from the maximum of the variable phase as 7/(4kT}) for

S (—1/2kT1, I/Zle) and kT1 > 1.
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FIGURE 2: Sketch of frequency variety of the pulse-set which con-
sisted of two chirp pulses at the same carrier frequency, where T, is
the pulse-repetition time inside the pulse-set.

Due to the Doppler effect of the moving target, the peak
of the synthetic range profile is actually not at the target’s
real position. This coupling time variation is written as At =
fairk = [(fo = iAf)/k](2V/c) for each PRT. Note that
2fyV/kc is PRT-invariant and 2iA f V/kc is a variable. Due
to fo/k < 1 and 2V/c < 1, this variable is also very small
and negligible.

As the target is moving, the peak of the output wave-
form after the chirp pulse compression, that is, the coarse
synthetic range profile, moves among the different PRTs. It
can be seen from the envelope of (13) that the waveform
maximum moves 2V T between the two PRTs. Thus, the total
maximum variation in the range domain would not exceed
2VNT for N chirp pulses, and the total maximum variation
in the time domain is 2NV T/c. It has been known that in
imaging process, the criterion of the range profile migration
is usually less than 1/2 range cell, that is, 1/(2B;) [13, 14].
Thus, the constraint condition without range shift is

2V 1 1
—NT .
2B, 2kT1

(14)

Note that the above discussion is based on ISAR imaging.
In ISAR imaging for a moving target, the target size is much
smaller than the terrain scale of SAR imaging. Thus, we can
sample only one point within the sinc main lobe shown in
(13) and implement the second pulse compression. More-
over, it is not necessary to consider the waveform combining
problem, which will arise in SAR imaging for a large area.

2.2. A method for ground clutter cancellation

A method of the ground clutter cancellation with respect to
the frequency-stepped signal can be found in [9], and the
clutter cancellation of the chirp signal using the match fil-
tering and stretching process can be found in [11, 12], re-
spectively. Now we discuss the cancellation method of the
frequency-stepped chirp signal based on the stretch process-
ing.

Making use of the delay-line technique [16] to eliminate
the ground clutter, a signal similar to the format of [9] is de-
signed. As shown in Figure 2, a series of bursts is transmit-
ted, where each burst is a sequence consisting of N pulse-sets
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stepped in frequency from pulse-set to pulse-set by a fixed
step Af. Each pulse-set consists of two chirp pulses at the
same carrier frequency, that is, without a frequency step.

As a single point target is moving with a uniform velocity,
the first chirp signal of the ith pulse-set is

ui(t) = exp {j[27(fo +iAf)t]}
(15)

-exp (jmkt?), iT <t <iT 4 Ti.

Assuming that the fast time delay of the radar from the target
and the reference point are 7, and 7., respectively, the echo
and the reference signals can be expressed as follows:

si(t) = ui(t — 1p),

(16)
sic(t) = ui(t — 7).
After the stretching process, we obtain [12, 16]
s1i(t) = si(t) - sit(t)
(17)
— exp (j27AFit) exp (jg),
where AF; = —k(t, — 1)) = ~k - A1y, @i = —27[(fo +

iNf)AT, — (k/Z)ATIZ,]. Then, the first pulse compression can
be implemented via the Fourier transform of (17).
The discretized format of (17) is written as

s1,i(n) = exp (j2nAF;nAt) exp (joi), (18)

where At is the sampling time interval, n = 0,1,...,N; — 1,
N At =T,.

Denoting the moving point target as a and the fixed
point target as b, the radial velocity of the moving target
to the radar as v, and the pulse repetition interval of two
chirps within a same pulse-set as T, the fast-time delay of
the echoes from a and b take 7,(i) = 2R,(i)/c and 1,(i) =
2Ry (i)/c, where R, and Ry, denote the distance of radar to the
point targets a and b, respectively. Mixing with the i = 2Ith
echo signal, the reference signal must be the same as the
last one to mix with the i = (2] — 1)th echo signal, that is,
7.(2l = 1) = 7.(2]). In other words, the two echoes within a
same pulse-set are mixed with a same reference signal. It is im-
portant to keep the correlation between these two echoes. As
shown in Figure 2, each pulse-set consists of two chirp pulses
at the same carrier frequency. Thus, the carrier frequency of
i = 2Ith echo is the same as that of the i = (2] — 1)th echo,
thatis, fo < (21 — 1)Af. Assuming that A1, (i) = 7,(i) — 7.(i)
and A1y(i) = 1(i) — 7.(i), the two echoes can be written as

follows:

51,2171(71)

= exp (—2mjk - At,(2] — 1)nAt)

exp (—2nj<(f0+(21—1)Af)—(S)Ara(zl—l)2)>
+exp (= 2mjk - A1,(21 — 1)nAt)

-exp (—2ﬂj((f0+(21—1)Af)— (g)Arb(Zl—l)z»,
(19a)
s1,01(n)

=exp (—27jk - At,(2])nAt)

-exp (— 27rj((f0+(21 - 1DAf)- (%)A'ra@ﬂ))
+exp (=27 jk - Aty (21)nAt)

exp (—2nj((f0+(21—1)Af)— (g)mh(zl)z)).
(19b)
Since the point target b is fixed, that is, 7,(2] — 1) = 7,(2]) =

Tp, the second terms of (19a) and (19b) are the same. After
first-order cancellation, this yields

s11(n) = s12-1(n)

= exp (—2mjk - A1,(2])nAt)

. exp <72nj<(fo T+l - 1)AS) - (g)ATa(zz)z))
—exp (—2mjk - A1,(21 — 1)nAt)

-exp (—2ﬂj<(fo+(zl—1)Af) - (g)ma(zl— 1)2)).
(20)
It can be seen that the fixed-point scatterer which repre-
sents the ground clutter has been removed. The residual term

is the difference between the two echoes from the moving tar-
get, and its envelope takes the following form [16]:

2sin (—mk fy - T,nAt 4 ¢g) cos (@ - nAt = ¢y), (21)

where f; = 2v/c, T, is the pulse-repetition interval of the two
chirps, and

2(R4(2]) — Ry(21 - 1))
C

- T,
L= - Ty,
c fa

o=l (- (Basav),
o = —mk(A,(2]) 4 Ay(21 - 1)),

61 = —n<2f0+(4l—2)Af— (S)Aa(zz)z— (g)Aa(zz—nz).

(22)

At,(2l) — A1, (21 -1) =
2v
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TaBLE 1: Parameters of radar. 35

Carrier frequency fo 10 GHz

Frequency step size Af 12.5MHz

Number of steps N 24 .

Chirp bandwidth B 31.25 MHz 5

Pulse length T, 400 ns 'QU;

Chirp rate k 7.8125 x 10' Hz/s =2

Coarse range resolution AR, 4.8m g

Refined range resolution AR 0.5m

Pulse-repetition frequency PRF 20KHz

Its amplitude is written as 20 40 60 80 100

Range (m)

| 2sin (7k fg - T,nAt + ¢y) |. (23)

Then, the refined range profile can be achieved via the second
pulse compression.

3. SIMULATIONS

It has been shown in [4] that a suitable choice of parameters
allows one to nullify several (or, sometimes, even all) grating
lobes. Thus, we select these parameters according to a rela-
tion on two signal parameters (7B = 12.5 and T'Af = 5.
Note that k and B; in (2) are not the ultimate values of the
single pulse slope and bandwidth. The ultimate bandwidth of
each pulse is B = |k + k|t [4], where ks = =Af/T, Af >0,
where a “—” sign stands for a positive frequency step and a
“—” sign stands for a negative frequency step. Hence we will
assume a positive frequency step ks > 0, but the results apply
to a negative step as well). Table 1 shows some of the radar
parameters that are used to create the wide-bandwidth sig-
nal.

3.1. Simulation of synthetic range profile

In simulation, we suppose that a target is composed of three
scatterers locating on the line of sight (LOS) of radar. The
distance between radar and target is 10 km. The distances be-
tween one main scatterer and two other scatterers are 2 m
and 2.6 m, respectively. Figure 3 shows a coarse range pro-
file obtained via the chirp pulse compression. It can be seen
that three scatterers cannot be distinguished from the coarse
range profiles with a range resolution AR, = ¢/2B;=4.8 m.

After the second pulse compression by using the frequen-
cy-stepped technique, the refined range resolution is ob-
tained and three point targets can be clearly distinguished, as
shown in Figure 4. Figure 5 shows the difference of the syn-
thetic range profiles with different velocity errors. Because
the velocity errors are not compensated completely at the ve-
locity error 3 m/s, these point targets cannot be distinguished
due to the energy diversion.

3.2. Simulation of ground clutter cancellation

First, suppose that there is a uniformly distributed random
ground clutter in the imaging background. The signal-to-
clutter ratio is —25 dB. Figure 6 depicts the simulated target

FIGURE 3: Synthetic coarse range profile using chirp-pulse compres-
sion, where coarse range resolution is 4.8 m.

O b
=
=
K -10
2
a
=
<
~20
-30 L L

Range (m)

FIGURE 4: Synthetic refined range profile after the second pulse
compression, where range resolution is 0.5 m.

mode, which consists of 63 scatterers. The target size is
10m and 4 m in length and width, respectively. As shown
in Figure 2, each pulse-set consists of two chirp pulses at
the same carrier frequency and the pulse-repetition interval
T, = 25 microseconds. The distance between the radar and
the target center is 10 km. The moving direction of the tar-
get is assumed to be parallel to the moving direction of the
radar. The relative velocity between the radar and the target
is V=V, -V, =380m/s, where V, and V; are the velocity
of radar and target, respectively. The imaging time is about
0.8 second and the cross-range resolution is 0.5 m.

Figure 7 is the target image with no clutter. In imaging
processing, the side lobe of the synthetic range profiles is
suppressed using the Hamming window after removing the
residual video phase (RVP) errors.

When the clutter is introduced, the ISAR imaging with-
out clutter cancellation is shown in Figure 8. The target can-
not be identified at all. Figure 9 shows the imaged result of
our proposed clutter cancellation. It can be seen that after the
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— V =0m/s
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FiGgure 5: Comparison of synthetic range profiles with the different
velocity errors, where the velocity error = 0, 0.3, 3 m/s, respectively.
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FIGURE 6: Target mode.

ground clutter is eliminated, the target image is well identi-
fied.

Next we investigate the imaging results when the ground
clutter scatterers are not fixed anymore, that is, the clutter
movement (due to wind, etc.) is in existence. Assume that the
positions of the ground clutter scatterers shift during imag-
ing processing with different velocities and in different direc-
tions. Between the two received echoes, both the shift velocity
and the shift direction of each ground clutter scatterer change
randomly within some fixed extents. When the variation of
these random velocities is (—1 m, 1 m) and (—5m, 5m), the
resultant imaging results are shown in Figures 10 and 11, re-
spectively. It can be seen that the first one in Figure 10 is still
acceptable although the image has been somewhat degraded,
but, in Figure 11, the target can hardly be distinguished from
the resultant image anymore.

As mentioned in [9], the second-order (or even higher-
order) cancellation can be used to eliminate the clutter by
transmitting three or more chirp pulses of the same car-
rier frequency in each pulse-set. Intuitively, these higher-
order cancellations are expected to produce better cancel-
lation under the worst signal-to-clutter ratio according to

—-10

Cross-range (m)
(=)

10 , , ,

Range (m)

FIGURE 7: Radar image of the simulated tank without the ground
clutter.

Cross-range (m)

Range (m)

F1Gure 8: Radar image when the clutter is not eliminated.

-10

Cross-range (m)
o

10 . . .
=5 0 5

Range (m)

FIGURE 9: Radar image of the simulated target using the proposed
clutter cancellation method.
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(=)
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FiGgure 10: Imaging result using the proposed clutter cancellation
method, where the clutter scatterers are randomly moving in the
imaging process within (-1 m, 1 m).
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0t - — n |
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10 . i _LI.
-5 0 5

Range (m)

Cross-range (m

FIGURE 11: Imaging result using the proposed clutter cancellation
method, where the clutter scatterers are randomly moving in the
imaging process within (=5m, 5m).

the principle of the delay-line technique [16]. However, it
must be considered carefully together with the other issues
of the frequency-stepped chirp, for example, the range pro-
files splitting, motion compensation, and so forth.

4. CONCLUSIONS

Using the frequency-stepped chirp signal, the signal band-
width can be greatly enhanced, and as a result, the high range
resolution can be achieved. In this paper, the influences of the
velocity on the synthetic range profiles are analyzed and some
constraint conditions of the velocity compensation are pre-
sented, not only for the frequency-stepping processing, but
also for the chirp subpulse compression. These constraints
are useful for designing the imaging radar system with SAR

technique or ISAR technique. Based on the delay-line tech-
nique, the method of new signal format to eliminate the
ground clutter is presented.
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