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A new time-varying (TV) long-term fading (LTF) channel model which captures both the space and time variations of wireless
systems is developed. The proposed TV LTF model is based on a stochastic differential equation driven by Brownian motion. This
model is more realistic than the static models usually encountered in the literature. It allows viewing the wireless channel as a
dynamical system, thus enabling well-developed tools of adaptive and nonadaptive estimation and identification techniques to be
applied to this class of problems. In contrast with the traditional models, the statistics of the proposed model are shown to be TV,
but converge in steady state to their static counterparts. Moreover, optimal power control algorithms (PCAs) based on the new
model are proposed. A centralized PCA is shown to reduce to a simple linear programming problem if predictable power control
strategies (PPCS) are used. In addition, an iterative distributed stochastic PCA is used to solve for the optimization problem using
stochastic approximations. The latter solely requires each mobile to know its received signal-to-interference ratio. Generalizations
of the power control problem based on convex optimization techniques are provided if PPCS are not assumed. Numerical results
show that there are potentially large gains to be achieved by using TV stochastic models, and the distributed stochastic PCA
provides better power stability and consumption than the distributed deterministic PCA.
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1. INTRODUCTION

Power control (PC) is important to improve the perfor-
mance of wireless communication systems. The benefits of
power minimization are not just increased battery life, but
also increased overall network capacity. Users only need to
expand sufficient power for acceptable reception, as deter-
mined by their quality of service (QoS) specifications, that
is usually characterized by the signal-to-interference ratio
(SIR) [1]. The majority of research papers in this field use
time-invariant (static) models for the wireless channels. In
time-invariant models, channel parameters are random but
do not depend on time, and remain constant throughout the
observation and estimation phase. This contrasts with time-
varying (TV) models, where the channel dynamics become
TV stochastic processes [2—6]. TV models take into account
the relative motion between transmitters and receivers and
temporal variations of the propagating environment such as
moving scatterers [1].

Radio channels experience both long-term fading (LTF)
and short-term fading (STF). LTF is modeled by lognor-
mal distributions and STF is modeled by Rayleigh or Ricean

distributions [7]. In general, LTF and STF are considered su-
perimposed and may be treated separately [7, 8]. In this pa-
per, we consider dynamical modeling and power control for
LTF channels that predominate in suburban areas. The STF
case has been considered in [2]. In particular, we develop a
TV model based on a stochastic differential equation (SDE)
driven by Brownian motion for LTF channels. The proposed
SDE model is a generalization of the standard lognormal
model. In particular, it is shown that the statistics of the SDE
model are TV and converge in steady state to their static log-
normal counterparts. The proposed model exhibits more re-
alistic behaviors of wireless channels than the current LTF
models. It allows viewing the wireless channel as a dynam-
ical system that shows how the channel evolves in time and
space. In addition, it allows well-developed tools of adaptive
and nonadaptive estimation and identification (to estimate
the model parameters) to be applied to this class of problems
[9-11]. Finally, based on the proposed TV model, centralized
and iterative distributed PCAs are developed.

Power control algorithms (PCAs) can be classified as
centralized and distributed. The centralized PCAs require
global out-of-cell information available at base stations. The



EURASIP Journal on Applied Signal Processing

distributed PCAs require base stations to know only in-cell
information, which can be easily obtained by local measure-
ments. The power allocation problem has been studied ex-
tensively as an eigenvalue problem for nonnegative matrices
[12, 13], resulting in iterative PCAs that converge each user’s
power to the minimum power [14-17], and as optimization-
based approaches [18]. Much of these previous works deal
with static time-invariant channel models. The scheme in-
troduced in [18], whereby the statistics of the received SIR
are used to allocate power, rather than an instantaneous SIR.
Therefore, the allocation decisions can be made on a much
slower time scale. Previous attempts at capacity determina-
tions in CDMA systems have been based on a “load balanc-
ing” view of the PC problem [19]. This reflects an essentially
static or at best quasistatic view of the PC problem, which
largely ignores the dynamics of channel fading as well as user
mobility.

Stochastic PCAs (SPCAs) that use noisy interference es-
timates have been introduced in [20], where conventional
matched filter receivers are used. There, it is shown that the
iterative stochastic PCA, which uses stochastic approxima-
tions, converges to the optimal power vector under certain
assumptions on the stepsize sequence. These results were
later extended to the cases where a nonlinear receiver or a
decision feedback receiver is used [21]. However, the chan-
nel gains are assumed to be fixed ignoring the effects of time-
variations on the performance of the system. In this paper,
the proposed distributed stochastic PCA is different from
those in [20-22] in that these algorithms are based on the
assumption that two parameters are assumed to be known
at each transmitter, namely, the received matched filter out-
put (received SIR) at its intended receiver and the channel
gain between the transmitter and its intended receiver. In the
proposed algorithm, only the received SIR at its intended re-
ceiver is required.

Other results that attempt to recognize the time-correlat-
ed nature of signals are proposed in [23], where blocking is
defined via the sojourn time of global interference above a
given level. Downlink PC for fading channels is studied in
[24] by a heavy traffic limit where averaging methods are
used. Stochastic control approach for uplink lognormal fad-
ing channels is studied in [25], in which a bounded rate
power adjustment model is proposed. Recent work on dy-
namic PC with stochastic channel variation can be found in
[26-28]. However, in our proposed approach, the modeling
and analysis of PC strategies investigated here employ wire-
less models which are TV and subject to fading.

Two different PCAs are proposed. The first one is cen-
tralized and based on predictable power control strategies
(PPCS) that were first introduced in [2]. PPCS simply mean
updating the transmitted powers at discrete times and main-
taining them fixed until the next power update begins. The
PPCS algorithm is proven to be effectively applicable to such
dynamical models for an optimal PC. The outage probabil-
ity (OP) is used as a performance measure. A distributed
version of this algorithm is derived along the lines of [15-
17]. The latter helps in allowing autonomous execution at
the node or link level, requiring minimal usage of network

communication resources for control signaling. The second
one is an iterative and distributed SPCA based on stochas-
tic approximations. It requires less information than the SP-
CAs proposed in [20-22]. Numerical results are provided to
evaluate the performance of the proposed PCAs. Since few
temporal or even spatiotemporal dynamical models have so
far been investigated with the application of any PCA, the
suggested dynamical models and PCAs will thus provide a
far more realistic and efficient optimum control of wireless
channels.

The paper is organized as follows. In Section 2, a TV LTF
channel model in which the evolution of the channel is de-
scribed by an SDE is introduced. In Section 3, several PCAs
are discussed. In Section 3.1, a centralized deterministic PCA
is proposed in which the solution is obtained through linear
programming using PPCS, and then an iterative version is
introduced to simplify the implementation of the proposed
PCA. A distributed SPCA is proposed in Section 3.2. More
general PC cases are presented in Section 3.3. In Section 4,
numerical results are presented. Finally, Section 5 provides
the conclusion.

2. TIME-VARYING LOGNORMAL FADING
CHANNEL MODEL

Wireless communication networks are subject to time-
spread (multipath), Doppler spread (time variations), path
loss, and interference seriously degrading their performance.
In addition to the exponential power path loss, wireless chan-
nels suffer from stochastic STF due to multipath, and L'TF
due to shadowing depending on the geographical area. If a
mobile happens to be in some less populated area with few
buildings, vehicles, mountains, and so forth, its signal under-
goes LTF (lognormal shadowing) [7], which must be com-
pensated in any design. Before introducing the dynamical
TV LTF channel model that captures both space and time
variations, we first summarize and interpret the traditional
lognormal shadowing model, which serves as a basis in the
development of the subsequent TV model. The traditional
(time-invariant) power loss (PL) in dB for a given path is
given by [7]

PL(d)[dB] := PL(dy)[dB] + 10alog (di) 2 d>dy,
0
(1)

where PL(dy) is the average PL in dB at a reference distance
dy from the transmitter, the distance d corresponds to the
transmitter-receiver separation distance, « is the path loss ex-
ponent which depends on the propagating medium, and VA
is a zero-mean Gaussian distributed random variable, which
represents the variability of PL due to numerous reflections
and possibly any other uncertainty of the propagating envi-
ronment from one observation instant to the next. The aver-
age value of the PL described in (1) is

PL(d)[dB] := PL(do) [dB] + 10alog (di), d>dy ()
0
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In the traditional models the statistics of the PL do not
depend on time t, therefore these models treat PL as static
(time invariant). They do not take into consideration the
relative motion between the transmitter and the receiver, or
variations of the propagating environment due to mobility,
appearance, and disappearance of various scatters along the
way from one instant to the next. Such spatial and time vari-
ations of the propagating environment are captured herein
by modeling the PL and the envelop of the received signal
as random processes that are functions of space and time.
Moreover, and perhaps more importantly, traditional models
do not take into consideration the correlation properties of
the PL in space and at different observation times. In reality,
such correlation properties exist, and one way to model them
is through stochastic processes, which obey specific type of
stochastic differential equations (SDEs).

In transforming the static model to a dynamical model,
the random PL in (1) is relaxed to become a random process,
denoted by {X (¢, T) } >0, r>1,, which is a function of both time
t and space represented by the time delay 7, where 7 = d/c,
d is the path length, ¢ is the speed of light, 7o = dy/c, and
dp is the reference distance. The signal attenuation is defined
by S(t,7) £ eX®D where k = —1In(10)/20. For simplic-
ity, we first introduce the TV lognormal model for a fixed
transmitter-receiver separation distance d (or 7) that cap-
tures the temporal variations of the propagating environ-
ment. After that we generalize it by allowing both t and 7
to vary, as the transmitter and receiver, as well as scatters, are
allowed to move at variable speeds. This induces spatiotem-
poral variations in the propagating environment.

When 7 is fixed, the proposed model captures the depen-
dence of {X(t,7)}¢=0,r>7, on time f. This corresponds to ex-
amining the time-variations of the propagating environment
for fixed transmitter-receiver separation distance. The pro-
cess {X(t,T)} =071, represents how much power the signal
looses at a particular location as a function of time. However,
since for a fixed distance d, the PL should be a function of
distance, we choose to generate {X(f,7)} >0,z Dy @ mean-
reverting version of a general linear SDE given by [3]

dX(t,7) = B(t,7)(y(t,7) — X(t,7))dt + 8(t, T)dW (1),

X(t5,7) = N(PL()(dBJ;02), )
where {W(t)},»¢ is the standard Brownian motion (zero
drift, unit variance) which is assumed to be independent of
X(to,7), N(u; k) denotes a Gaussian random variable with
mean y and variance «, and PL(d)[dB] is the average path
loss in dB. The parameter y(t,7) models the average time-
varying PL at distance d from the transmitter, which corre-
sponds to PL(d)[dB] at d indexed by t. This model tracks and
converges to this value as time progresses. The instantaneous
drift (¢, 7)(p(t, 7) — X(t, 7)) represents the effect of pulling
the process towards y(t, 7), while (¢, 7) represents the speed
of adjustment towards this value. Finally, §(¢, 7) controls the
instantaneous variance or volatility of the process for the in-
stantaneous drift. The initial condition of X (¢, 7) can be ob-
tained from a geometric Brownian motion model which cal-
culates X (g, ) for a fixed t = t; as a function of 7.

Let {0(t,7)} =0 2 {B(t,7),y(t,7),8(t, )} 1=0. If the ran-
dom processes in {0(t,7)} 0 are measurable and bounded,
then (3) has a unique solution for every X (o, 7) given by [4]

t
X(t,7) = e Pl (X(to,f) + J ePUwtob?) (B(u, 7)y(u, 7)du
to

+ou T)dW(u))),
(4)

where B([t, %], 7) = fti B(u, T)du. Moreover, using Ito’s
stochastic differential rule on S(t,7) = e¥X(7) the attenua-
tion coefficient obeys the following SDE:

1

as(t, ) = S(t, T)[(k/s(t, o) [y(t, 02

lnS(t,T)]

+ %kzéz(t, T))dt-i— k6(t,r)dW(t)],

S(to, T) = eFXtom),

(5)

This model captures the temporal variations of the prop-
agating environment as the random parameters {0(,7)} 0
can be used to model the TV characteristics of the channel
for the particular location 7. A different location is charac-
terized by a different set of parameters {0(¢,7)}.

Now, let us consider the special case when the parameters
0(t,7) = 0(1) = {B(7), y(1),8(7)} are time-invariant. In this
case we need to show that the expected value of the dynamic
PL X(t, 1), denoted by E[X (¢, T)], converges to the traditional
average PL in (2). In this case, the solution of the SDE (3) is
given by

X(t,1) = e—ﬁ(r)(z_to) (X(to,r) +y(1) (eﬂ(‘r)(t—tg) _ 1)

, (6)
+68(1) eﬁ(”(“’t”)dW(u)))

to

where for a given set of time-invariant parameters 6(7) and
if the initial X (o, 7) is Gaussian or fixed, the distribution of
X(t, 7) is Gaussian with mean and variance given by
E[X(t,1)] =e POt (E[X (to,7)]+y(7) (eﬂ(‘r)(t—to) _ 1) ) ,
1— e*Zﬁ(T)(t*to))
2B(7)
+e PO Nar (X (t, 7).

Var [X(t,7)] = 5(7)2(

(7)

Expression (7) of the mean and variance shows that the
statistics of the communication channel vary as a function of
both time t and space 7. As the observation instant t becomes
large, the random process {X(t,7)} converges to a Gaussian
random variable with mean y(7) = PL(d)[dB] and variance
8(1)?/2p(7). Therefore, the traditional lognormal model (1)
is a special case of the general TV LTF model (3). Moreover,
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the distribution of S(t,7) = eX(t7) is lognormal with mean
and variance given by

2kE[X(t,7)] + k2 Var [ X (t, T)])
2 b

E[S(t,7)] = exp (

Var [S(t,7)] = exp (ZkE[X(t, 7)] + 2k? Var [X(t, T)])

— exp (2KE[X(t,7)] + k* Var [X(1,7)]).
(8)

Now, let us go back to the more general case in which
{0(t,7)} 0 = {B(t, 1), p(t,7),8(t, T) } 0. At a particular lo-
cation 7, the mean of the PL process E[X (¢, T)] is required to
track the time variations of the average PL. This can be seen
in the following example.

Example 1. Let

y(t,T) = ym(r)(l+0.156‘2”sin (%)), (9)

where y,,(7) is the average PL at a specific location 7, T is
the observation interval, §(¢, 7) = 1400, and (¢, T) = 225000
(these parameters are determined from experimental mea-
surements as will be shown at the end of this section), where
for simplicity &(t,7) and (¢, 7) are chosen to be constant,
but in general they are functions of both t and 7. The vari-
ations of X(¢,7) as a function of distance and time are rep-
resented in Figure 1. The temporal variations of the environ-
ment are captured by a TV p(t,7) which fluctuates around
different average PLs y,,s, so that each curve corresponds
to a different location. It is noticed in Figure 1 that as time
progresses, the process X (¢, 7) is pulled towards y(¢, 7). The
speed of adjustment towards y(t,7) can be controlled by
choosing different values of 5(t, 7).

Next, the general spatiotemporal lognormal model is in-
troduced by generalizing the previous model to capture both
space and time variations, using the fact that y(t, 7) is a func-
tion of both ¢ and 7. In this case, beside initial distances, the
motion of mobiles, that is, their velocities and directions of
motion with respect to their base stations, are important fac-
tors to evaluate TV PLs for the links involved. This can be
illustrated in a simple way for the case of a single transmit-
ter and a single receiver as follows. Consider a base station
(receiver) at an initial distance d from a mobile (transmitter)
that moves with a certain constant velocity v in a direction
defined by an arbitrary constant angle 6, where 0 is the angle
between the direction of motion of the mobile and the dis-
tance vector that starts from the receiver towards the trans-
mitter as shown in Figure 2.

At time ¢, the distance from the transmitter to the re-
ceiver, d(t), is given by

d(t) = \/(d + tv cos 0)2 + (tv sin 0)2
(10)

= \/d2 + (vt)? + 2 dtv cos 0.

X(t,7) (dB)

— (1)
— X(t,71)

FIGURE 1: Mean-reverting power path loss as a function of ¢ and 7,
for the time-varying y(¢, 7) in Example 1.

FIGURE 2: A mobile (transmitter) at a distance d from a base station
(receiver) moves with velocity v and in the direction given by 6 with
respect to the transmitter-receiver axis.

Therefore, the average PL at that location is given by

y(t,7) = PL(d(t))[dB] = PL(do) [dB]

+ IOalog% +&(t), d(t) = dy,
o

(11)

where PL(dy) is the average PL in dB at a reference distance
do, d(t) is defined in (10), « is the path loss coefficient, and
&(t) is an arbitrary function of time representing additional
temporal variations in the propagating environment like the
appearance and disappearance of additional scatters. The pa-
rameter (¢, 7) is used in the TV lognormal model (3) to ob-
tain a general spatiotemporal lognormal channel model. This
is illustrated in the following example.

Example 2. Consider a mobile moving at sinusoidal velocity
with average speed 80 km/h, initial distance d = 50 meters,
6 = 135 degrees, and &(¢) = 0. Figure 3 shows the mean
reverting PL X(¢,7), y(t, 1), E[X(t,7)], velocity of the mo-
bile v, and distance d(t) as a function of time. It can be seen
that the mean of X (¢, 7) coincides with the average PL y(t, 7).
Moreover, the variation of X (¢, ) is due to uncertainties in
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X(t,7) as a function of ¢

m 95
=
Eﬁ i
E i
>
/:l 4
=
6
Time (s)
— (1)
<<<<<< EIX(t,7)]
--- X(t,7)
Variable speed v(t) and distance d(t)
- 80 : : : . SH—
g ]
3 1
g ]
S
6

---d(t)
— v(t)

FIGURE 3: Mean-reverting power path loss X(t, 1) for the TV LTF
wireless channel model in Example 2. The mobile starts moving
closer to the base station from point 50 meters with an angle of 135
degrees and sinusoidal speed with average 80 km/h (22.2 m/s).

the wireless channel such as movements of objects or obsta-
cles between transmitter and receiver that are captured by the
spatiotemporal lognormal models (3) and (11). Additional
time variations of the propagating environment, while the
mobile is moving, can be captured by using the TV PL co-
efficient a(t) in (1) in addition to the TV parameters 3(t, 1)
and (¢, 1), or simply by &(¢).

Before we finish this section, we want to show that the
spatial correlation of the lognormal mean-reverting model
of (3) agrees with the experimental spatial correlation [29-
31]. In particular, it is reported that the spatial correlation for
shadow fading in mobile communications, which compares
successfully with experimental data, can be modeled using an
exponentially decreasing function multiplied by the variance
of the PL process as follows:

Covx (At) £ g3 e A% = gf e~ (VXIAL (12)

where 0% is the covariance of the PL process, Ad is the dis-
tance between two consecutive samples, and v is the velocity
of the mobile. X, is the effective correlation distance which is
proportional to the density of the propagating environment
corresponding to the distance when the normalized corre-
lation falls to e™! [31]. To show that our spatial dynami-
cal model captures these correlation properties, consider the

space-time mean-reverting lognormal model in (3). With-
out loss of generality, consider the particular case where the
parameters {0(t,7)} =0 = {B(7), y(t,7),8(7)} 0. Let X (8, 7)
£ X(t,7) — E[X(t,7)], then we have:

dX(t,7) = —B(0)X(t, )dt + 8(2)dW (1),

o (13)
X(to,7) = N(0507).

The solution of (13) is given by

t
R(t,7) = 8000 (X1, 7) +J OIS ().

to

(14)

The mean of the process X (t, T) is zero, and its covariance
is given by

8% (1)
N — e B 2B | 52 4 O ( apmeav—1) _ ]
Covg(t,v)=e e [0t°+2ﬁ(1) (e ) ,
(15)

where t A v £ min(t,v). Letting v = t + At, then

Covg(t, t + At)

8 (1)
— L 2B(0)(t—to)—P(T)AL| ;2 2p(0)(t=t0) _ 1 ]
e |2+ 35 (e )
(16)

The covariance of the overall dynamical model indicates
what proportion of the environment remains constant from
one observation instant or location to the next, separated
by the sampling interval. Since the mobile is in motion, it
implies that this corresponds to a spatial covariance. If we
choose the variance of the initial condition such that o7 =
0%(1)/2p(7), then

52(‘[) o—BrIA

2B(7)

Covg(t,t+At) = = ope PWA £ Covy(At).

(17)

Expression (17) indicates that the spatial covariance of
our overall dynamical model corresponds to the reported
experimental spatial covariance given by (12). The compar-
ison further indicates that 3(7) is a characteristic of both
the propagating environment and the separation distance of
two consecutive samples, that is, f(7) is inversely propor-
tional to the density of the propagating environment, and di-
rectly proportional to the sample separation distance. Note
that the spatial covariance is an important characteristic for
our dynamical mean-reverting shadow fading model since
it can be clearly used in order to identify the random pa-
rameters {f(7),8(7)}. This could be accomplished by us-
ing experimental data of Covg(At). Therefore, the parame-
ters {8(7), 8(7)} can be estimated on-line from experimental
measurements. Finally, we note that the variance of the ini-
tial condition of the PL process o7, should inevitably increase
with distance, or equivalently §(7) should increase and/or
B(7) decrease.
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Subsequently, we consider the uplink channel of a cel-
lular network. We assume that users are already assigned to
their base stations and therefore we do not consider the base
station assignment case. Let M be the number of mobiles
(users), and N the number of base stations. The received sig-
nal of the ith mobile at its assigned base station at time ¢ can
be expressed as

M
yi(t) = > \pi(D)s;j(£)Si; (1) + ni(t), (18)
ol

where p;(t) is the transmitted power of mobile j at time f,
which acts as a scaling on the information signal s;(t), n;(t)
is the channel disturbance or noise at the base station of mo-
bile i, and S;; () is the signal attenuation coefficient between
mobile j and the base station assigned to mobile i. Therefore,
in a cellular network the spatiotemporal model described in
(3) for M mobiles and N base stations can be described as

dXij(t,7) = Bij (t, T) (yij (t, T) = Xij (£, 7)) dt+ 8y (t, T)d Wi (1),
X,‘j(fo,‘l’) = N(ﬁ(d)[dB],],O'tzu), 1<i, j<M,
(19)

and the signal attenuation coefficients S;;(t) are generated
using the relation S;;(t,7) = ekXi(t) where k = — In(10)/20.
Moreover, correlation between the channels in a multiuser/
multiantenna model can be induced by letting the dif-
ferent Brownian motions Wj;’s to be correlated, that is,
E[WHOW®HT] = Q(1) - t, where W(t) £ (Wij(t)), and Q(7)
is some (not necessarily diagonal) matrix that is a function
of 7 and dies out as 7 becomes large.

The TV LTF channel models in (19) are used to generate
the link gains for the proposed PCAs introduced in the next
section.

3. POWER CONTROL ALGORITHMS

In this section, different PCAs are introduced based on the
TV lognormal channel model derived in the previous sec-
tion. A deterministic PCA (DPCA) is introduced first, and
then a stochastic PCA (SPCA) is presented. Both centralized
and distributed PCAs are considered.

3.1. Deterministic power control schemes

The aim of the PCAs described here is to minimize the total
transmitted power of all users while maintaining acceptable
quality of service (QoS) for each user. The measure of QoS
can be defined by the signal-to-interference ratio (SIR) for
each link to be larger than a target SIR. Consider a cellular
network as described above, then the centralized PC problem
for time-invariant channels can be stated as [2]

M
. . Digii
min Zpi subjectto —7———— = &,
= 2.4 Pigij t i (20)

l1<i<M,

where p; is the power of mobile 4, g;; > 0 is the time-invariant
channel gain between mobile j and the base station assigned
to mobile i,& > 0 is the target SIR of mobile i, and 7; > 0
is the noise power level at the base station of mobile i. The
constraint in (20) for the TV lognormal channel models de-
scribed using path-wise QoS of each user over a time interval
[0, T] is given by

T (£)s2(£)S2
L kpodosee oy
Sixilo piOsHOSE Bt + [y ni()dt

(21)

Consequently, a natural generalization of the PC problem
in (20) with respect to the TV lognormal models in (19) can
be written as

M T
min ){ZJ pi(t)dt}, subject to
i=170

(p120,...,ppr=0

M T 1 (7
> | piososiwd- - | pwsmsiod
i l

T
+J n(tdt <0, i=1,...,M.
0
(22)

A solution to (22) is presented by first introducing
the communication meaning of predictable power control
strategies (PPCS). In wireless cellular networks, it is prac-
tical to observe and estimate channels at base stations and
then send the information back to the mobiles to adjust
their power signals {p,(¢)}M,. Since channels experience de-
lays, and power control is not feasible continuously in time
but only at discrete time instants, the concept of predictable
strategies is introduced [2]. Consider a set of discrete time
strategies {p,.(tk)}f\ﬁl, where 0 = t) < t; < =+ + < fg < g1 <

- < T. At time f;_;, the base stations observe or estimate
the channel information {Sij(tk,l),si(tk,l)}%:l. Using the
concept of predictable strategy, the base stations determine
the control strategy {p;(t)}¥, for the next time instant t.
The latter is communicated back to the mobiles, which hold
these values during the time interval [tx_, ). At time f,
a new set of channel information {S,-j(tk),si(tk)}ft/]’-zl is ob-
served at the base stations and the time #x,; control strate-
gies { pi(tk+])}£\il are computed and communicated back
to the mobiles which hold them constant during the time
interval [tx,#+1). Such decision strategies are called pre-
dictable. More specifically, we say that a discrete time signal
{o(k); k=0,1,...} is predictable with respect to a filtration
{Z} if (k) is Zi—; measurable. Using the concept of PPCS
over any time interval [fxtx+1], (22) is equivalent to

M

min > pi(te1),

subject to p(fx+1)
pten)>0 7

> TG; ' (t tir1) X (G(ti, tesr) P (tear) + 7 (tkrn)),
(23)
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where

sl
giltiation) i= | SOS0ds,
k

[738]

i (te> ter1) 1= J ni(tydt, 1<i, j<M,
173
Gl(tk)tk+l) = dlag (gll(tk) tk+l)>~~~)gMM(tk) tk+l)))
Gltetin) 0 ifi = j, (24)
ko tk+1) = . .
- Gij(to tirr)  ifi # j,

ﬂ(tk) tk+1) = (’71 (tk) tk+l)$ cee rlM(tky tk+l))tr)

P(tk+1) = (Pl (tk+1),- .. ,PM(tk+1))tr)

I = diag (81,. .. ,EM),

diag(-) denotes a diagonal matrix with its argument as diag-
onal entries, and “'"” stands for matrix or vector transpose.
The optimization in (23) is a linear programming problem
in M X 1 vector of unknowns p(fx+1). Here [t, fx+1] is a time
interval such that the channel model does not change signifi-
cantly, that is, [fx, tk+1] should be smaller than the coherence
time of the channel.

Next, we consider an iterative distributed version of the
centralized PCA in (23). This is convenient for on-line imple-
mentation since it helps autonomous execution at the node
or link level, requiring minimal usage of network commu-
nication resources for control signaling. The iterative dis-
tributed PCA proposed in [15-17] can be used to find a dis-
tributed version to the centralized PCA in (23). The con-
straint in (23) can be rewritten as

(I-TG; " (tx tks1) G (ks tir1) ) P (frs1)
(25)
>TGy ! (t, k1) (tkr1)-

Defining F(tx, tir1) = TGy (th, tre1)Gltk, trer) and u(ty,
fre) 2 I'G{l(tk, ti+1)0(te+1), then (25) can be rewritten as

(I - F(t, tk+1))p(tk+1) > u(ty, ter1)- (26)

If channel gains are time invariant, that is, F(#, tx+1) = F
and u(t, fx+1) = u, then the power control problem is fea-
sible if pr < 1, where pr is the Perron-Frobenius eigenvalue
of F [15]. It is shown in [15-17] that the following iterative
PCA converges to the minimal power vector when pg < 1:

p(tk+1) = Fp(tx) + u. (27)

However, our channel gains are time varying, thus a
“time-varying version” of the deterministic PCA (DPCA) in
(27) can be defined as

p(ter1) = F(t, ter ) p(t) +u(ti, trer). (28)

Clearly, in general the power vector p(fx) will not con-
verge to some deterministic constant as it does in (27). Rath-
er, in a time-varying (random) propagation environment, it

is required that the power vector p(#) converges in distri-
bution to a well-defined random variable. Since F(t, tcy1) is
a random matrix-valued process, the key convergence con-
dition is the Lyapunov exponent Ag < 0 [32], where Ap is
defined as

.1
A = ]1152 ElogHF(to,tl)F(tl,tz) o Fte )| (29)

Throughout this section, we assume that the PC problem
is feasible, that is, there exists a power vector p(tx) that sat-
isfies the inequality in (23) for all . The distributed version
of (28) can be written as

&i(tx)
Ri(tx)

Pi(tkﬂ) = pi(tk)) i= 1>~~~3M) (30)

where R;(t;) is instantaneous SIR defined by

Pi(t) gii (ths 1)
Zﬁipj(tk)gij(tk,tkﬂ) + 17i (th> tres) ’

Ri(t) = i=1,..,M

(31)

It is shown in [22] that the performance of the DPCA in
(30) in terms of power consumption is not optimal when the
channel environment is time varying (random). Actually, the
performance can be severely degraded when PCAs that are
designed for deterministic channels are applied to TV chan-
nels [22]. Therefore, stochastic PCAs (SPCAs) must be used
in order to ensure stable optimal power consumption. The
latter is introduced in the following section.

3.2. Stochastic power control schemes

A distributed SPCA similar to the one described in [20] is
used in this section, where the transmit powers are updated
based on stochastic approximations. Let us define the instan-
taneous interference at time f; by

M
Li(tk) = > pi(t)gij (o tier) +1i (b tewr), i=1,..., M,
J#i
(32)

then the SPCA proposed in [20], which uses the concept of
interference averaging as introduced in [33], can be used to
update the transmitted power recursively as

pi(ten) = (1 —a(t)) pi(te)

&i(te) I . (33)

+alty) ———— )|, i=1,...,M,
( k)gii(tk,tk+1) ol

where a(ty) is the stepsize at time f, which satisfies certain
conditions as explained later. Substituting (32) into (33) and
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using (31) yield

(1—a(tx))pi(tx)

(34)
(tk)Rl((ttI;)) pi(tx), i=1,...,M.

If the PC problem in (22) is feasible, the distributed
SPCA in (34) converges to the optimal power vector when
the stepsize sequence satisfies certain conditions. Two dif-
ferent types of convergence results are shown in [34] under
different choices of the stepsize sequence. If the stepsize se-
quence satisfies > ;. a(tx) = oo and >, a(tx)? < oo, then
the SPCA in (34) converges to the optimal power vector with
probability one. However, due to the requirement for the
SPCA to track TV environments, the iteration stepsize se-
quence is not allowed to decrease to zero. So we consider
the case where the condition >, a(tx)? < oo is violated.
This includes the situation when the stepsize sequence de-
creases slowly to zero, and the situation when the stepsize is
fixed at a small constant. In the first case when a(fx) — 0
slowly, the SPCA in (34) converges to the optimal power vec-
tor in probability. While in the second case the power vec-
tor clusters around the optimal power. In fact, the error be-
tween the power vector and the optimal value does not van-
ish for nonvanishing stepsize sequence; this is the price paid
in order to make the algorithm in (34) able to track TV en-
vironments. This algorithm is fully distributed in the sense
that each user iteratively updates its power level by estimat-
ing the received SIR of its own channel. It does not require
any knowledge of the link gains and state information of
other users. The remaining three parameters of (34): the user
power value in the previous iteration p;(fx), its SIR target
value &;(tx), and stepsize sequence a(t), are trivially known
by the user. It is worth mentioning that the proposed dis-
tributed SPCA in (34) is different from the algorithm pro-
posed in [22] where two parameters, namely, the received
SIRs R;(tx) and the channel gains gj;(#, k1), are required to
be known. In contrast, here only the received SIRs R;(#) are
required in (34).

The received SIRs R;(#;) can be estimated at the base sta-
tions every L bits, and then transmitted back to the users.
Each user keeps its transmitted power level fixed until the
feedback from its base station arrives and then updates its
transmitted power according to (34). This process occurs
during the time interval [fx, tx+1] which should be chosen
such that the channel model does not change significantly,
that is, [fx, tre1] should be smaller than the coherence time
of the channel. For small [tk, tx+1], the power control up-
dates will be more frequent and thus convergence will be
faster. However, frequent transmission of the feedback on the

Pi(tkH) =

M
L,\ u*,l = min X E
( ) (p1=0,...,pp=0) { Z:ZI i

U pit dt+A[ZJ pi(OS(DS (Dt -

downlink channel will effectively decrease the capacity of the
system since more system resources (bandwidth) will have to
be used for power control.

3.3. More generalizations

Without predictable power control strategies, two formu-
lations in terms of convex optimization using linear pro-
gramming techniques and stochastic control with integral
or exponential-of-integral constraints are introduced in this
section. Moreover, an alternative stochastic power control
formulation that meets outage constraints is also discussed.

The first problem is formulated in terms of convex opti-
mization and linear programming as follows:

min
(p1=0,...,pm=0)

{Z J’nﬁ1 Pi(t)dt}, subject to

ZJ i ()53 (1S t)dt——J pi(t)s?(£)SA(t)dt
j#i

tht1
+ J
tk

According to the above formulation using predictable
strategies, this is a convex optimization problem. In addition,
any interval [0, T'] can be considered as 0 =ty < t; <ty - - <
tx <ty < - -+ = T, and by approximating the integrals by
Riemann sums as close as desired, it can be shown that (35)
reduces to a linear programming problem again.

The second problem is formulated in terms of stochastic
control with integral or exponential-of-integral constraints
as

n(dt <0, i=1,...,M.

(35)

min
(p120,...,par=0)

{Z E J pl(t)dt} subject to

Jir(p)2 E{Zj iSO (t)dt——j PSSt
J#i

N JOT n?(t)dt} <0

i=1,..,M
(36)

If there exists a set of {ei}f\il such that the QoS are feasi-
ble, by employing Lagrange multipliers A; for each Ji 1-(p) we
can introduce

J pi(t)s?(t)S? (t)dt+J z(t)dt:H} (37)
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and then solve the problem [ (A*,u*) = supAZOL" (u*,1).
Further, it can be shown that L* (u*,1) satisfies a dynamic
programming equation of the Hamilton-Jacobi-Bellman
type [35].

Similarly, the QoS can be considered as point-wise con-
straints and pursue the problem

(p120,...,ppr=0)

M T
min {Z EJ p,»(t)dt}, subject to
i=1 70

M 38
> pi(OsH()SH(8) — épi(t)s%(wsl%-(t) +ni(t) <0, (38)
j#i !

te 0, T],i=1,...,M.

Optimizations (36) and (38) are convex optimization
problems, since their objective functions and constraints are
convex.

An alternative stochastic power control formulation can
be stated in terms of outage probability (OP). It is defined as
the probability that a randomly chosen link fails due to ex-
cessive interference [12]. Therefore, smaller OP implies larg-
er capacity of the wireless network. A link with a received
SIR R;, less than or equal to a target SIR ¢;, is considered a
communication failure. The OP O(g;) is expressed as O(¢;) =
Prob{R; < &}. The stochastic PC problem that meets outage
constraints can be formulated as

M T
min {ZJ pi(t)dt}, subject to
0

(p1=0,..,pn=0) LiT)

M T
Pf{(ZJ JOHONIOL
i 0

- 81 JOT pit)si (1)SE(t)dt + LT n%(ﬂdt) = 0} =0p
(39)

where t € [0,T], O; is the target OP of user i, and i =
1,..., M. The probabilities in the constraint of (39) are very
difficult to compute. Therefore, Chernoff bounds [36] can be
used to evaluate the probability of failure to achieve a desired
QoS requirement as follows:

M .T
PT‘KZJ pi(Ds;(1)S(t)dt
j#i~ 0

T
0

- éJ'OT pi(t)sg(t)sfi(t)dwj n?(t)dt) = 0}
M T
< E{ exp (c,- ( > J pi(t)s;(1)S3;(t)dt
j#i”0

T
_ Sl L p,-(t)sf(t)Sfi(t)dHLT n,-z(t)dt) )}
(40)

where ¢; > 0,7 = 1,..., M. The Chernoff bound associated
with (40) subject to (18) and (19) can be computed in [2]

using a version of the backward Kolmogorov equation; the
right-hand side of (40) is given by [2]

M T
E{exp <ci<zj P (DS (DS (1)dt
j#70

T
_ sl LT PO (DSt + L n,?(t)dt))}

2 )
= exp [Z’UZT} V0, x),
(41)

where o2 is the variance of the noise #;(¢), and Vi(t, x) is de-
fined by

Vi(t, x)

M T
AE{exp (ci(ZJ PSS} (Dde
it

T T
_ gljt pi(D)sH()S(t)dt + L niz(t)dt)
T
— CiJ nf(t)dt) |Xij(0)}.

Thus, the Chernoff bound is computed explicitly in (41),
and then has to be minimized over ¢; = 0.

To illustrate the efficiency of the various PCAs proposed
in this paper, numerical results are presented in the next sec-
tion.

(42)

4. NUMERICAL RESULTS

In this section, we provide two numerical examples to deter-
mine the performance of the various PCAs under the pro-
posed TV LTF channel models. In Example 1, we compare
the performance of the centralized DPCA using PPCS de-
scribed in (23) under two different types of TV LTF chan-
nel models; the stochastic TV models in (3) and the static
TV models in (1). In the second example, the performance
of the distributed DPCA (30) and the distributed SPCA (34)
under the proposed stochastic TV LTF channel models is de-
termined.

The cellular model has the following features: the num-
ber of transmitters (mobiles) is M = 24, the information
signal s;(t) = 1 for i = 1,...,M, the number of bits L in
each power update period is one, initial distances of all mo-
biles with respect to their own base stations d;; are generated
as uniformly independent identically distributed (i.i.d.) ran-
dom variables (r.v.’s) in (10—100) meters, cross initial dis-
tances of all mobiles with respect to other base stations di;,
i # j, are generated as uniformly i.i.d. r.v.’s in (250-550) me-
ters, the angle 0;; between the direction of motion of mo-
bile j and the distance vector passes through base station i
and mobile j are generated as uniformly i.i.d. r.v’s in (0-
180) degrees, the average velocities of mobiles are generated
as uniformly 7.i.d. .v.’s in (40-100) km/h, all mobiles move at
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FIGURE 4: OP for the centralized DPCA using PPCS under TV LTF models for (a) stochastic models, (b) static models.

sinusoidal variable velocities around their average velocities
such that the peak velocity is two times the average speed,
power path loss exponent is 3.5, initial reference distance
from each of the transmitters is 10 meters, power path loss at
the initial reference distance is 67 dB, d;; (¢, 7) = 1400 and f;;
(t,7) = 225000 for the SDEs, and #;’s are i.i.d. Gaussian .v.’s
with zero mean and variance = 10712 W. The performance
measure is outage probability (OP).

Example 3. In this example, the centralized DPCA using
PPCS in (23) is performed on two different TV LTF channel
models; the stochastic TV model in (3) and the static model
encountered in the literature [12]. It is assumed that the tar-
gets SIR ¢; for all users are the same, and varied from 5dB
to 35dB with step 5 dB. For each value of ¢ the OP is com-
puted every 15 millisecond, that is, [tk fx+1] =15 millisec-
onds. The simulation is performed for 5 seconds. The OP is
computed using Monte-Carlo simulations. The OPs for the
centralized DPCA using PPCS based on both stochastic and
static TV LTF channel models are shown in Figure 4(a) and
Figure 4(b), respectively. Figure 4 shows how the OP changes
with respect to the target SIR, ¢;, and time. As the target SIR
increases the OP increases. This is obvious since we expect
more users to fail as ¢; increases. The OP also changes as a
function of time, since mobiles move in different directions
and velocities. The average OP versus ¢; over the whole sim-
ulation time (5 seconds) is shown in Figure 5, which shows
that the performance of PPCS using the stochastic models
is on average much better than static models. For example,
at 10 dB target SIR, the OP is reduced from 0.26 for static
models to 0.18 for TV stochastic ones; this represents an im-
provement of over 30%. The PPCS algorithm for stochastic
models outperforms the static ones by an order of magni-
tude. It can be seen that as target SIR, ¢ increases the per-
formance gap between the PPCS using stochastic and static
models decreases. This is because the effect of ¢; (required
QoS) is dominant.

o
&)

<
'S

Outage probability
o o
S} w

0.1

0 | |
5 10 15 20

Target SIR (dB)

—— PPCS based on static models
--~- PPCS based on stochastic models

FIGURE 5: Average OP for TV LTF channel models with §(¢) = 1400.
Performance comparison.

Figure 6 shows the average OP over the whole simulation
time (5 seconds) for higher noise variance (8(¢,7)= 2800).
In this case the stochastic PL X (¢, 7) have higher variations
or fluctuations around the average PL y(¢, ), since this pa-
rameter controls the instantaneous variance of the stochastic
PL. The PPCS based on static models when the actual chan-
nels have high variance gives higher OP than when the actual
channels have low variance as observed in Figures 5 and 6.
This is due to the fact that channels with high variance de-
viate significantly from the average (static) channels. For ex-
ample, at 10 dB target SIR, the OP in the static case is about
0.32, while in the stochastic case, it is about 0.2, an improve-
ment of over 37%.



Mohammed M. Olama et al.

11

Outage probability
o o o
W = [

53
)

0.1

0 1 1
5 10 15 20

Target SIR (dB)

—— PPCS based on static models
--~- PPCS based on stochastic models

FIGURE 6: Average OP for TV LTF channel models with §(¢) = 2800.
Performance comparison.
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FIGURE 7: Sum of transmitted power of all mobiles for the dis-
tributed DPCA and the distributed SPCA under TV LTF channels.

Example 4. In this example, the performance of the dis-
tributed DPCA (30) is compared with the distributed SPCA
(34) under stochastic TV LTF channels. With the same pa-
rameters as Example 3, in addition to the target SIRs, & = 5
for all users and ar = 0.1. The total transmitted powers
of all mobiles using the distributed DPCA in (30) and the
SPCA in (34) under stochastic TV LTF channels are shown in
Figure 7. Note that the power axis is logarithmic. Clearly, the
distributed SPCA using stochastic approximations provides
better power stability and consumption than the distributed
DPCA described in [15-17].

5. CONCLUSION

In this paper, a TV LTF wireless channel model, which cap-
tures both the space and time-variations of TV LTF wireless
channels, is developed. The dynamics of the TV LTF chan-
nels are described by an SDE, which essentially captures the
spatiotemporal variations of wireless communication links.
The proposed model is more realistic than the standard static
models encountered in the literature. The SDE model pro-
posed allows viewing the wireless channel as a dynamical
system, which shows how the channel evolves in time and
space. In addition, it allows well-developed tools of estima-
tion and identification to be applied to this class of problems
[9-11]. An optimal DPCA based on the developed model is
proposed. The optimal DPCA is shown to reduce to a sim-
ple linear programming problem if predictable power con-
trol strategies (PPCS) are used. Iterative distributed DPCAs
and SPCAs are used to solve for the optimization problem.
The proposed distributed SPCA requires less information
than the distributed SPCAs encountered in the literature.
Generalizations to PC problems based on convex optimiza-
tion techniques are provided if PPCS are not assumed, to-
gether with outage constraints. These optimizations are the
subject of on-going research. Numerical results show that
there are potentially large gains to be achieved by using TV
stochastic models, and the distributed SPCA provides better
power stability and consumption than the distributed DPCA.
It should be noted that channel models based on SDEs for
STF (Rayleigh and Ricean environments) have been consid-
ered in [2, 5], by approximating the Doppler power spectral
density of wireless channels.
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