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and shown to be negligible.
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1. INTRODUCTION

Many DSP algorithms, such as Kalman filter, involve several
iterative matrix operations, the most complicated being ma-
trix inversion, which requires O(n®) computations (n is the
matrix size). This becomes the critical bottleneck of the pro-
cessing time in such algorithms.

With the properties of inherent parallelism and pipelin-
ing, systolic arrays have been used for implementation of re-
current algorithms, such as matrix inversion. The lattice ar-
rangement of the basic processing unit in the systolic array is
suitable for executing regular matrix-type computation. His-
torically, systolic arrays have been widely used in VLSI im-
plementations when inherent parallelism exists in the algo-
rithm [1].

In recent years, FPGAs have been improved considerably
in speed, density, and functionality, which makes them ideal
for system-on-a-programmable-chip (SOPC) designs for a
wide range of applications [2]. In this paper we demonstrate
how FPGAs can be used efficiently to implement systolic ar-
rays, as an underlying architecture for matrix inversion and
implementation of Kalman filter.

The main contributions of this paper are the following.

(1) A new pipelined systolic array (PSA) architecture suit-
able for matrix inversion and FPGA implementation,

which is scalable and parameterisable so that it can be
easily used for new applications

(2) A new efficient approach for hardware-implemented
division in FPGA, which is required in matrix inver-
sion.

(3) A Kalman filter implementation, which demonstrates
the advantages of the PSA.

The paper is organised as follows. In Section 2, the Schur
complement for the matrix inversion operation is described
and a generic systolic array structure for its implementation
is shown. Then a new design of a modified array structure,
called PSA, is proposed. In Section 3, the performance of
two approaches for scalar division calculation, a direct di-
vision by divider and an approximated division by lookup
table (LUT) and multiplier, are compared. An efficient LUT-
based scheme with minimum round-off error and resource
consumption is proposed. In Section 4, the PSA implemen-
tation is described. In Section 5, the system performance and
results verification are presented in detail. Benchmark com-
parison and the design limitations are discussed to show the
advantages as well as the limitations of the proposed de-
sign. In Section 6, Kalman filter implementation using the
proposed PSA structure is presented. Section 7 presents con-
cluding remarks.
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2. MATRIX INVERSION

Hardware implementation of matrix inversion has been dis-
cussed in many papers [3]. In this section, a systolic-array-
based inversion is introduced to target more efficient imple-
mentation in FPGAs.

2.1. Schur complement in the Faddeev algorithm

For a compound matrix M in the Faddeev algorithm [4],

A B
M_[—c D]’ 1)

where A, B, C, and D are matrices with size of (n x n), (nx1),
(m X n), and (m X ), respectively, the Schur complement,
D + CA™'B, can be calculated provided that matrix A is non-
singular [4].

First, a row operation is performed to multiply the top
row by another matrix W and then to add the result to the
bottom row:

- A B
M= [C+WA D+WB] (2)

When the lower left-hand quadrant of matrix M’ is nulli-
fied, the Schur complement appears in the lower right-hand
quadrant. Therefore, W behaves as a decomposition operator
and should be equal to

W=CA™' (3)
such that
D+WB =D+ CA™'B. (4)

By properly substituting matrices A, B, C, and D, the matrix
operation or a combination of operations can be executed via
the Schur complement, for example, as follows.

(i) Multiply and add:
D+CA'B=D+CB (5)

ifA=1
(ii) Matrix inversion:

D+CA 'B=A" (6)

ifB=C=IandD =0.

2.2. Systolic array for Schur complement
implementation

Schur complement is a process of matrix triangulation and
annulment [5]. Systolic arrays, because of their regular lat-
tice structure and the parallelism, are a good platform for the
implementation of the Schur complement. Different systolic
array structures, which compute the Schur complement, are
presented in the literature [3, 6-8]. However, when choosing

Boundary cell Internal cell
X X
é;) S
C e
If |X]| > |P|: IfS=1:
Lo s
Q= Lpx 3*3 c
g P+C*X
=
Else: Else:
0 N
éj -X/P C
X+ C*P
Always: Always:
o
& s
<5
2 ~l/ 0 C
AP X +C*P

FIGURE 1: Operations of boundary cell and internal cell.

an array structure one must take into account the design effi-
ciency, structure regularity, modularity, and communication
topology [9].

The array structure presented in [6] is taken as the start-
ing point for our approach. It consists of only two types of
cells, the boundary and internal cells. The structure in [3]
needs three types of cells. The cell arrangement in the chosen
structure is two-dimensional while the cells in [7] are con-
nected in three-dimensional space with much higher com-
plexity.

The other consideration when choosing the target struc-
ture was the type of operations in the cells. In the preferred
structure [6], all the computations executed in cells are lin-
ear, while [8] would require operations such as square and
square root calculations.

A cell is a basic processing unit that accepts the input data
and computes the outputs according to the specified control
signal. Both the boundary and internal cells have two differ-
ent operating modes that determine the computation algo-
rithms employed inside the cells. Mode 1 executes matrix tri-
angulation and mode 2 performs annulment. The operating
mode of the cell depends on the comparison result between
the input data and the register content in the cell. The cell
operations are described in Figure 1.

To create a systolic array for Schur complement evalua-
tion, E = D + CA™ !B, cells are placed in a pattern of an in-
verse trapezium shown in Figure 2. The systolic array size is
controlled by the size of output matrix E, which is a square
matrix in case of matrix inversion. The number of cells in the
top row is twice the size of E and the number of internal cells
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Then the matrix is fed into the systolic array in columns. A en e
and B require mode I cell operation, while C and D are com- el
puted in mode 2. The result can be obtained from the bottom Data out
row in skewed form that corresponds to the input sequence.
Figure 3 gives an illustration.

2.3. Modifying systolic array structure

A new systolic array can be constituted from other array
structures to achieve certain specifications with the follow-
ing four techniques [6].

(i) Off-the-peg maps the algorithm onto an existing sys-
tolic array directly. Data is preprocessed but the array design
is preserved. However, data may be manipulated to ensure
that the algorithm works correctly under array structure.

(ii) Cut-to-fit is to customise an existing systolic array to
adjust for special data structures or to achieve specific system
performance. In this case, data is preserved but array struc-
ture is modified.

(iii) Ensemble merges several existing systolic arrays into
a new structure to execute one algorithm only. Both data and

FiGURE 3: Dataflow in systolic array of 2 X 2 matrix size.

array structures are preserved, with dataflow transferring be-
tween arrays.

(iv) Layer is similar to the ensemble technique. Several
existing systolic arrays are joined to from a new array, which
switches its operation modes depending on the data. Only
part of the new array will be utilised at one time.

In order to overcome the problem of the growth of the
basic systolic array presented in Section 2.2 with the size of
input matrices, a modified PSA is proposed in this section.
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FiGURE 5: Demonstration of feedback dataflow.

When comparing two consecutive layers in the basic ar-
ray from Figure 2, it can be noted that the cell arrangement is
identical except the lower layer has one less internal cell than
its immediate upper layer. This leads to the conclusion that
the topmost layer is the only one that has the processing capa-
bilities of all other layers and could be reused to do the func-
tion of any other layer given the appropriate input data into
each cell. In other words, the topmost layer processing ele-
ments can be reused (shared) to implement functionality of
any layer (logical layer) at different times. Obviously, for this
to be possible, the intermediate results of calculation from
logical layers have to be stored in temporary memories and
made available for the subsequent calculation. The sharing
of the processing elements of the topmost layer is achieved
by transmitting the output data to the same layer through
feedback paths and pipeline registers. The dataflow graph of
the PSA is shown in Figure 4.

In the PSA, the regular lattice structure of basic systolic
array is simplified to only include the first (topmost/physical)
layer. Referring to Figure 4, data first enters in the single cell

row and the outputs are passed to the registers in the same
column. These registers, which store the temporary results,
are connected in series and also provide feedback paths. The
end of the register column connects to the input ports of
the cell in the adjacent column and the feedback data be-
comes the input data of the adjacent cell. The corresponding
dataflow paths in two different array structures are shown
in Figure 5, highlighted in bold arrows. The data originally
passing through the basic systolic array re-enters the same
single processing layer four times during three recursions.

In order to implement the PSA structure for an n X n
matrix, the required number of elements is

(i) the number of boundary cells Cy. = 1,
(ii) the number of internal cells Cj. = 2n — 1,
(iii) the number of layers in a column of register bank R; =
2(n—1),
(iv) the total number of registers Ryt = 2(n — 1)(2n — 1).

The exact structure of the PSA for the example from Figure 5
is presented in Figure 6. As can be seen when the input
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FIGURE 6: Modifying systolic array of PSA structure.

matrix size increases, the number of cells required to build
the PSA increases by O(n), which is much smaller than O(n?)
as it is the case in other systolic array structures. The price
paid is the number of additional registers used for storage
of intermediate results. However, as the complexity of regis-
ters is much lower than that of systolic array cells, substan-
tial savings in the implementation of the functionality can
be achieved as it is illustrated in Figure 7 for different sizes
of matrices. Resource utilisation is expressed in a number of
logic elements of an FPGA device used for implementation.

3. DIVISION IN HARDWARE
3.1. Division with multiplication

Scalar division represents the most critical arithmetic oper-
ation within a processing element in terms of both resource
utilisation and propagation delay. This is particularly typical
for FPGAs, where a large number of logic elements are typi-
cally used to implement division. For the efficient implemen-
tation of division, which still satisfies accuracy requirements,
an approach with the use of LUT and an additional multi-
plier has been proposed and implemented.

Noting that numerical result of “a divided by b” is the
same as “a multiplied by 1/b,” the FPGA built-in multiplier
can be used to calculate the division if an LUT of all possible
values of 1/b was available in advance.

FPGA devices provide a limited amount of memory,
which can be used for LUTs. Due to the fact that 1 and b can
be considered integers, the value of 1/b falls into a decreasing
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FIGURE 7: Logic resource usage comparison between the PSA and
basic systolic array.

hyperbolic curve, while b tends to one, and so the value dif-
ference between two consecutive numbers of 1/b decreases
dramatically. To reduce the size of the LUT, the inverse value
curve can be segmented into several sections with different
mapping ratios. This can be achieved by storing one inverse
value, the median of the group, in the LUT to represent the
results of 1/b for a group of consecutive values of b. This pro-
cess is illustrated in Figure 8. The larger the mapping ratio,
the smaller amount of memory needed for the LUT. Obvi-
ously, such segmentation induces precision error. The way to
segment the inverse curve is important because it directly af-
fects the result accuracy. Further reduction in the memory
size is achieved by storing only positive values in the LUT.
The sign of the division result can be evaluated by an XOR
gate.

On an Altera APEX device, when combining the LUT and
multiplier into a single division module, a 16 bit by 26 bit
multiplier consumes 838 logic elements (LEs), operating at
25MHz clock frequency and total memory consumption of
53248 memory bits for the specific target FPGA device. The
overall speed improvement achieved through using the DLM
method is 3.5 times when compared to using a traditional
divider. Because of the extra hardware required for efficiently
addressing the LUT, the improvement in terms of LEs is
rather modest. The hardware-based divider supplied by Al-
tera, configured as 16 bit by 26 bit, consumes 1 123 LEs when
it is synthesised for the same APEX device.

3.2. Optimum segmentation scheme

Since b is a 16-bit number (used in 1.15 format), there are
(215 — 1) = 32767 different values of 1/b. The performance
of various linear and nonlinear segmentation approaches are
evaluated in the priority of precision error and resource con-
sumption.
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TaBLE 1: The optimum segmentation scheme.

Segmentation Mapping ratio
1-511 1:1
512-1023 1:2
1024-2047 1:4
2048-4095 1:8
4096-8 191 1:16
8192-16383 1:32
16 384-32767 1:64

Absolute error is calculated by subtracting the true value
of the inverse 1/b from the LUT output. Average error is the
mean of the absolute error among the 32 767 data. Since the
value of 1/b retrieved from the LUT is later multiplied by
a in order to generate the division result, any precision er-
ror in LUT will be eventually magnified by the multiplier.
Therefore, the worst-case error is more critical than the av-
erage precision error. The worst-case error can be calcu-
lated as follows: worst-case error of 1/b, = absolute error of
(1/by) X by_1.

The error analysis was performed to investigate both the
absolute error in average and the worst-case. As a result of
this analysis an optimum segmentation scheme, tabulated in
Table 1, was determined. It provides the minimum precision
required of a typical hardware-implemented matrix inver-
sion operation. This was verified by means of simulation us-
ing Matlab-DSP blockset for a number of applications. The
resulting LUT holds 4 096 inverse values with a 26-bit word
length in 16.10 data format.

4. PIPELINED SYSTOLIC ARRAY IMPLEMENTATION

The implementation block diagram of the PSA structure is
shown in Figure 9. Datapath Architecture is illustrated in
Figure 10. The interfacing of the control unit and the other
internal and external cells are shown in Figure 11.

4.1. Control unit

The control unit is a timing module responsible for gener-
ating the control signals at specific time instances. It is syn-
chronous to the system clock. Counters are the main com-
ponents in the control unit. The I/0 data of control unit are
listed below.

Inputs

(1) 1-bit system clock: clk for synchronisation and the ba-
sic unit in timing circuitry.

(i) 1-bit reset signal: reset to reset the control unit oper-
ation. Counters will be reset to the initial values and
restart the counting sequences.

Outputs

(i) 1-bit cell operation signal mode to decide the cell op-
eration mode: “1” for mode 1 and “0” for mode 2.

(ii) 1-bit register clear signal: clear to activate the content-
clear function in cell internal registers: “1” for enable
and “0” for disable.

(iii) 1-bit multiplexer select signal: sel for controlling the
input data sources selection in data path multiplexers:
“1” for input from matrix and “0” for input from the
feedback path.

Since the modules in the PSA are arranged in systolic
structure and connected synchronously, generation of the
control signals required to operate these modules should be
also in regular timing patterns. Figure 12 demonstrates the
required control signals for operating the PSA in different
sizes.

5. DESIGN PERFORMANCE AND RESULTS
5.1. Resource consumption and timing restrictions

Compared to other systolic arrays in the literature, the small
logic resource consumption is the main advantage of the pro-
posed PSA structure. For example, for inverting an # X n ma-
trix, the PSA requires to instantiate 21 cells while the systolic
array in Figure 2 requires (n + >, " k) cells.

Because of feedback paths in the design and single cell
layer structure in the PSA, the number of processing ele-
ments required for implementation has been reduced and
therefore the hardware complexity changed from O(n?) to
O(n).

A generic PSA has a customisable size and configurable
structure. The final size of the PSA can be estimated by
adding the resource consumption of each building block or
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module as shown below for example:

PSA size = Z size (boundary cell + internal cell
+ data path + control unit)
= (976) + (495I) +(16R+16M)
—— —— | ——
BoundryCell
+ (131 +3D)[LEs],
[ —)

ControlUnit

(8)

InternalCell DataPath

where I, R, M, and D represent the number of internal cells,
16-bit pipelining registers, 16-bit input select multiplexers,
and 3-bit signal delay D-FFs, respectively. It should be noted
that the actual size of the synthesised PSA on FPGA device
will be affected by the architecture and routing resources of
the FPGA.

The processing time for the n X n matrix inversion in
PSA is 2(n? — 1) clock cycles at a maximum clock frequency
running at 16.5MHz for n < 10 in our implementation
(Altera APEX EP20K200EFC484-2). When a larger PSA is

synthesised, the system clock period decreases as the critical
path extends.

5.2. Comparisons with other implementations

The PSA performance has been compared with some other
matrix inversion structures based on systolic arrays in terms
of number of processing elements (or cells), number of
cell types, logic element consumption, maximum clock fre-
quency, and design flexibility.

For an n X n matrix inversion, the PSA requires 2n cells
while [n(37 + 1)/2] cells are used in the systolic array based
on the Gauss-Jordan elimination algorithm [10]. In the PSA,
cells are classified as either boundary or internal cells, while
the processing elements in the matrix inversion array struc-
ture in [5] are divided into three different functional groups.

When working with a 4 X 4 matrix, it takes 4 784 LEs
to implement the PSA on an Altera APEX device, while
8610 LEs are used to implement the same in a matrix-based
systolic algorithm engineering (MBSAE) Kalman filter [11].
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When synthesised on an Altera APEX device (EP20K-
200EFC484-2), PSA allows a maximum throughput of
16 MHz, compared to only 2 MHz in the design presented in
the systolic array based design reported in [11] and 10 MHz
in geometric arithmetic parallel processor (GAPP) in [12].
The PSA is designed to be customisable and parameterisable,
but other systolic arrays in the literature were all fixed-size
structures.

5.3. Limitations

In our design several built-in modules from the vendor li-
brary were used for basic dataflow control and arithmetic
calculations. Therefore, the results reported in this paper are
valid only for specific FPGA devices. However, as libraries
provided by other FPGA vendors have equivalent functional-
ities readily available, the proposed design can be easily mod-
ified and ported to other FPGA device families.

One disadvantage of the PSA design is that input data
has to be in skewed form before entering the array. When
the PSA interfaces with other processors, a data wrapping
preprocessing stage may be required to pack the data in the
specific skewed form shown in Figure 13. Output data from
the PSA are unpacked to rearrange the results back to regular
matrix form.

5.4. Effects of the finite word length

The finite word length performance of the PSA structure was
analysed. All quantities in the structure are represented using
fixed-point numbers. It should be noted that only multipli-
cation and division, which itself is computed by multiplica-
tion, will introduce round-off error [13]. Addition and sub-
traction do not produce any round-off noise. The approach
used here was to follow the arithmetic operations in the dif-
ferent variables update equations and keep track of the errors

which arise due to finite-precision quantisation. As described
earlier in the paper, all the multiplication operations are per-
formed using 26-bit long data. Computation results, as well
as the data in the LUT, are of 26-bit long. To a large extent,
this eliminates the possibility of overflow occurring with ma-
trices of small size regardless of the actual data values. Simu-
lation shows that the inverse of a matrix of size up to 10 x 10,
and data represented with 26 bits, which is sufficient for most
practical applications, can be computed with minimal error.
Obviously, as the size of the matrix increases, the error also
increases. However, as the proposed design is fully param-
eterised, the word length used in the computation can be
accordingly increased, but it will result in higher FPGA re-
source usage.

6. KALMAN FILTER IMPLEMENTED USING PSA
6.1. Kalman filter

Since its introduction in the early 60s [14], Kalman filter has
been used in a wide range of applications and as such it falls
in the category of recursive least square (RLS) filters. As a
powerful linear estimator for dynamic systems, Kalman fil-
ter invokes the concept of state space [15]. The main feature
of the state-space concept allows Kalman filters to compute a
new state estimate from the previous state estimate and new
input data [16]. Kalman filter algorithms consist of six equa-
tions in a recursive loop. This means that results are con-
tinuously calculated step by step. To derive the Kalman filter
equations, a mathematical model is built to describe the dy-
namics and the measurement system in form of linear equa-
tions (9) and (10).
(i) Process equation:

x(n+1)=Ax(n)+w(n). 9)
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(ii) Measurement equation:
s(n) = Bx(n) +v(n), (10)

where x(n) is the state at time instance n, s(n) is the measure-
ment at time instance n, A is the processing matrix, B is the
measurement matrix, w(n) is the system processing noise,
and finally v(n) is the measurement noise. In (9), A describes
the plant and the changes of state vector x(n) over time, while
w(n) is a plant disturbance vector of a zero-mean Gaussian
white noise. In (10), B linearly relates the system states to the
measurements, where v(n) is a measurement noise vector of
a zero-mean Gaussian white noise.

The Kalman filter equations can be grouped into
two basic operations: prediction and filtering. Prediction,
sometimes referred to as time update, estimates the new state
and the uncertainty. An estimated state vector is denoted as
X(n). When an estimate of x(n) is computed before the cur-
rent measurement data s(#) become available, such estimate
is classified as an a priori estimate and denoted as x(1). When
the estimate is made after the measurement s(n) arrives, it is
called a posteriori estimate [16]. On the other hand, filter-
ing, usually referred to as measurement update, is to correct
the previous estimation with the arrival of new measurement
data. The prediction error can be computed from the dif-
ference between the value of actual measurements and the
estimated value. It is used to refine the parameters in a pre-
diction algorithm immediately in order to generate a more
accurate estimate in the future. The full set of Kalman filter
equations can be found in [17].

It is evident from the Kalman filter equations that its
algorithm comprises a set of matrix operations, including
matrix addition, matrix subtraction, matrix multiplication,
and matrix inversion. Among these matrix operations, ma-
trix inversion is the most computationally expensive and
thus being the bottleneck in the processing time of the al-
gorithm such that the overall system processing time mainly
depends on matrix inversion speed [10]. In Section 2, a new
implementation of matrix inversion, which is in fact the
“heart” of Kalman filter, was presented. Hardware imple-
mentation of another critical operation, division, was pre-
sented in Section 3.

6.2. Kalman filter in PSA-based structure

As a case study to verify the performance of the proposed
PSA, a Kalman-filter-based echo cancellation application was
implemented. By appropriate substitutions of matrices A, B,
C, and D (Table 2), matrix-form Kalman filter equations can
be computed by the PSA in 9 steps. A complete execution of
the 9 steps produces state estimates in the next time instance
and constitutes one recursion in the Kalman filter algorithm.

The components of the four input matrices are queued
in a skewed package entering the PSA cells row by row. It can
be noted from Table 2 that some Schur complement results
will be used as input data in later steps. Thus, extra regis-
ters are required to store the intermediate results. To ensure
that the intermediate results are reloaded to specific cells at
the correct time instances, a new data path and control unit

TaBLE 2: Matrix substitutions for Kalman filter algorithms.

Schur complement Result
I

x(n—-1|n-1)

Step 1 x(nln-1)

Step 2 AP(n—1|n-1)

AT
AP(n—1|n-1)
Qn-1)

1
B’

P (nln-1)

0
I
P (n|n-1)B"

B
R(n)

BP(n | n—1)BT +R(n)
I
P (n|n-1B"

0
1
[P~(n|n-1)BT]T
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is created. In the existing PSA structure, data in A and C
are aligned in the same column entering to the cells in left-
half group, while B and D are in another column toward the
right-half cells group. Along the feedback paths, the result,
E = D + CA™'B, is connected to the same columns of A and
C as shown in Figure 14. In this case, the intermediate result
cannot be used as the input data for B and D. Therefore, a
new data path with an input multiplexer is added to allow E
passing to cells in right-half group. A control unit is required
to switch the multiplexer input sources between intermediate
result E and new data from B and D. The modified design is
presented with thick lines in Figure 15.

The results obtained from the echo cancellation appli-
cation using the PSA-based Kalman filter closely match the
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FIGURE 14: The original data paths of PSA.
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Figure 15: The new data paths of a PSA-based Kalman filter.

theoretical values. The small residual error observed in the
resulting data, is contributed to the finite word length effect
typical of fixed-point structure of the proposed design.

6.3. Comparison with other implementations

There are several hardware implementations for Kalman fil-
ter in the literature. For a 4-state Kalman filter, all the Kalman
filter equations can be expressed as 30 scalar equations. Sim-
ilar to the PSA, direct operation of matrix inversion is also
avoided in the matrix decomposition method (MDM) and
the Kalman gain calculation turns into a set of 4 scalar equa-
tions with scalar division and addition. With the high pro-
cessing speed of 169.4 nanoseconds reported in [18], MDM
seems to have a better speed over the PSA (280 nanoseconds)
for the same target APEX device. However, the PSA structure
still enjoys the following advantages.

Flexibility

When the number of states in a Kalman filter changes, all the
scalar equations in MDM become invalid as matrix dimen-
sions in the algorithm depend on the size of the state vec-
tor. Considerable design time is required to decompose the
matrix-form equations again. However, in the PSA, a Kalman
filter with different number of states can be generated by
modifying one parameter (number of states, i.e., the matrix
size) in the heading of the VHDL code. The PSA serves as an
IP block for a generic Kalman filter in VHDL, while MDM is
a hard-wired implementation for a fixed Kalman filter.

Clock speed

The advantages and the conditions of using LUT with mul-
tiplier to perform scalar division has been discussed in
Section 3.2. This approach enables PSA to have a system
clock frequency 3.5 times faster than using scalar dividers
only.

Resource usage

In the MDM method, 32 operations of addition/subtraction,
22 multiplications, and 4 divisions are involved in scalar op-
erations. The overall logic element usage of the PSA is 40%
lower than an equivalent MDM-based design for a 4-state
Kalman filter implementation.

7. CONCLUSIONS

In this paper, an optimised systolic-array-based matrix in-
version for implementation in FPGA was proposed and used
for rapid prototyping of a Kalman filter. Matrix inversion is
the computational bottleneck and the most complex oper-
ation in Kalman filtering. The PSA matrix inversion results
in a simple, yet fast, implementation of the operation. It is
scalable to matrices of various sizes and is implemented as
a parameterised design. This allows its direct customisation
and instantiation for application-specific problems. Resource
utilisation is low and linearly depends on the matrix size.

Modified from the Schur complement systolic array, the
PSA simplifies recursive matrix-form equations in Kalman
filters to scalar operations and inherits the design advantages
of parallelism and pipelining. In the proposed PSA design,
a new approach for implementation of scalar division has
also been proposed, which speeds up the division operation
3.5 times over traditional dividers and yet uses less logic ele-
ments and resources to implement.
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