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Differential space-time coding (DSTC) has receivedmuch interest as it obviates the requirement of the channel state information at
the receiver while maintaining the desired properties of space-time coding techniques. In this paper, by introducing star quadrature
amplitude modulation (star QAM) method, two kinds of multiple amplitudes DSTC schemes are proposed. One is based on
differential unitary space-time coding (DUSTC) scheme, and the other is based on differential orthogonal space-time coding
(DOSTC) scheme. Corresponding bit-error-rate (BER) performance and coding-gain analysis are given, respectively. The proposed
schemes can avoid the performance loss of conventional DSTC schemes based on phase-shift keying (PSK) modulation in high
spectrum efficiency via multiple amplitudes modulation. Compared with conventional PSK-based DSTC schemes, the developed
schemes have higher spectrum efficiency via carrying information not only on phases but also on amplitudes, and have higher
coding gain. Moreover, the first scheme can implement low-complexity differential modulation and different code rates and be
applied to any number of transmit antennas; while the second scheme has simple decoder and high code rate in the case of 3 and 4
antennas. The simulation results show that our schemes have lower BER when compared with conventional DUSTC and DOSTC
schemes.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. INTRODUCTION

With the fast development of modern communication tech-
nique, the demand for reliable high data rate transmission
in fading channel is increased significantly, which stimulate
much interest in multiple antennas communication, espe-
cially, space-time coding schemes [1–3]. However, the effec-
tiveness of most space-time coding schemes depends on per-
fect channel estimation at the receiver, which is difficult to
implement in practice due to rapid changes in time-varying
channel, or due to the overhead needed to estimate a large
number of parameters such as in a MIMO system [4]. Thus,
the differential modulation scheme becomes an attractive al-
ternative.

With differential detection, channel state information
(CSI) is not required either at the transmitter or at the re-
ceiver. Hochwald and Marzetta [5] proposed an effective
modulation scheme to improve system capacity (i.e., uni-
tary space-time modulation) with noncoherent detection for
multiple antennas in fading channel, and then unitary space-
time coding. Subsequently, Hochwald and Sweldens [6] and

Hughes [7] independently came up with differential uni-
tary space-time coding scheme based on group codes. This
scheme can allow easy implementation at the transmitter
due to the application of group codes, but has higher decod-
ing complexity. Afterwards, Tarokh and Jafarkhani [8] devel-
oped a simple differential space-time coding scheme based
on STBC, but the scheme is limited in two transmit antennas.
Thus in a subsequent work, they proposed a multiple anten-
nas space-time coding scheme with more than 2 transmit an-
tennas [9], but the scheme was still limited in existing STBC
structure. The code-rate is only 1/2, and corresponding de-
coding method is also complex. After the above work, Gane-
san and Stoica firstly developed a simple but effective orthog-
onal space-time coding (OSTC) scheme [10] and then cor-
responding differential OSTC scheme [11]. Compared with
the above-mentioned differential schemes, this scheme, with
lower computational complexity while higher code rate in
the case of three or four antennas, does not need the alge-
bra group structure. Unfortunately, the above schemes basi-
cally need to employ the multiple levels phase shift-keying
(MPSK) constellation, namely, the transmitted symbols are
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all from the unitary constellation and corresponding en-
coded matrix has unity-amplitude. As a result, when spec-
trum efficiency gets higher, the minimum product distance
between the two encoded matrices decreases as the mini-
mum distance between symbols decrease, which will bring
about the obvious reduce of coding gain and the loss of sys-
tem performance. These conclusions can also be achieved
from Table I in [7] and Table I in [11]. Considering that the
minimum distance between multiple levels QAM symbols is
larger than the corresponding PSK symbols’ distance [12],
we adopt the star QAM method to map MPSK-based code
matrices. On one hand, we can utilize both the phase and
amplitude to carry information to improve the spectrum ef-
ficiency further; on the other hand, by star QAM method,
constellation matrices are no longer limited in unity constel-
lation and they have more freedom, the minimum produced
distance is increased accordingly. Thus we can improve the
performance of pervious code matrix and avoid the perfor-
mance degradation in high spectrum efficiency. Although a
differential space-time block code scheme based on square-
QAM is proposed in [13], the scheme is limited in existing
STBC structure and suits square STBC only, and has high-
complexity differential modulation. Motivated by the rea-
son above, on the basis of analyzing differential orthogo-
nal space-time coding (DOSTC) scheme and differential uni-
tary space-time code (DUSTC) scheme, we develop the two
multiple-amplitude differential space-time coding schemes
by the star QAMmethod, and analyze corresponding perfor-
mance over Rayleigh fading channel. Meanwhile, we give dif-
ferential space-time coding scheme for nonsquare code ma-
trix and derive the calculation formulas of the coding gain
in detail. Compared with existing DUSTC and DOSTC, the
schemes have lower bit error rate (BER) and higher coding
gain.

2. SYSTEMMODEL AND STAR QAM

In this section, we consider a wireless communication sys-
tem with K antennas at the transmitter, N antennas at the
receiver, and the system operating over a flat Rayleigh fad-
ing channel. Given that H = {hkn} is K × N , fading channel
matrix, where hkn denotes the complex channel gain from
transmit antenna k to receive antenna n. The channel gains
are modeled as samples of independent complex Gaussian
random variables with zero-mean and variance 0.5 per real
dimension, and the channel state information is unknown at
the receiver. LetGi be the codematrix withK×K transmitted
at time block i, then at the receiver, the received signal matrix
Xi can be expressed by

Xi = √γGiH + Zi, (1)

where Zi is K ×N complex Gaussian noise matrix, whose el-
ements are independent, identically distributed (i.i.d) com-
plex Gaussian random variables with zero-mean and unit-
variance. Let the codematrix index be i and time epoch index
within the code matrix be t. So at the receiver, the received
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Figure 1: Structure diagram of a MIMO wireless system.

signal for receive antenna n (n = 1, 2, . . . ,N) can be written
by

xi,t,n = √γ
K∑

k=1
gi,t,khk,n + zi,t,n, (2)

where the coded symbols from code matrix are normalized
to obey E{∑K

k=1 |gi,t,k|2} = 1, thus it can ensure that γ is the
expected signal-to-noise ratio (SNR). {zi,t,n} are elements of
noise matrix Zi. The structure diagram of a MIMO wireless
communication system with K transmit antennas and N re-
ceive antennas is illustrated in Figure 1.

As we know, quadrature amplitude modulation (QAM)
is a bandwidth efficient transmission method for digital sig-
nals. Compared with MPSK modulation, the MQAM has
stronger ability against inference in fading channel, its M
constellation points are not limited in unit amplitude, but
have multiple amplitudes [14, 15]. Thus they have more
freedom and higher minimum distance among constellation
points. For 4 bits symbol, there are usually two constellation
mapping methods, that is, square mapping and star map-
ping. 16 square QAM requires coherent detection, whereas
16 star QAM can adopt differential detection. Due to the ro-
bustness of the differential detection scheme in fading chan-
nels, star QAM has received much attention for mobile radio
applications [15]. For this reason, we employ the star QAM
scheme to improve the performance of existing differential
space-time codes. Figure 2 illustrates the signal constellations
of M-level star QAM, it consists of two rings. The two rings
both correspond to M/2-PSK constellation, but they have
different amplitudes, that is, a0 and a1 in Figure 2; where
a1 = βa0, β is the amplitude ratio. For simplicity, M = 16
is employed in Figure 2.

3. MULTIPLE AMPLITUDES DIFFERENTIAL UNITARY
SPACE-TIME CODING

The differential encoding and decoding schemes using star
QAM method for unitary space-time coding are analyzed
in this section. The differential unitary space-time coding
scheme can be applied to multiple antennas system with an
arbitrary number of transmit antennas, and is very effective
in the absence of channel state information at the receiver. At
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Figure 2: 16 star QAMs constellation.

the transmitter, the information is differentially encoded at
time block i as follows:

Gi = VdiGi−1, (3)

where Gi and Gi−1 are the transmitted matrices at i and
i− 1, respectively; and initial code matrix G0 = IK×K , which
does not carry any information. Vdi is a unitary informa-
tion matrix. According to [6], for a transmission rate of R
bits/channel use, it requires a constellation with P = 2RK dif-
ferent signals, each signal is a K × K unitary matrix Vp from
a constellation Υ of P such distinct unitary matrices. Here,
the data to be transmitted are assumed to be an integer data
sequence d1,d2, . . . , with dp ∈ {0, 1, . . . ,P − 1}. Clearly, all
the transmitted matricesGi will be unitary. While for [7], the
information matrix Vi is from the set of all possible infor-
mation Γ, Γ is K × K unitary matrix group. For any V ∈ Γ,
the equation VVH = VHV = IK×K holds; the superscriptH

denotes conjugate transpose of matrix. Thus the transmitted
signal matrix satisfies the equation Gi = ViGi−1 with initial
matrix G0 = D, D is a K × K unitary matrix [7].

At the receiver, we assume that the channel gains remain
constant at two consecutive time blocks, then according to
(1), the received matrices at time block i− 1 and i are give by

Xi−1 = √γGi−1H + Zi−1, Xi = √γGiH + Zi, respectively.
(4)

From (3), (4) can be changed as follows:

Xi = √γGiH + Zi

= √γVdiGi−1H + Zi

= Vdi

(
Xi−1 − Zi−1

)
+ Zi

= VdiXi−1 + Zi −VdiZi−1

= VdiXi−1 +
√
2Z̃i,

(5)

where Z̃i is a K × N noise matrix. Consider that Zi and Zi−1
are both complex Gaussian matrices and their elements are

zero-mean and unit-variance, and Z̃i is a complex Gaussian
matrix, and its elements are also i.i.d complex Gaussian ran-
dom variables with zero-mean and unit-variance.

From the above-mentioned analysis and [6], we can ob-
tain the decision variable for transmitted data di by employ-
ing maximum likelihood (ML) detector as follows:

d̂i = argminp=0,...,P−1
∥
∥Xi −VpXi−1

∥
∥2

= argminp=0,...,P−1 tr
{(
Xi −VpXi−1

)(
Xi −VpXi−1

)H}
,

(6)

where the operator tr(·) denotes the matrix trace.
Considering

tr
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Xi −VpXi−1

)(
Xi −VpXi−1

)H}

= tr
{
XiX

H
i

}− 2Re
{
tr
(
VpXi−1XH

i

)}

+ tr
{
VpXi−1XH

i−1V
H
p

}

= tr
{
XiX

H
i

}− 2Re
{
tr
(
Xi−1XH

i Vp
)}

+ tr
{
Xi−1XH

i−1V
H
p Vp

}
.

(7)

Then (6) can be equivalent to

d̂i = argmaxp∈0,...,P−1 Re
{
tr
(
Xi−1XH

i Vp
)}
. (8)

Based on the above analysis, the ML detector for differential
modulation can be interpreted as follows: the block code re-
ceived at time i− 1 is used as an estimate of the channel, and
this estimate is used to do a coherent detection of the block
code at time i. Similarly, the block code received at time i is
also the channel estimate for decoding block i + 1.

To simplify the transmission scheme and the constel-
lation designs, [6] also gives simple group code structure.
Namely, the set {V0, . . . ,VP−1} forms a cyclic group, and
Vp = VP

1 (p = 0, 1, . . . ,P; V1 is a diagonal generator matrix)
becomes a diagonal matrix, this design criterion is essentially
the same as the scheme in [7]. Thus according to [7], the de-
cision value for the informationmatrixVi can be achieved by
employing ML detector as follows:

V̂i = argminVi∈Φ
∥
∥Xi −ViXi−1

∥
∥2

= argminVi∈Φ tr
{(
Xi −ViXi−1

)(
Xi −ViXi−1

)H}

= argmaxVi∈Φ Re
{
tr
(
Xi−1XH

i Vi
)}
,

(9)

where constellation Φ is the set formed by {V0, . . . ,VP−1};
as shown in [6, 7], Φ has group structure, and the optimal
codes are achieved by maximizing the coding gain in Φ. The
coding gain (as defined in [11]) is

Λcg = min
Fu�=Fq

K ×Λp
(
Fu,Fq

)
, (10)
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whereΛp(Fu−Fq) = {det((Fu−Fq)(Fu,Fq)H)}1/K is the prod-
uct distance between two codematrices Fu and Fq, det(·) rep-
resenting determinant operator.

For a constellation constructed from multiple data sym-
bols, a good metric to judge the performance is the square
of the minimum distance between two points in the con-
stellation. If the distance is bigger, then the performance is
better. Similarly, for the constellation constructed by code
matrices, the coding gain (i.e., above Λcg) is a good met-
ric to judge the performance of corresponding constellation
in terms of error probability analysis in [6, 7]. For unitary
space-time coding, however, when spectrum efficiency gets
higher, the performance will become worse due to the lower
coding gain, which can be seen in Table I in [7]. Consider-
ing that the matrices in unitary space-time codes group has
unity energy (i.e., single amplitude), which can be thought
as MPSK constellation, whereas star MQAM scheme has bet-
ter performance than corresponding MPSK under the same
spectrum efficiency, we adopt the star QAM scheme to design
superior DUSTC. By using the star QAM method, we can
carry information by means of not only the phase but also
the amplitude of the code matrix. The spectral efficiency is
thus improved accordingly. Moreover, the constellation ma-
trices will not be limited in unity-energy, thus they have dif-
ferent amplitudes, and minimum product distance will be
improved accordingly. As a result, the performance degra-
dation is overcome effectively in high spectrum efficiency.
Specific encoding and decoding schemes are designed as fol-
lows.

At the transmitter, the input bit streams are divided into
each data block including log2M bits, namely the ith data
block corresponds to data bits {bim, m = 1, 2, . . . , log2M}.
The first bit bi1 is used to decide the amplitude of differential
unitary space-time code matrix to transmit, other log2M-
1 bits {bim, m = 2, . . . , log2M} perform conventional differ-
ential unitary space-time modulation, and the modulation
will adopt group code which takes values in the M/2-PSK
rather thanMPSK. Then, we design corresponding multiple-
amplitude differential encoding scheme in terms of the fol-
lowing equations:

G′i =
∣
∣G′i

∣
∣Gi =

∣
∣G′i

∣
∣ViGi−1, Gi = ViGi−1, (11)

where |G′0| = ρ0, G0 = IK×K [6] or G0 = D [7], |G′i | denotes
the amplitude of G′i . It may choose ρ0 or ρ1 (ρ0 and ρ1 are the
amplitudes of inner and outer unitary matrix constellation,
which are similar to the amplitudes of inner and outer ring
of star QAM scheme, respectively; and ρ1 = βρ0), which de-
pends on the value of bi1. If bi1=0, the amplitude of G′i is the
same as that of the previous transmitted code matrix G′i−1; if
bi1 = 1, the amplitude of G′i is different from the amplitude
of G′i−1, that is, if |G′i−1| = ρ0, |G′i | = ρ1; and if |G′i−1| = ρ1,
|G′i | = ρ0.

At the receiver, we employ the method similar to star
QAM demodulation to demodulate the received signals.
After multiple amplitudes modulation, the received signal

matrices at time blocks i−1 and i are changed accordingly as
follows:

Xi−1 = √γG′i−1H + Zi−1 = √γ
∣∣G′i−1

∣∣Gi−1H + Zi−1, (12)

Xi = √γG′iH + Zi = √γ
∣∣G′i

∣∣ViGi−1H + Zi. (13)

Based on the above received signal matrices, we canmake
corresponding differential detection to achieve the decision

variables of bim (i.e., b̂im m = 1, . . . , log2M). Firstly, the phase
detection is performed in terms of (9), namely conventional
DUSTC demodulation method can be applied. Thus, corre-

sponding decision bit variables b̂im (m = 2, . . . , log2M) are
obtained. Then, we employ the detection method in [14] to
perform amplitude detection. Namely, the decision variable

b̂i1 for amplitude bit is obtained according to the equivalent
amplitude ratio

λa =
√√
√
√
∑K

t=1
∑N

n=1
∣
∣xi,t,n

∣
∣2

∑K
t=1
∑N

n=1
∣∣xi−1,t,n

∣∣2

=
∥∥Xi

∥∥
∥
∥Xi−1

∥
∥ ,

(14)

where ‖Xi‖ is the Frobenius norm of Xi.
Let ξL and ξH be two amplitude decision thresholds as

shown in [14], these decision thresholds are assumed to be
related according to ξH = 1/ξL, and they satisfy the following
conditions:

β−1 < ξL < 1, 1 < ξH < β. (15)

If λa falls inside two decision thresholds, that is, if λa satisfies
ξL < λa < ξH , the amplitude decision variable b̂i1 = 0. The
converse holds, if λa falls outside of two decision thresholds,
that is, if λa satisfies λa < ξL or λa < ξH , b̂i1 = 1. The above
threshold values can be optimized so that corresponding sys-
tem BER is minimized under a given SNR.

Based on the above analysis and property of unitary
space-time codes, the proposed multiple amplitudes DUSTC
scheme (MDUSTC) can implement full diversity and differ-
ent rates; and it can be applied to any number of antennas.
Besides, the scheme has low-complexity differential modu-
lation due to the diagonal matrix of USTC, but it requires
group structure and has exponential decoding complexity.
Fortunately, [16] gives fast ML decoding algorithms for con-
ventional USTC scheme. The algorithms exploit the constel-
lation structures and are polynomial rather than exponential,
in the rates R and K .

4. MULTIPLE AMPLITUDES DIFFERENTIAL
ORTHOGONAL SPACE-TIME CODING

4.1. Codematrix

In this section, taking the disadvantage of the above-men-
tioned MDUSTC scheme into account, we will give another
multiple amplitudes differential orthogonal space-time cod-
ing (MDOSTC) scheme, which has simpler decoder and
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higher coding gain while it does not need a group structure
in general.

Let {Ul}Ll=1 and {Wl}Ll=1 be a set of 2L matrices of size
K × K which satisfy the following conditions:

UlU
H
l = IK×K , WlW

H
l = IK×K , ∀l,

UlU
H
s = −UsU

H
l , WlW

H
s = −WsW

H
l , ∀l �= s,

UlW
H
s =WsU

H
l , ∀l, s,

(16)

where IK×K denotes identity matrix. Then {Ul} and {Wl} are
said to constitute an amicable orthogonal design of order K
in L variables [10, 11]. The detailed design process for {Ul}
and {Wl} with K = 2, 4, 8 which meet with the conditions
in (16) can be seen in [10]. By introducing the amicable or-
thogonal design, we can design corresponding code matrix.

Let {cil}Ll=1 be a block of L symbols to be transmitted at
a time i, and the symbol cil (l = 1, . . . ,L) is from PSK con-
stellation Ω. Thus the cil can be expressed by cil = cRil + jcIil,
where cRil and cIil denote the real and imaginary parts of cil,
respectively. By defining the Ci as

Ci =
∑L

l=1
(
Ulc

R
il + jWlc

I
il

)

√
L.

(17)

Then we have

CiC
H
i =

(∑L
l=1
∣∣cil

∣∣2

L

)

IK×K = IK×K . (18)

Thus Ci is a unitary code matrix.

4.2. Differential encoding and decoding schemes

In this subsection, the differential encoding and decoding
schemes for orthogonal space-time coding are firstly ana-
lyzed. Then multiple amplitudes DOSTC scheme using star
QAM method is given. At the transmitter, we consider the
case of K×K square code matrices at first. According to [10],
we have suchK×K matrices {Ul,Wl} forK = 2, 4, and 8. The
ith block to be transmitted is a differential encoding matrix
Gi with K ×K . At the start of the transmission, the transmit-
ter sends a K × K identity matrix as initial code matrix G0

(i.e., G0 = IK×K ), which does not carry information. Then
the information matrix Ci as defined by (17) is differentially
encoded in terms of Gi = CiGi−1. From G0 = IK×K , Ci is
unitary matrix, and Gi = CiGi−1, we can testify that Gi is a
unitary matrix. Thus the information matrix Ci can be de-
coded from GiG

H
i−1 = CiGi−1GH

i−1 = Ci if the code matrices
Gi and Gi−1 are observable at the receiver.

At the receiver, the received matrices at times i and i − 1
are written by Xi = √γGiH +Zi and Xi−1 = √γGi−1H +Zi−1,
respectively.

According to (9), we can obtain the ML detector for {cil}
by

{
ĉil
}L
l=1 = argmax{cil}, cil∈Ω Re

{
tr
(
Xi−1XH

i Ci
)}
. (19)

From (17), (19) can be further transformed to ML detector
for single symbol cil by

ĉil = argmaxcil∈Ω Re
{
tr
(
Xi−1XH

i Ul
)}
cRil

+ Re
{
tr
(
jXi−1XH

i Wl
)}
clil

= argmaxcil∈Ω Re
{
tr
(
Xi−1XH

i Ul
)}
cRil

+ Im
{
tr
(− Xi−1XH

i Wl
)}
cIil,

(20)

where Re(·) and Im(·) denote real part operator and imag-
inary part operator, respectively. Equation (20) can be
changed into the detection of real part and imaginary part
in parallel as follows:

ĉ Ril = argmaxcil∈Ω Re
{
tr
(
Xi−1XH

i Ul
)}
cRil ,

ĉ Iil = argmaxcil∈Ω Im
{− tr

(
Xi−1XH

i Wl
)}
cIil.

(21)

Namely the detector has a decoupled form, one scalar detec-
tor for each of the symbols {cil}. Thus compared with the
detection method of other differential codes, the detection
method of the proposed scheme has a much lower computa-
tional complexity.

From the above-mentioned analysis, we can see that dif-
ferential orthogonal space-time coding scheme is still limited
in MPSK modulation, and its performance will degrade un-
der high spectrum efficiency. It is because corresponding de
crease of minimum product distance between code matrices
brings about the reduction of coding gain, and these conclu-
sions can be drawn form Table I in [11]. Motivated by the
reason analyzed in Section 3, we adopt the star QAM con-
stellation method to map the code matrices to improve the
performance of conventional DOSTC scheme. Specific en-
coding and decoding schemes are designed as follows.

At the transmitter, the input bits stream are divided into
each data block including (1 + L log2M) bits, namely, bim
(m = 1, 2, . . . , 1 + L log2M) represents the ith data block,
where L is the number of symbols to be transmitted in the
information code matrix. The first bit bi1 is used to decide
the amplitude of differential orthogonal space-time codema-
trix; other bits firstly perform MPSK modulation, and are
mapped to corresponding data symbols. Then these symbols
are used to construct the information codematrixCi in terms
of (17). Afterwards, the following differential modulation is
performed:

G′i =
∣
∣G′i

∣
∣Gi =

∣
∣G′i

∣
∣CiGi−1, Gi = CiGi−1, G0 = IK×K .

(22)
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After performing multiple amplitudes modulation, the re-
ceived code matrix need corresponding changes as shown in
(13). Namely,

Xi = √γ
∣
∣G′i

∣
∣GiH + Zi = √γ

∣
∣G′i

∣
∣CiGi−1H + Zi. (23)

At the receiver, we make phase and amplitude detec-
tion for the received code matrices, respectively. At first, we
employ conventional DOSTC decoding method to perform
phase detection, namely, by utilizing (20) and (21) to get ML
detector of {cil, l = 1, 2, . . . ,L}. Then via demapping in ac-

cordance, the decision bits {b̂im, m = 2, . . . , 1+L log2M} are
obtained. For amplitude detection, we can adopt the decision
method in Section 3. Based on this method, the amplitude

decision bit b̂i1 is finally achieved.

4.3. Nonsquarematrix differential space-time
coding and code rate

The scheme presented in Section 4.2 is valid for K = 2, 4,
and 8 transmit antennas, and corresponding code matrix is
square matrix. Now we consider the scheme in the case of
K = 3, 5, 6, and 7 transmit antennas, where the code ma-
trix will not be square matrix. This is also an open problem
which needs to be solved in future work in [13]. For simplic-
ity of analysis, we only focus on the 3 transmit antennas case;
similar analysis can be extended to other three cases. For 3
transmit antennas, we transmit the first three columns of the
differential code matrix of 4 transmit antennas to perform
corresponding data transmission, which can be realized by a
transform matrix as follows:

G(3)
i = G(4)

i T , (24)

where G(3)
i and G(4)

i denote the transmitted differential code
matrices for the case of 3 transmit antennas and 4 transmit
antennas, respectively. G(4)

i is 4 × 4 square matrix, and G(3)
i

is 4 × 3 nonsquare matrix; T =
[ 1 0 0
0 1 0
0 0 1
0 0 0

]
is a 4 × 3 transform

matrix.
Based on the above transform and (22), we can imple-

ment the data transmission of 3 transmit antennas case by

transmitting G(4)
i T . According to (23), the corresponding re-

ceived signal matrix at time i is written by

Xi = √γ
∣
∣G′(3)i

∣
∣G(4)

i TH + Zi = √γ
∣
∣G′(3)i

∣
∣G(4)

i H̃ + Zi, (25)

where H̃ = TH is the equivalent channel gain matrix. After
equivalent transform, the T can be absorbed in the channel
gain matrix. Considering that THT = I3×3, then H̃HH̃ =
HHTHTH = HHH . Thus the same diversity performances
are obtained. Moreover, after the above transform, we can
make use of the previous 4-antenna analysis method to detect
the received data for 3-antenna systems at the receiver, and
the system performance is not affected.

In addition, our scheme is based on the amicable orthog-
onal design, so the scheme has the same code rate of the
code proposed in [10]. In the case of 2 transmit antennas;

the code rate of our scheme is unity-rate, which is the same
as the scheme proposed in [8]. Moreover, in the case of 3
or 4 transmit antennas, our scheme has a code rate of 3/4,
which is higher than the scheme developed in [9]; and the
same as the schemes proposed in [11, 13], but the structure of
code matrix is simpler than that in [13]. Besides, our scheme
has lower computational complexity. However, we also no-
tice that the scheme is only applied to no more than 8 trans-
mit antennas due to the limitation of amicable orthogonal
design, and in the case of more than 5 transmit antennas, it
has only 1/2-code rate, which will affect high date rate trans-
mission to some extent and bring about the decrease of data
rate.

5. BIT-ERROR-RATE PERFORMANCE

From the theory analysis in Sections 3 and 4, we can see that
the phase and amplitude detection processes are indepen-
dent, thus we can evaluate the average bit error rate (BER)
via calculating the BER’s of phase detection and amplitude
detection separately. Namely,

Pb =
[(
log2M − 1

)
Pb-phase + Pb-amplitude

]

log2M
for MDUSTC,

(26)

Pb =
[(
L log2M

)
Pb-phase + Pb-amplitude

]

1 + L log2M
for MDOSTC,

(27)

where Pb-phase and Pb-amplitude are the BER’s of phase detection
and amplitude detection, respectively. These equations are a
weighted sum of the BER of phase detection and amplitude
detection.

For amplitude detection, the bit error probability is writ-
ten by

Pb-amplitude

=
[
Pb,am(HL) + Pb,am(HH) + Pb,am(LH) + Pb,am(LL)

]

4
,

(28)

where Pb,am(HL) denotes the amplitude detection error
probability for amplitude bits from outer constellation
to inner constellation; other three items (i.e., Pb,am(HH),
Pb,am(LH), Pb,am(LL)) can be explained in similar manner.
These four terms may be further changed as

Pb,am(HL) = Pρ1,ρ0
(
λa > ξL

)− Pρ1,ρ0
(
λa > ξH

)
,

Pb,am(LH) = Pρ0,ρ1
(
λa > ξL

)− Pρ0,ρ1
(
λa > ξH

)
,

Pb,am(HH) = Pρ1,ρ1
(
λa > ξH

)
+ 1− Pρ1,ρ1

(
λa > ξL

)
,

Pb,am(LL) = Pρ0,ρ0
(
λa > ξH

)
+ 1− Pρ0,ρ0

(
λa > ξL

)
,

(29)
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where Pρ1,ρ0 (λa > ξL) denotes the amplitude detection error
probability for amplitude bits from outer constellation to in-
ner constellation when λa > ξL; similar explanation can be
applied for other seven items.

For phase detection, the bit error probability is written by

Pb-phase =
[
Pb,ph(HL) + Pb,ph(HH) +Pb,ph(LH) +Pb,ph(LL)

]

4
,

(30)

where Pb,ph(HL) denotes the phase detection error bit proba-
bility for phase signal (which consists of corresponding phase
bits) from outer constellation to inner constellation; other
three items can be explained in similar way.

Consider that detailed BER derivation is more complex,
and needs a plenty of mathematic calculation and theoretical
analysis. Namely, it needs more space for BER calculation.
Here, we only give some calculation steps to briefly review the
derivation. For simplicity, the following only provides these
steps with the example of 2Tx and 1Rx MDOSTC scheme.

(1) Calculate the phase detection error bit probability
Pb-phase in terms of (30).

From (30), we need to compute Pb,ph(HL), Pb,ph(HH),
Pb,ph(LH), and Pb,ph(LL), respectively. Considering that these
four cases occur with equal probability, we can choose an ar-
bitrary case for first calculation. Without loss of generality,
Pb,ph(HL) is firstly considered. By a series of calculation and
using some related results from [12], we can derive its ap-
proximate parameter expression on amplitude pair (ρ1, ρ0)
(which corresponds to phase signal from outer constellation
to inner constellation). Then employing similar calculation
method, and substituting this amplitude pair with (ρ1, ρ1),
(ρ0, ρ1), and (ρ0, ρ0) in corresponding places, respectively, we
can evaluate corresponding phase detection error bit proba-
bilities Pb,ph(HH), Pb,ph(LH), and Pb,ph(LL), respectively. Ac-
cording to (30), we can obtain the Pb-phase based on the eval-
uated Pb,ph(HL), Pb,ph(HH), Pb,ph(LH), and Pb,ph(LL).

(2) Evaluate the amplitude detection error bit probability
Pb-amplitude in terms of (28) and (29).

From (28), we need to calculate Pb,am(HL), Pb,am(HH),
Pb,am(LH), and Pb,am(LL), respectively. Without loss of gen-
erality, we choose Pb,am(HL) as first calculation. According
to (29), Pρ1,ρ0 (λa > ξL) and Pρ1,ρ0 (λa > ξH) need to be cal-
culated. Here, we first evaluate the amplitude detection error
probability for amplitude bits from outer constellation to in-
ner constellation when λa > ξL, that is, Pρ1,ρ0 (λa > ξL) is firstly
evaluated. According to (14) and employing the appendices
results of [12], we can obtain the value of Pρ1,ρ0 (λa > ξL) via
a series of calculation and derivation. Using similar calcula-
tion method and substituting ξL with ξH , we can calculate
the value of Pρ1,ρ0 (λa > ξH). Then changing the amplitude
pair (ρ1, ρ0) into (ρ1, ρ1), (ρ0, ρ1), and (ρ0, ρ0) in correspond-
ing places, respectively, and utilizing the above calculation
method, we can evaluate Pρ1,ρ1 (λa > ξL), Pρ0,ρ1 (λa > ξL), and
Pρ0,ρ0 (λa > ξL), respectively. Thus according to the evaluated
three values, we can obtain Pρ1,ρ1 (λa > ξH), Pρ0,ρ1 (λa > ξH)
and Pρ0,ρ0 (λa > ξH) via substituting ξL with ξH accordingly.
Based on the above results and (29), the values for Pb,am(HL),

Pb,am(HH), Pb,am(LH), and Pb,am(LL) can be calculated, re-
spectively. As a result, we will obtain the amplitude detection
error bit probability Pb-amplitude according to (28).

(3) Compute the average bit error rate for MDOSTC
scheme.

Based on the obtained Pb-phase and Pb-amplitude, we can
compute the average bit error rate for MDOSTC in terms of
(27). Similar method can be applied to evaluate the average
bit error rate for MDUSTC in terms of (26). Due to high cal-
culation complexity, we no longer provide the average BER
expression here; the detailed BER derivation will appear in
another paper of ours for space considerations.

6. CODING-GAIN ANALYSIS

As mentioned in Section 3, for the constellation constructed
by code matrices, the coding gain (i.e., Λcg in (10)) is a good
metric to judge the performance of corresponding constel-
lation. By maximizing the coding gain, the optimal group
codes are obtained in [6, 7]. Let Fu and Fq be the information
matrices (as defined in (17)) constructed from the data sym-
bols sets { fu1, . . . , fuL} and { fq1, . . . , fqL}, respectively, where
symbols { ful} and { fql} are both from constellation Ω. Let
F = Fu − Fq, according to (17), F can be changed to

F =
∑L

l=1
[
Ul
(
f Rul − f Rql

)
+ jWl

(
f lul − f lql

)]

√
L

. (31)

Then according to (18), we have

FFH = 1
L

( L∑

l=1

∣
∣( f Rul − f Rql

)∣∣2 +
∣
∣( f lul − f lql

)∣∣2
)

Ik×K

= 1
L

( L∑

l=1

∣
∣ ful − fql

∣
∣2
)

Ik×K .

(32)

So the product distance between Fu and Fq can be written by

Λp
(
Fu,Fq

)=
{
det

((
Fu,Fq

)(
Fu,Fq

)H)}1/K={det (FFH
)}1/K

=
{

det

(
1
L

( L∑

l=1

∣∣ ful − fql
∣∣2
)

IK×K

)}1/K

= 1
L

( L∑

l=1
| ful − fql|2

)

.

(33)

For Fu �= Fq, (33) is minimized when { ful} and { fql} differ in
just one symbol, while the other corresponding symbols are
same, namely, the minimal value corresponds to the minimal
distance between constellation points fromΩ. Hence, we can
evaluate the coding gain in terms of (10) and (33) as follows:

Λcg = min
ful , fml∈Ω

(
K

L

)∣
∣ ful − fql

∣
∣2

=
(
K

L

)
d2min =

(
K

L

)[
2 sin

(
π

M

)]2
,

(34)
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where dmin is the minimal distance between constellation
points of M-level PSK constellation Ω. The above equation
is used to calculate the coding gain of MPSK-based conven-
tional DOSTC scheme. In the following, we will give an-
other formula to evaluate the coding gain of the proposed
MDOSTC scheme.

In this paper, we assume that the amplitude bits are trans-

mitted with equal probability, and ρ1 = β
√
2/(1 + β2) so that

(ρ21 + ρ20)/2 = 1, where ρ0 = ρ1/β, and β is assumed to be 2,
which is the optimum amplitude ratio from [14, 15], for this,
we will give detailed explanation in simulation. According to
(10), the coding gain of MDOSTC scheme can be defined as
follows:

Λcg = min
F′u �=F′q

K ×Λp
(
F′u,F

′
q

)

= min
F′u �=F′q

K ×Λp
(∣∣F′u

∣
∣Fu,

∣
∣F′q

∣
∣Fq

)
,

(35)

where |F′u| and |F′q| are the amplitudes of matrices F′u and F′q,
respectively; which choose ρ0 or ρ1.

Whenmatrices F′u and F′q are from the same constellation
(i.e., inner constellation or outer constellation), |F′u| = |F′q|.
Without loss of generality, let they be from inner constella-
tion, then we have

Λp
(
F′u,F

′
q

) =
{
det

((
ρ0Fu − ρ0Fq

)(
ρ0Fu − ρ0Fu

)H)}1/K

= ρ20
{
det

((
Fu − Fq

)(
Fu − Fq

)H)}1/K

= ρ20Λp
(
Fu,Fq

)
.

(36)

From (34) and (36), (35) can be changed to

Λcg0 =
(
K

L

)[

2ρ0 sin

(
π
M
2

)]2

. (37)

Note: for MDOSTC scheme using M-level star QAM
method, the symbols in matrices Fu and Fq are from M/2-
level PSK constellation.

Similarly, we can evaluate the coding gain when F′u and
F′q are from outer constellation:

Λcgl =
(
K

L

)[

2ρ1 sin

(
π
M
2

)]2

. (38)

When matrices F′u and F′q are from different constella-
tion, namely, one is from inner constellation, the other is
from outer constellation. Without loss of generality, let the
former be from outer constellation, and the latter from inner
constellation, then F′u − F′q is changed as follows:

(
F′u − F′q

) = (ρ1Fu − ρ0Fq
)

= 1√
L

L∑

l=1

[
Ul
(
ρ1 f

R
ul−ρ0 f Rql

)
+ jWl

(
ρ1 f

I
ul − ρ0 f

I
ql

)]
.

(39)

So according to (39) and (18), we have the following equa-
tion:

(
F′u − F′q

)(
F′u − F′q

)H

= 1
L

L∑

l=1

[∣
∣ρ1 f

R
ul − ρ0 f

R
ql

∣
∣2 +

∣
∣ρ1 f

I
ul − ρ0 f

I
ql

∣
∣2
]
IK×K

= 1
L

L∑

l=1

[∣
∣ρ1 ful − ρ0 fql

∣
∣2
]
IK×K .

(40)

Hence,

Λp(F′u,F
′
q) =

{
det

((
F′u − F′q

)(
F′u − F′q

)H)}1/K

= 1
L

L∑

l=1

[∣
∣ρ1 ful − ρ0 fql

∣
∣2
]
.

(41)

Considering that { ful} and { fql} are from PSK constellation,
we can assume that ful = e jθul and fql = e jθql . Then we have

∣∣ρ1 ful − ρ0 fql
∣∣2 = ∣∣ρ1e jθul − ρ0e

jθql
∣∣2

= (ρ1e jθul − ρ0e
jθql
)(
ρ1e

− jθul − ρ0e
− jθql

)

= ρ21 + ρ20 − 2ρ1ρ0 cos
(
θul − θql

)

≥ ρ21 + ρ20 − 2ρ1ρ0 =
(
ρ1 − ρ0

)2
,

(42)

where cos(θul− θql) ≤ 1 is utilized. So the minimum value of
|ρ1 ful − ρ0 fql|2 is (ρ1 − ρ2)2.

Based on the above analysis, using (41) and (42), we can
evaluate the coding gain as follows:

Λcg2 = min
F′u �=F′q

K ×Λp
(
F′u,F

′
q

)

= K × 1
L
× L

[(
ρ1 − ρ0

)2] = K
(
ρ1 − ρ0

)2
.

(43)

Similarly, we can calculate the coding gain when F′u and F′q
are from inner constellation and outer constellation, respec-
tively:

Λcg3 = min
F′u �=F′q

K ×Λp
(
F′u,F

′
q

) = K
(
ρ0 − ρ1

)2
. (44)

Considering equally likely the transmission of the amplitude
bits, namely, the high and the low amplitude bits occur uni-
formly with a probability of 0.5 [15], the above four cases
for calculating coding gain will occur with equal probability.
Thus we can obtain the average coding gain of the proposed
MDOSTC scheme usingM-level star QAMmethod by
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Λcg =
[
Λcg0 +Λcgl +Λcg2 +Λcg3

]

4

=

{(K
L

)[
2ρ0 sin

(
π
M
2

)]2
+
(K
L

)[
2ρ1 sin

(
π
M
2

)]2
+ 2K

(
ρ1 − ρ0

)2
}

4
.

(45)

Table 1: Comparison of coding gain of DOSTC scheme and
MDOSTC scheme.

Constellation Φ
Coding gain
(K = 2,L = 2)

Coding gain
(K = 3,L = 3)

Coding gain
(K = 4,L = 3)

10 PSK 0.38197 0.38197 0.5093

16 PSK 0.1522 0.1522 0.203

22 PSK 0.081 0.081 0.108

32 PSK 0.0384 0.0384 0.05124

16 star QAM 0.6928 0.8928 1.1905

32 star QAM 0.4771 0.6771 0.9028

Based on (34) and (45), we compare the coding gain
of the multiple amplitudes DOSTC scheme and conven-
tional DOSTC scheme under different spectrum efficiency in
Table 1. From Table 1, we can see that the coding gain of the
proposed MDOSTC scheme is higher than that of DOSTC
scheme under same spectrum efficiency, while the coding
gain of DOSTC scheme is higher than the corresponding dif-
ferential unitary space-time coding scheme [11]. Hence our
scheme has superior performance. Moreover, with the in-
crease of spectrum efficiency, that is, when M becomes big-
ger, the coding gain of conventional DOSTC scheme will de-
crease quickly; whereas for our scheme, the coding gain de-
creases slowly. So our scheme can avoid the extra perfor-
mance degradation of conventional DOSTC scheme effec-
tively in high spectrum efficiency.

For the presented multiple amplitudes DUSTC
(MDUSTC) scheme, we can employ the above-mentioned
analysis method and related computation formula from
[7] to evaluate the coding gain, detailed deriving process
is no longer given due to the repeated work. Similarly, the
same conclusion can be reached. Namely, our MDUSTC
scheme has higher coding gain than the corresponding
DUSTC scheme under the same spectrum efficiency. Thus
the performance of our MDUSTC scheme is superior to the
corresponding DUSTC scheme, which will also be testified
by the following simulation.

7. SIMULATION RESULTS

In this section, to test the validity of the proposed scheme,
we provide the simulation results in Rayleigh fading chan-
nel. The channel is assumed to be quasistatic flat fading. In
simulation, the differential unitary space-time coding and
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Figure 3: BER against SNR for different differential space-time
codes with 2-transmit antennas.

differential orthogonal space-time coding are applied for the
purpose of comparison with the same spectrum efficiency.
Every data frame includes 960 information bits, and Gray
mapping of the bits to symbol is employed. The numbers of
transmit antennas are 2, 3, and 4, and the number of receive
antennas is set as 1 for simplicity. Besides, in the case of per-
forming amplitude detection, we adopt the parameters given
in [14, 15], such as β = 2, ξH = 1.47, ξL = 0.68, and so
forth. The simulation results are obtained from 106 Monte-
Carlo simulation run, and they are illustrated in Figures 3–6,
respectively.

Figure 3 shows the BER versus SNR for different differ-
ential space-time coding schemes with 2-transmit antennas.
In Figure 3, the 16-level PSK modulation is applied to the
DUSTC and the DOSTC, and the 16 star QAM method is
applied to the multiple amplitudes DUSTC and the multiple
amplitudes DOSTC. For the DUSTC, the generator matrix of
the cyclic group codes diag(exp(2π j/256), exp(150π j/256))
[6] is utilized, where “diag” and following “invdiag” de-
note the diagonal matrix and the inverse diagonal matrix,
respectively; and ρ1〈diag(exp(2π j/64), exp(38π j/64))〉 ∪
ρ2〈diag(exp(2π j/64), exp(38π j/64))〉 is used for MDUSTC.
From Figure 3, it shows that our MDOSTC scheme gives
about 6 dB gains over the DUSTC and 2 dB over the DOSTC
at a BER of 10−2. Moreover, another developed MDUSTC
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Figure 4: BER against SNR for DUSTC and MDUSTC with 2-
transmit antennas.

scheme also obtains about 3 dB gains over the DUSTC at
BER = 10−2. A similar conclusion can be drawn from
Figure 4. In Figure 4, we compare the performance of the
proposed MDUSTC scheme with the DUSTC scheme de-
veloped in [7], our scheme uses the 8 star QAM method,
while the DUSTC employs the 8 PSK modulation; where
the generator matrix of the optimal unitary group codes
〈diag(exp(2π j/8), exp(−2π j/8)), invdiag(−1, 1)〉 [7] is used
for the DUSTC, and the ρ1〈diag(exp(2π j/4), exp(−2π j/4)),
invdiag(−1, 1) ∪ ρ2〈diag(exp(2π j/4), exp(−2π j/4)), invdiag
(−1, 1)〉 is used for the MDUSTC. Similarly, our scheme still
outperforms the corresponding DUSTC scheme; it achieves
2 dB gains at the BER of 10−3. So after adopting mul-
tiple amplitudes modulation, our developed schemes are
both superior to corresponding differential space-time cod-
ing schemes, and ourMDUSTC scheme slightly outperforms
DOSTC. The reason for these is that our schemes can obtain
higher coding gain via using star QAMmethod, which is con-
sistent with the theoretical analysis in Section 6. Besides, the
proposed MDOSTC scheme performs better than another
proposed MDUSTC scheme, which accords with the conclu-
sions drawn in [11], that is, DOSTC outperforms DUSTC.

In the above work, we employ the parameters in [14, 15].
In fact, these decision threshold (i.e., ξH , ξL) and amplitude
ratio β can be chosen and optimized in terms of the criterion
that the system BER is minimized at given SNR. Using this
criterion, the optimum β for differential detection of single
antenna system in Rayleigh fading channel was found to be
approximately 2; and the threshold values were searched and
calculated, they were 1.47 and 0.68, respectively [15]. Simi-
larly, according to this criterion, [14] gave the optimized val-
ues about β and ξH (ξL = 1/ξH) under Rician fading channel
by computer search, that is, β = 2, ξH = 1.47. In our work,
we also optimize these decision thresholds for multiple am-
plitudes differential space-time code scheme via computer
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Figure 5: SER against SNR for DOSTC and MDOSTC with 2-
transmit antennas and 4-transmit antennas.

search. Firstly, the optimized amplitude ratio is produced in
terms of the above criterion by fixing ξH = 1.47, then us-
ing this optimized amplitude ratio, the threshold values are
reevaluated and optimized so that the system BER is mini-
mized, the detailed optimized process can be seen in [14, 15].
Of course, we may also obtain the optimum combination of
(β, ξH) via computer search based on the above optimum cri-
terion. As a result, the produced optimized value is almost
identical to the optimized values provided by [14, 15], so we
still adopt the above parameters in following simulation.

In addition, we also notice that for MDOSTC scheme,
its real spectrum efficiency is (1 + L log2 8)/L = 3.5 with
L = 2, and (1 + L log2 8)/L = 3.33 with L = 3. To main-
tain the same spectrum efficiency, the 10 PSK modulation is
applied to DOSTC, which has spectrum efficiency of 3.32.
Based on these, we give symbol error rate (SER) comparison
between MDOSTC scheme and DOSTC with 2-transmit
antennas and 4-transmit antennas under the same SNR.
The results are shown in Figure 5, where “DOSTC2T10P”
and “DOSTC4T10P” represent the differential orthogonal
space-time coding based on 10 PSKwith 2-transmit antennas
and 4-transmit antennas, respectively. “MDOSTC2T” and
“MDOSTC4T” represent the multiple amplitudes DOSTC
using 16 star QAMmethod with 2-transmit antennas and 4-
transmit antennas, respectively. From Figure 5, we observe
that proposed MDOSTC schemes still outperform corre-
sponding differential orthogonal space-time coding schemes.
It shows that for 2 antennas, our scheme gives nearly
2 dB gains over differential orthogonal space-time coding,
whereas for 4 antennas, our scheme achieves 2 dB gains.
Hence, our scheme has superior performance over other
code schemes. Moreover, with the increase of the number
of transmit antennas, the performance of differential codes
with 4-antenna is superior to that with 2-antenna due to the
increase of space diversity gains. Note that we do not provide
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Figure 6: SER against SNR for DOSTC and MDOSTC with 3-
transmit antennas.

the performance comparison of differential unitary space-
time coding accordingly, since searching the optimal cyclic
group code under the same spectrum efficiency is too diffi-
cult. In terms of the analysis method outlined in Section 4.3,
the 3-transmit antennas performance comparison is pro-
vided in Figure 6. In this figure, the 16 star QAMmethod and
10 PSK are adopted. It is shown in Figure 6 that our scheme is
still better than differential orthogonal space-time coding; it
can obtain about 2 dB gains. Based on the above conclusions,
our simulation results make an agreement with the previous
theoretical analysis.

8. CONCLUSIONS

On the basis of differential unitary space-time coding and
differential orthogonal space-time coding, by using the star
QAM method, two kinds of multiple amplitudes differential
space-time coding schemes are presented in this paper; one
is multiple amplitudes differential unitary space-time cod-
ing; the other is multiple amplitudes differential orthogo-
nal space-time coding. The two schemes can avoid the per-
formance degradation of conventional DSTC scheme based
on PSK modulation due to the decrease of minimum pro-
duce distance in high spectrum efficiency. The developed
MDUSTC scheme can be applied to any number of antennas,
and implement different data rates, and low-complexity dif-
ferential modulation due to the application of cyclic group
codes. It has higher coding gain than existing differential
unitary space-time coding. For the developed MDOSTC
scheme, it has higher coding gain than existing differential
orthogonal space-time coding schemes.Moreover, it has sim-
pler decoder and can obtain higher code rate in the case of
three or four transmit antennas. The simulation results in
fading channel also show that our schemes have lower BER
than the corresponding differential unitary space-time codes

and differential orthogonal space-time codes under the same
SNR.
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