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INTRODUCTION

This work assesses different approaches for speech and non-speech segmentation of audio data and proposes a new, high-level
representation of audio signals based on phoneme recognition features suitable for speech/non-speech discrimination tasks. Un-
like previous model-based approaches, where speech and non-speech classes were usually modeled by several models, we de-
velop a representation where just one model per class is used in the segmentation process. For this purpose, four measures
based on consonant-vowel pairs obtained from different phoneme speech recognizers are introduced and applied in two differ-
ent segmentation-classification frameworks. The segmentation systems were evaluated on different broadcast news databases. The
evaluation results indicate that the proposed phoneme recognition features are better than the standard mel-frequency cepstral co-
efficients and posterior probability-based features (entropy and dynamism). The proposed features proved to be more robust and
less sensitive to different training and unforeseen conditions. Additional experiments with fusion models based on cepstral and
the proposed phoneme recognition features produced the highest scores overall, which indicates that the most suitable method for
speech/non-speech segmentation is a combination of low-level acoustic features and high-level recognition features.

Copyright © 2006 Janez Zibert et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Earlier work on the separation of speech and non-speech

Speech/non-speech (SNS) segmentation is the task of parti-
tioning audio streams into speech and non-speech segments.
While speech segments can be easily defined as regions in
audio signals where somebody is speaking, non-speech seg-
ments represent everything that is not speech, and as such
consist of data from various acoustical sources, for example,
music, human noises, silences, machine noises, and so forth.

A good segmentation of continuous audio streams into
speech and non-speech has many practical applications. It is
usually applied as a preprocessing step in real-world systems
for automatic speech recognition (ASR) [28], like broadcast
news (BN) transcription [4, 7, 34], automatic audio indexing
and summarization [17, 18], audio and speaker diarization
[12, 20, 24, 30, 37], and all other applications where efficient
speech detection helps to greatly reduce computational com-
plexity and generate more understandable and accurate out-
puts. Accordingly, a segmentation has to be easily integrated
into such systems and should not increase the overall com-
putational load.

mainly addressed the problem of classifying known homoge-
neous segments as speech or music and not as a non-speech
class in general. The research focused more on developing
and evaluating characteristic features for classification, and
systems were designed to work on already-segmented data.

Saunders [26] designed one such system using features
pointed out by Greenberg [8] to successfully discriminate
speech/music in radio broadcasting. He used time-domain
features, mostly derived from zero crossing rates. Samouelian
et al. [25] also used time-domain features, combined with
two frequency features. Scheirer and Slaney [27] investigated
features for speech/music discrimination that are closely re-
lated to the nature of human speech. The proposed features,
that is, spectral centroid, spectral flux, zero-crossing rate,
4Hz modulation energy (related to the syllable rate of
speech), and the percentage of low-energy frames were ex-
plored in the task of discriminating between speech and
various types of music. The most commonly used features
for discriminating between speech, music, and other sound
sources are the cepstrum coefficients. Mel-frequency cepstral
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coefficients (MFCCs) [21] and perceptual linear predic-
tion (PLPs) cepstral coefficients [11] are extensively used in
speaker-and speech recognition tasks. Although these signal
representations were originally designed to model the short-
term spectral information of speech events, they were also
successfully applied in SNS discrimination systems [2, 4, 7, 9]
in combination with Gaussian mixture models (GMMs) or
hidden Markov models (HMMs) for separating different
sound sources (broadband speech, telephone speech, music,
noise, silence, etc.). The use of these representations is a natu-
ral choice in the systems based on ASR, since the same feature
set can be used later for speech recognition.

These representations and approaches focused on the
acoustic properties of data that are manifested in either
the time and frequency or spectral (cepstral) domains. All
the representations tend to characterize speech in compar-
ison to other non-speech sources (mainly music). Another
view of the speech produced and recognized by humans is
to see it as a sequence of recognizable units. Speech pro-
duction can thus be considered as a state machine, where
the states are phoneme classes [1]. Since other non-speech
sources do not possess such properties, features based on
these characteristics can be usefully applied in SNS classi-
fication. The first attempt in this direction was made by
Greenberg [8], who proposed features based on the spectral
shapes associated with the expected syllable rate in speech.
Karnebdck [13] produced low frequency modulation fea-
tures in the same way and showed that in combination with
the MFCC features they constitute a robust representation
for speech/music discrimination tasks. A different approach
based on this idea was presented by Williams and Ellis [33].
They built a phoneme speech recognizer and studied its be-
havior on different speech and music signals. From the be-
havior of a recognizer, they proposed posterior probability-
based features, that is, entropy and dynamism. In our work,
we explore this idea even further in a way to analyze the out-
put transcriptions of such phoneme recognizers.

While almost all the mentioned studies focused more
on discriminating between speech and non-speech (mainly
music) data on separate audio segments, we explore these
representations in the task of segmenting continuous audio
streams where the speech and non-speech parts are interleav-
ing randomly. Such kinds of data are expected in most prac-
tical applications of ASR. In our research, we focus mainly
on BN data. Most recent research in this field addresses this
problem as part of a complete ASR system for BN transcrip-
tion [4, 7, 29, 34] and speaker diarization or tracking in BN
data [12, 20, 30, 36, 37]. In most of these works, cepstral
coefficients (mainly MFCCs) are used for segmenting, and
GMMs or HMMs are used for classifying the segments into
speech and different non-speech classes. An alternative ap-
proach was investigated in [16], where the audio classifica-
tion and segmentation was made by using support vector
machines (SVMs). Another approach was presented in [1],
where speech/music segmentation was achieved by incorpo-
rating GMMs into the HMM framework. This approach is
also followed in our work. In addition, we use it as a baseline
segmentation-classification method when comparing it with

another method based on acoustic segmentation obtained
with the Bayesian information criterion (BIC) [5] followed
by SNS classification.

This paper is organized as follows: in Section 2 the
phoneme recognition features are proposed. We give the ba-
sic ideas behind introducing such a representation of au-
dio signals for SNS segmentation and define four features
based on consonant-vowel pairs produced by a phoneme rec-
ognizer. Section 3 describes the two SNS segmentation ap-
proaches used in our evaluations, one of which was specially
designed for the proposed feature representation. In the eval-
uation section, we present results from a wide range of exper-
iments on several different BN databases. We try to assess the
performance of the proposed representation in a comparison
with existing approaches and propose fusion of the selected
representations in order to improve the evaluation results.

2. PHONEME RECOGNITION FEATURES
2.1. Basic concepts and motivations

The basic SNS classification systems typically include statis-
tical models representing speech data, music, silence, noise,
and so forth. They are usually derived from training mate-
rial and then a partitioning method detects speech and non-
speech segments according to these models. The main prob-
lem in such systems is the non-speech data, which are pro-
duced by various acoustic sources and therefore possess dif-
ferent acoustic characteristics. Thus, for each type of such
audio signals, one should build a separate class (typically
represented as a model) and include it into a system. This
represents a serious drawback in SNS segmentation systems,
which need to be data independent and robust to different
types of speech and non-speech acoustic sources.

On the other hand, the SNS segmentation systems are
meant to detect speech in audio signals and should discard
non-speech parts regardless of their different acoustic prop-
erties. Such systems can be interpreted as two-class classifiers,
where the first class represents speech samples and the sec-
ond class everything else that is not speech. In that case, the
speech class defines non-speech. Following this basic con-
cept, one should find and use those characteristics or fea-
tures of audio signals that better emphasize and characterize
speech and exhibit the expected behavior on all other non-
speech audio data.

While most commonly used acoustic features (MFCCs,
PLPs, etc.) performed well when discriminating between dif-
ferent speech and non-speech signals [14], they still only op-
erate on an acoustic level. Hence, the data produced by the
various sources with different acoustic properties should be
modeled by several different classes and should be repre-
sented in the training process of such systems. To avoid this,
we decided to design an audio representation, which should
better determine speech and perform significantly differently
on all other non-speech data. One possible way to achieve
this is to see speech as a sequence of basic speech units con-
veying some meaning. This rather broad definition of speech
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FIGURE 1: Block diagram of the proposed speech/non-speech phoneme recognition features.

led us to examine the behavior of a phoneme recognizer and
analyze its performance on speech and non-speech data.

2.2. Feature derivation

In our work, we tried to extend the idea of Williams and El-
lis [33], who proposed novel features for speech and mu-
sic discrimination based on posterior probability observa-
tions derived from a phoneme recognizer. From the analy-
sis of the posterior probabilities, they extracted features such
as mean per-frame entropy, average probability dynamism,
background-label ratio, and phone distribution match. The
entropy and dynamism features were later successfully ap-
plied in the speech/music segmentation of audio data [1]. In
both cases, they used these features for speech/music classifi-
cation, but the idea could easily be extended to the detection
of speech and non-speech signals, in general. The basic moti-
vation in both cases was to obtain and use features that were
more robust to different kinds of music data and at the same
time perform well on speech data. To explore this approach
even further, we decided to produce features derived directly
from phoneme recognition transcriptions, which could be
applied to the task of SNS segmentation.

Typically, the input of a phoneme (speech) recognizer
consists of feature vectors based on the acoustic parametriza-
tion of speech signals and the corresponding output is the
most likely sequence of predefined speech units together with
the time boundaries, and in addition with the probabilities or
likelihoods of each unit in a sequence. Therefore, the output
information from a recognizer could also be interpreted as
a representation of a given signal. Since the phoneme recog-
nizer is designed for speech signals, it is to be expected that
it will exhibit characteristic behavior when speech signals are
passed through it, and all other signals will result in unchar-
acteristic behaviors. This suggests that it should be possible
to distinguish between speech and non-speech signals by ex-
amining the outputs of phoneme recognizers.

In general, the output from speech recognizers depends
on the language and the models included in the recognizer.
To reduce these influences, the output speech units should
be chosen from among broader groups of phonemes that are
typical for the majority of languages. Also, the correspond-
ing speech representation should not be heavily dependent
on the correct transcription produced by the recognizer. Be-
cause of these limitations and the fact that human speech can
be described as concatenated syllables, we decided to exam-
ine the behavior of recognizers in terms of the consonant-
vowel (CV) level.

The procedure for extracting phoneme recognition fea-
tures is shown in Figure 1. First, the acoustic representa-
tion of a given signal was produced and passed through
the phoneme recognizer. Then, the transcription output was
translated to specified speech classes, in our case to the
consonant (C), vowel (V), and silence (S) classes. At this
point, an analysis of the output transcription was carried out,
and those features that resembled the discriminative proper-
ties of speech and non-speech signals and were relatively in-
dependent of specific recognizer properties and errors were
extracted. We examined just those characteristics of the rec-
ognized output that are based on the duration and the chang-
ing rate of the basic units produced by the recognizer.

After a careful analysis of the behaviors of several dif-
ferent phoneme recognizers for different speech and non-
speech data conditions, we decided to extract the following
features.

(i) Normalized CV duration rate, defined as

lte—tv| .t
tcvs tcvs

, (1

where ¢ is the overall duration of all the consonants recog-
nized in the signal window of duration tcys, and ty is the
duration of all the vowels in tcys. The second term denotes
the portion of silence units (¢5) represented in a recognized
signal measured in time. « serves to emphasize the propor-
tion of silence regions in the signal, and hastobe 0 < o < 1.

Since it is well known that speech is constructed from CV
units in a combination with S parts, we observed that an-
alyzed speech signals exhibit relatively equal durations of C
and V units, and rather small portions of silences (S). This
resulted in small values (around zero) of (1) measured on
fixed-width speech segments. On the other hand, analyzed
non-speech data was almost never recognized as a proper
combination of CV pairs; this was reflected in different rates
of C and V units, and hence the values of (1) were closer to 1.
In addition, the second term in (1) produces higher values,
when non-speech signals are recognized as silences.

Note that in (1) we used the absolute difference between
the durations (|{c — ty|) rather than the duration ratios
(tc/ty or ty/tc). This was done to reduce the effect of label-
ing, and not to emphasize one unit over another. The latter
would result in the poor performance of this feature when
using different speech recognizers.

(ii) Normalized CV speaking rate, defined as

nctny 2)

tevs
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where n¢ and ny are the number of C and V units recognized
in the signal in the time duration fcys. Note that the silence
units are not taken into account.

Since phoneme recognizers are trained on speech data,
they should detect changes when normal speech moves be-
tween phones every few tens of milliseconds. Of course,
speaking rate in general depends heavily on the speaker and
the speaking style. Actually, this feature is often used in sys-
tems for speaker recognition [23]. To reduce the effect of
speaking style, particularly spontaneous speech, we decided
not to count the S units. Even though the CV speaking
rate (2) changes with different speakers and speaking styles,
it varies less for non-speech data. In the analyzed signals,
speech tended to change (in terms of phoneme recognizer)
much less frequently and they varied greatly among different
non-speech data types.

This feature is closely related to the average probability
dynamism proposed in [33].

(iii) Normalized CVS changes, defined as

c(C,V,S)
tevs

(3)

where ¢(C, V,S) counts how many times the C, V, and S
units exchange in the signal in the time duration tcys.

This feature is related to the CV speaking rate, but with
one important difference. Here, just the changes between the
units that emphasize pairs and not just single units are taken
into account. As speech consists of such CV combinations
one should expect higher values when speech signals are de-
coded and lower values in the case of non-speech data.

This approach could be extended even further to observe
higher-order combinations of C, V, and S units to construct
n-gram CVS models (like in statistical language modeling),
which could be estimated from the speech and non-speech
data.

(iv) Normalized average CV duration rate, defined as

|tc_7tv|’ (4)

tcy
where fc and fy represent the average time duration of the C
and V units in a given segment of a recognized signal, while
tcv is the average duration of all the recognized (C,V) units
in the same segment.

This feature was constructed to measure the difference
in the average duration of consonants and the average dura-
tion of vowels. It is well known that in speech the vowels are
in general longer in duration than the consonants. Hence,
this was reflected in the analyzed recognized speech. On the
other hand, it was observed that non-speech signals did not
exhibit such properties. Therefore, we found this feature to
be discriminative enough to distinguish between speech and
non-speech data.

This feature correlates with the normalized CV rate de-
fined in (1). Note that in both cases, the differences were used
instead of the ratios between the C and V units. The reason
is the same as in the case of (1).

As can be seen from the above definitions, all the pro-
posed features measure the properties of recognized data on

the segments of a processing signal. The segments should be
large enough to provide reliable estimations of the proposed
measurements. The typical segment sizes used in our experi-
ments were between 2.0 and 5.0 seconds or were defined by a
number of recognized units. They depended on the size of
the portions of speech and non-speech data that were ex-
pected in the processing signals. Another issue was how to
calculate features to be time aligned. In order to make a deci-
sion as to which portion of the signal belongs to one or other
class, we should calculate the features on a frame-by-frame
basis. The natural choice would be to compute features on
moving segments between successive recognized units, but
in our experiments, we decided to keep a fixed frame skip,
since we also used them in combination with the cepstral fea-
tures.

In the next sections, we describe how we experimented
with frame rates and segment sizes as well as calculated fea-
tures on already presegmented audio signals.

Figure 2 shows phoneme recognition features in action!.
In this example, the CV features were produced by phoneme
recognizers based on two languages. One was built for
Slovene (darker line in Figure 2), the other was trained on
the TIMIT database [6] (brighter line), and was therefore
used for recognizing English speech data. This example was
extracted from a Slovenian BN show. The data in Figure 2
consist of different portions of speech and non-speech. The
speech segments are built from clean speech produced by dif-
ferent speakers in combination with music, while the non-
speech is represented by music and silent parts. As can be
seen from Figure 2, each of these features has a reasonable
ability to discriminate between speech and non-speech data,
which was later confirmed by our experiments. Furthermore,
the features computed from the English speech recognizer,
and thus in this case used on a foreign language, exhibit
nearly the same behavior as the features produced by the
Slovenian phoneme decoder. This supports our intentions to
design features that should be language and model indepen-
dent.

In summary, the proposed features can be seen as fea-
tures designed to discriminate all recognizable speech seg-
ments from all others that cannot be recognized. It was found
that this set of features follows our basic concept of deriving
new features for SNS classification. This also has another ad-
vantage over previous approaches, in that it does not simply
look at the acoustic nature of the signal in order to classify it
as speech or non-speech, but rather it looks at how well the
recognizer can perform over these segments. The CV features
were developed in such a way as to be language and model
independent.

3. SPEECH/NON-SPEECH SEGMENTATION

We experimented with two different approaches to SNS
segmentation. In the first group of segmentation experi-
ments, we followed the approach presented in [1] designed

! All data plots in Figure 2 were produced by the wavesurfer tool, available
at http://www.speech.kth.se/wavesurfer/.
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FIGURE 2: Phoneme recognition CVS features. Top/first pane shows the normalized CV duration; second, the normalized CV speaking rate;
third, the normalized CVS changes; and fourth, the normalized average CV duration rate. All the panes consist of two lines. The black
(darker) line represents the features obtained from a phoneme-based speech recognizer build for Slovene, while the gray (brighter) line
displays the features obtained from the phoneme recognizer for English. Bottom pane displays the audio signal with the corresponding
manual transcription.
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F1GURE 3: Block diagram of the two approaches used in the SNS segmentation. In (a), segmentation and classification are performed simul-
taneously by HMM Viterbi decoding. Features are given in a frame-by-frame sequence. In the second approach (b), firstly, the segmentation
based on acoustic features is performed by using BIC, then phoneme recognition CVS features are calculated on the obtained segments to

serve as an input for GMM classification.

for speech/music segmentation. The basic idea here was
to use HMMs to perform the segmentation and classifica-
tion simultaneously. Another approach was to perform the
segmentation and classification as separate processes. Here,
the segmentation was done on an acoustic representation of
audio signals produced by the BIC segmentation algorithm
[5, 32], and then a classification of the obtained segments
was made by using GMMs.

The block diagram of the evaluated segmentation sys-
tems is shown in Figure 3. The base building blocks of both
systems were GMMs. They were trained via the EM algo-
rithm in a supervised way.

In the first case (Figure 3(a)), the approach presented in
[2] was applied. The segmentation and classification were
performed simultaneously by integrating the GMM models
into the HMM classification framework.

We built a fully connected network consisting of N HMM
models, as shown in Figure 4, where N represents the num-
ber of GMM:s used in the speech/non-speech classification.
Each HMM was constructed by simply concatenating the
internal states associated with the same probability density

function represented by one GMM. The number of states
(M states in Figure 4) was set in such a way as to im-
pose a minimum duration on each HMM. All the transi-
tions inside each model were set manually, while the tran-
sitions between different HMMs were additionally trained
on the evaluation data. In the segmentation process, the
Viterbi decoding was used to find the best possible state
(speech/non-speech) sequence that could have produced the
input features sequence.

In the second approach (Figure 3(b)), the segmentation
and classification were performed sequentially. The segmen-
tation was done on an acoustic representation of the audio
signals (MFCCs) using the BIC measure, [5, 32]. For this
reason, segments based on acoustic changes were obtained,
that is, speaker, channel, background changes, different types
of audio signals (music, speech), and so forth. In the next
step, the classification to speech or non-speech was per-
formed. The classification was based on the same GMM set,
which was also incorporated in the HMM classifier from
the previous approach. In this way, we could compare both
methods using the same models. This approach is suited to
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the proposed CVS features, which operate better on larger
segments of signals rather than on smaller windows on a
frame-by-frame basis.

4. EVALUATION EXPERIMENTS

Our main goal in this work was to explore and experiment
with different approaches and representations of audio sig-
nals in order to find the best possible solution for the SNS
discrimination in the audio segmentation of BN shows. The
main issue was to find the best combination of representa-
tions and classifications, which should be robust to different
BN shows, different environments, different languages, and
different non-speech types of signals, and should be easily
integrated into systems for further speech processing of the
BN data.

We tested three main groups of features in the SNS seg-
mentation task: acoustic features represented by MFCCs, the
entropy and dynamism features proposed in [33], and our
phoneme recognition CVS features defined in Section 2. We
also experimented with various combinations of these fea-
ture representations in fusion models, where each stream was
represented by one of the feature types. In addition, we com-
pared the two different approaches to SNS segmentation pre-
sented in Section 3.

As a baseline system for the SNS classification, we chose
the MFCC features representation in combination with the
HMM classifier. We decided to use 12 MFCC features to-
gether with normalized energy and first-order derivatives as
a base representation, since no improvement was gained by
introducing second-order derivatives.

The second group of experiments was based on entropy-
dynamism features [1]. We extracted the averaged entropy
and dynamism from the HMM-based phoneme recognizer.
They were computed from the posterior probabilities of each
HMM state at a given time and at a given current observa-
tion vector represented by the MFCC features [33]. All the
parameters were set according to [2]. The HMM phoneme
recognizer was trained on the TIMIT speech database [6] in
a traditional way and fed by 39 MFCCs including the energy
and the first- and second-order derivatives.

The CVS features were obtained from two phoneme rec-
ognizers. One was built on Slovenian data trained from three

speech databases: GOPOLIS, VNTYV, and K211d [19]. We
will refer to it as the SI-recognizer. The second was built
from the TIMIT database [6], and thus was used for rec-
ognizing the English speech. This recognizer was also used
in the entropy-dynamism case. It is referred to as the EN-
recognizer in all our experiments. Both phoneme recogniz-
ers were constructed from the HMMs of monophone units
joined in a fully connected network. Each HMM state was
modeled by 32 diagonal-covariance Gaussian mixtures, built
in a standard way, that is, using 39 MFCCs, including the
energy, and the first- and second-order derivatives, and set-
ting all of the HMM parameters by the Baum-Welch re-
estimation [38]. The phoneme sets of each language were dif-
ferent. In the SI-recognizer, 38 monophone base units were
used, while in the TIMIT case, base units were reduced to 48
monophones, according to [15]. In both recognizers, we used
bigram phoneme language models in the recognition pro-
cess. The recognizers were also tested on parts of the train-
ing databases. The SI-recognizer achieved a phoneme recog-
nition accuracy of about 70% on the GOPOLIS database,
while the EN-recognizer had a phoneme recognition accu-
racy of around 61% in a test part of the TIMIT database.
Since our CVS features were based on transcriptions of these
recognizers, we also tested both recognizers on CVS recog-
nition tasks. The SI-recognizer reached a CVS recognition
accuracy of 88% on the GOPOLIS database, while for the
EN-recognizer, the CVS accuracy on the TIMIT database was
around 75%.

The CVS features were calculated from phoneme recog-
nition transcriptions on the evaluation databases produced
by both the SI and EN recognizers using the formulas de-
fined in Section 2. Our first experiments were performed on
SNS discrimination tasks, where we found that these repre-
sentations operate better on larger segments of audio signals.
Therefore, we developed an alternative approach based on
the BIC-GMM segmentation and tested them with both seg-
mentation methods.

In the HMM classification (Figure 3(a)), the feature vec-
tors were produced on a frame-by-frame basis. Hence, we
used a fixed window length of 3.0s with a frame rate of
100 ms in all the experiments. In (1), a was set to 0.5. In the
second approach, the BIC segmentation (Figure 3(b)) pro-
duced acoustic segments computed from 12 MFCC features,
together with the energy. The BIC measure was applied by
using full covariance matrices and a lambda threshold set ac-
cording to the evaluation dataset. These segments were then
classified as speech or non-speech, according to the maxi-
mum log-likelihood criteria applied on the GMMs modeled
by the CVS features.

As was mentioned in the previous sections, the classifica-
tions were made by GMMs. In all cases, we used models with
diagonal covariance matrices that were trained via the EM
algorithm in a supervised way. In the case of the MFCC and
the entropy-dynamism features, two models were employed
for detecting the speech data (broadband speech and narrow-
band speech) and two models were employed for detecting
non-speech data (music and silence). All the models were
trained on the training parts of the evaluation databases. We
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did not use models trained from a combination of music and
speech, even though they were expected in the evaluation
data. The number of mixtures in the GMMs was set to 128 in
the MFCC case, while in the entropy-dynamism case, 4 mix-
tures were used (in [1], just 2-mixture GMM:s were applied).
In the CVS case, only two models were used: speech and non-
speech. Here, GMMs with 2 mixtures were constructed. The
number of mixtures for each representation was chosen to
maximize the overall performance of the SNS segmentation
on the evaluation dataset.

In the HMM classification case, the number of states
used to impose the minimum duration constraint in the
HMMs was fixed. This was done according to [1]. Since in
our evaluation data experiments speech or non-speech seg-
ments shorter than 1.4 s were not annotated, we set the min-
imum duration constraint to 1.4 s. This means that in the
MFCC and in the entropy-dynamism cases, 140 states were
chosen, which corresponded to the feature vectors frame
rate of 10 ms. However, in the case of the CVS features,
the number was set to 14 states, which corresponds to a
feature rate of 100 ms. All the transition probabilities (in-
cluding self-loop transitions) inside the HMM were fixed to
0.5.

In all cases, we additionally experimented with different
combinations of the threshold probability weights to favor
speech or non-speech models in the classification system in
order to optimize the performance of a segmentation on the
evaluation dataset.

We also experimented with combinations of two different
feature representations modeled by fusion models. The fu-
sion was achieved by using a state synchronous two-stream
HMMs, [22]. In these experiments, audio data signals were
represented by two separate streams of features: in one case
with the MFCC stream and the entropy-dynamism stream,
and in the second with the MFCC and the CVS stream.
For each stream, separate GMMs were trained using the
EM method. For the SNS segmentation purposes a similar
HMM classification network was built to that in nonfusion
cases, where in each state, the fusion was made by com-
puting the product of the weighted observation likelihoods
produced by the GMMs from each stream. Additionally, we
had to set the product stream weights, which were empiri-
cally obtained to optimize the performance on the evaluation
dataset.

The HMM classification based on the Viterbi algorithm
was accomplished with the HTK Toolkit [38], while we pro-
vided our own tools for the BIC segmentation and the GMM
classification and training.

Note that incorporating phoneme recognizers into SNS
segmentation in the entropy-dynamism and in the CVS
case increased the computational complexity of the segmen-
tation systems. Additional computational time caused by
speech recognizers can be reduced by using simple versions
of phoneme recognizers. In our case, monophone speech rec-
ognizers were applied in both cases, even though in the CVS
case a simpler recognizer, which would detect just CVS units,
could be applied.

4.1. BN databases for evaluation

Since we explored the effectiveness and the robustness of the
presented approaches with respect to various audio condi-
tions, different non-speech data, and different speech types
and languages, we performed a wide range of experiments
on three different BN databases.

The first database consists of 3 hours from two entertain-
ment shows. One (2 hours) is in Slovene, the other is in Ital-
ian. This database was constructed to serve as an evaluation
dataset for setting the thresholds and other open parameters
in all our experiments. The dataset is composed of 2/3 speech
data, and the rest belongs to various non-speech events, that
is, different types of music, jingles, applause and silent parts,
laughter, and other noises. The speech data is produced by
different speakers in two languages, and in different speaking
styles (mainly spontaneous speech).

The other two databases are the SiBN database [35]
and the COST278 BN database [31]. Like all similar BN
databases, they consist of BN shows composed mainly of
speech data interleaved with short segments of non-speech
events, mostly belonging to various jingles, music effects,
silences, and various noises from BN reports. The SiBN
database currently involves 33 hours of BN shows in Slovene.
The BN shows were taken mostly from one TV station, and
the data is therefore more homogeneous, that is, the speech
is produced by the same TV reporters, the non-speech data
consists of the same set of jingles and music effects. Never-
theless, it was used in experiments to study the influence of
the training material on the different feature model represen-
tations in the SNS discrimination.

The COST278 BN database is very different from the
SiBN database. At present, it consists of data from nine differ-
ent European languages, each national set includes approxi-
mately 3 hours of BN recordings produced by a total of 14
TV stations. As such, it was already used for the evaluation of
different language- and data-independent procedures in the
processing of BN, [36], and was therefore very suitable for
the assessment of our approaches.

The data from all the datasets were divided into the train-
ing and test parts. The training part includes one show from
each dataset with an overall duration of 3 hours. These data
were used as training material to estimate the GMM models
of each representation. The test part of the evaluation dataset
served mainly for finding the threshold probability weights
of the speech and non-speech models in a classification, and
for setting the BIC segmentation thresholds. We also used it
for the assessment of the CVS features. The test data from the
SiBN and COST278 BN databases (except the BN shows used
in training) were used for the assessment of the proposed
representations and approaches. The experiments were per-
formed on 30 hours of SiBN and on 25 hours of COST278
BN data.

4.2. Evaluation measures

The results were obtained in terms of the percentage of
frame-level accuracy. We calculated three different statistics
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in each case: the percentage of true speech frames identified
as speech, the percentage of true non-speech frames iden-
tified as non-speech, and the overall percentage of speech
and non-speech frames identified correctly (the overall ac-
curacy).

Note that in cases where one class dominates in the data
(e.g., speech in the SiBN and COST278 databases), the over-
all accuracy depends heavily on the accuracy of that class, and
in such a case it cannot provide enough information on the
performance of such a classification by itself. Therefore, in
order to correctly assess classification methods, one should
provide all three statistics. Nevertheless, we chose to maxi-
mize the overall accuracy to find the optimal set of parame-
ters on the evaluation dataset, since the proportion of speech
and non-speech data in that database is less biased.

4.3. Evaluation data experiments

The evaluation dataset (the test part) was used in two groups
of experiments.

We used it to set all the thresholds and open parame-
ters of the representations and the models to obtain opti-
mal performance on the evaluation data. These models were
later employed in the SiBN and COST278 BN dataset experi-
ments and are referred to as the optimal models. The perfor-
mance of several different classification methods and fusion
models is shown in Figures 5 and 6, respectively. In both fig-
ures, the overall accuracies are plotted against a combination
of non-speech and speech threshold probability weights. For
each classification method the best possible pair of speech
and non-speech weights was chosen, where the maximum in
the overall accuracy was achieved.

We experimented with several SNS classification repre-
sentations and segmentation methods. The tested SNS rep-
resentations were the following:

(i) 12 MFCC features with the energy and first delta coef-
ficients modeled by 128-mixture GMMs (MFCC-E-D-
26 in Figure 5),

(ii) the entropy and dynamism features modeled by 4-
mixture GMMs (entropy, dynamism),

(iii) the phonemes feature representations calculated from
(1)—(4) based on the CVS phoneme groups obtained
from the Slovenian and English phoneme recognizers
(SI-phonemes CVS, EN-phonemes CVS), modeled by 2-
mixture GMMs,

(iv) fusion representations in one case built from the
MFCC and entropy-dynamism features (fusion
MFCC + EntDyn in Figure 6), and in the second from
the MFCC and SI-phonemes CVS features (fusion
MEFCC + CVS in Figure 6).

The segmentation was performed either by the HMM
classifiers, based on speech/non-speech GMMs (marked as
HMM-GMM in Figures 5 and 6), or by BIC segmentation,
followed by GMM classification (BICseg-GMM in Figure 5).

As can be seen from Figure 5, all the segmentation meth-
ods based on phoneme CVS features have stable performance
across the whole range of operating points of the probability

weights. The overall accuracy ranges between 92% and 95%.
There were no important differences in the performance of
the approaches based on the HMM classification and the
BIC segmentation, even though the BIC segmentation and
the GMM classification operated slightly better than their
HMM-based counterparts. On the other hand, the MFCC
and entropy-dynamism features were more sensitive to dif-
ferent operating points. (This issue became more important
in the experiments on the test datasets.) The MFCC repre-
sentations achieved the maximum accuracy slightly above
95% at the operating point (0.8,1.2). Around this point, it
performed better than the CVS-based segmentations. The
entropy-dynamism features performed poorly as compared
with the CVS and MFCC features and were even more sensi-
tive to different operating points of the probability weights.

Figure 6 shows a comparison of two fusion models and
the base representations from which the fusion models were
built. The key issue here was to construct the fusion models
of the acoustic representations of the audio signals and the
representations based on speech recognition to gain better
performance from the SNS discrimination. In both fusion
representations, the overall accuracies were raised to 96%
(maximum values) around those operating points where the
corresponding base representations achieved their own max-
imum values. While the performance of the fusion MFCC +
CVS changes slightly over the whole range of probability
weights due to the CVS representation, the fusion MFCC +
EntDyn becomes even more sensitive to different operating
points than the MFCC representation itself, due to the prop-
erty of the entropy-dynamism features.

In the second group of experiments, we tried to assess
the performance of each CVS feature and made a compari-
son with the CVS representation composed of all the features
and the baseline GMM-MFCC classification. The results are
shown in Table 1. The comparison was made on a nonopti-
mal classification, where the speech and non-speech proba-
bility weights were equal.

From the results in Table 1, it can be seen that each fea-
ture was capable of identifying the speech and non-speech
segments in the evaluation dataset. The features based on
speaking rates (normalized CVS changes, normalized CV
speaking rate) performed better than the duration-based
features (normalized CV duration rate, normalized average
CV duration rate). These pairs of features were also more
correlated. As expected, the normalized CVS changes (3)
performed well in identifying speech segments, since it is
designed to count CV pairs, which are more characteristic
for speech. We even experimented further with all possible
combinations of features, but none of them performed bet-
ter than all four CVS features together. Therefore, we decided
to use all four features in further experiments.

4.4. Testdata experiments

In order to properly assess the proposed methods, we per-
formed a wide range of experiments with the SiBN and
COST278 BN databases. The results are shown in Table 2
for the SiBN database and in Table 3 for the COST278 BN
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FIGURE 5: Determining the optimal threshold weights (non-speech,
speech) of the speech and non-speech models to maximize the over-
all accuracy of the different representations and approaches.

database. We performed two groups of experiments. In the
first group, we built classifiers from the GMM models esti-
mated from the training dataset, set the optimal threshold
probability weights of the speech and non-speech models on
the evaluation dataset, and tested them in the segmentation
task on both BN databases. The results obtained in this way
are shown as the first values in Tables 2 and 3. The values
in parentheses denote the results obtained from nonoptimal
models using equal threshold probability weights, that is, no
evaluation data was used in these experiments.

Although the SiBN and COST278 BN databases con-
sist of different types of BN data, the classification results
given in Tables 2 and 3 reveal the same performance for
different methods on both datasets. This is due to the fact
that the same training data and models were used in both
cases. Furthermore, it can be concluded that the representa-
tions of the audio signals with the CVS features performed
better than the MFCC and entropy-dynamism-based repre-
sentations. The advantage of using the proposed phoneme
recognition features becomes even more evident when they
are compared in terms of speech and non-speech accuracies.
In general, there exists a huge difference between the CVS
and the MFCC and entropy-dynamism representations in
correctly identifying non-speech data with a relatively small
loss of accuracy in identifying speech data. In almost all cases
of CVS features, this resulted in an increased overall accuracy
in comparison to other features. Another important issue is
revealed by the results in the parentheses. In almost all cases,
the overall accuracies are lower than in the optimal case, but
there exist huge discrepancies in detecting the speech and
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FIGURE 6: Determining the optimal threshold weights (non-speech,
speech) of the speech and non-speech models to maximize the over-
all accuracy of the different fusion models and a comparison with
the corresponding nonfusion representations.

non-speech segments. While in the case of the CVS features,
the differences between the optimal and nonoptimal results
(of speech and non-speech accuracies) are not so large, there
exist huge deviations in the MFCC and entropy-dynamism
case, especially in terms of non-speech accuracy. This is a di-
rect consequence of the stability issues discussed in the pre-
vious section (see Figures 5, 6).

When comparing the results of just the CVS repre-
sentations, no substantial differences in classifications can
be found. The results from the SI-phonemes and the EN-
phonemes confirm that the proposed measures are really in-
dependent of the phoneme recognizers based on different
languages. They also suggest that almost no differences in
using different segmentation methods exist, even though in
the case of BIC segmentation and GMM classification we got
slightly better results in both experiments.

As far as fusion models are concerned, we can state that in
general they performed better than their stand-alone coun-
terparts. For the fusion of the MFCC and entropy-dynamism
features, again the performance was very sensitive to the
training conditions (see the results of the COST278 case,
Table 3). In the case of fusion of the MFCC and CVS features,
we obtained the highest scores on both databases.

To sum up, the results in Tables 2 and 3 speak in fa-
vor of the proposed phoneme recognition features. This can
be explained by the fact that our features were designed
to discriminate between speech and non-speech, while the
MFCC and posterior probability-based (entropy, dynamism)
features were developed in general and in this task were
used just for discriminating between speech and music data.
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TaBLE 1: Speech/non-speech CVS feature-by-feature classification results in comparison to the baseline MFCC classification on the evalua-

tion dataset.

Features type Speech Non-speech Accuracy
Norm. CV duration rate (1) 82.3 70.0 77.8
Norm. CV speaking rate (2) 89.6 93.7 91.1
Norm. CVS changes (3) 91.6 92.5 92.0
Norm. average CV duration rate (4) 81.7 70.0 77.4
All CVS features 94.7 93.4 94.2
MECC 93.5 97.4 94.9

TABLE 2: SNS classification results on the SiBN database. Values in parentheses denote the results obtained from nonoptimal models using
equal threshold probability weights. The best results in nonfusion and fusion cases are emphasized.

Classification & features type Speech Non-speech Accuracy
HMM-GMM: MFCC 97.9 (96.4) 58.7 (72.3) 95.3 (94.8)
HMM-GMM: entropy, dynamism 99.3 (88.9) 55.8 (88.7) 96.5 (88.9)
HMM-GMM: SI-phonemes, CVS 98.2 (97.6) 91.1 (93.0) 97.8 (97.3)
HMM-GMM: EN-phonemes, CVS 98.5 (98.4) 88.2 (88.8) 97.8 (97.7)
BIC-GMM: SI-phonemes, CVS 97.9 (97.9) 89.5 (89.7) 97.4 (97.3)
BIC-GMM: EN-phonemes, CVS 98.3 (98.2) 89.2 (89.2) 97.7 (97.7)
HMM-GMM: fusion MFCC + EntDyn 99.7 (97.9) 62.9 (88.9) 97.3 (97.3)
HMM-GMM: fusion MECC + SI-CVS 99.3 (98.3) 87.0 (93.6) 98.5 (98.0)

Another issue concerns stability, and thus the robustness
of the evaluated approaches. For the MFCC and entropy-
dynamism features, the performance of the segmentation
depends heavily on the training data and the conditions,
while the classification with the CVS features in combination
with the GMM models performed reliably on all the evalua-
tion and test datasets. Our experiments with fusion models
also showed that probably the most appropriate representa-
tion for the SNS classification is a combination of acoustic-
and recognition-based features.

5. CONCLUSION

The goal of this work was to introduce a new approach and
compare it to different existing approaches for SNS segmen-
tation. The proposed representation for discriminating SNS
segments in audio signals is based on the transcriptions pro-
duced by phoneme recognizers and is therefore independent
of the acoustic properties of the signals. The phoneme recog-
nition features were designed to follow the basic concept of
this kind of classification, where one class-speech defines an-
other non-speech.

For this purpose, four measures based on consonant-
vowel pairs obtained from different phoneme speech recog-
nizers were introduced. They were constructed in such a way
as to be recognizer and language independent and could be
applied in different segmentation-classification frameworks.
We tested them in two different classification systems. The
baseline system was based on the HMM classification frame-
work, which was used in all the evaluations to compare dif-
ferent SNS representations. The performance of the pro-

posed features was also studied in an alternative approach,
where segmentation based on the acoustic properties of au-
dio signals using the BIC measure was applied first, and then
the GMM classification was performed second.

The systems were evaluated on multilingual BN datasets
consisting of more than 60 hours of BN shows from various
speech data and non-speech events. The results of these eval-
uations illustrate the robustness of the proposed phoneme
recognition features in comparison to MFCC and posterior
probability-based features (entropy, dynamism). The overall
frame accuracies of the proposed approaches varied in the
range from 95% to 98%, and remained stable through differ-
ent test conditions and different sets of features produced by
phoneme recognizers trained on different languages. A de-
tailed study of all the representations on their relative per-
formance at discriminating between speech and non-speech
segments revealed another important issue. Phoneme recog-
nition features in combination with GMM classification
outperformed the MFCC and entropy-dynamism features
when detecting non-speech segments, from which it could
be concluded that the proposed representation is more ro-
bust and less sensitive to different training and unforeseen
conditions, and therefore more suitable for the task of SNS
discrimination and segmentation.

Another group of experiments was performed with fu-
sion models. Here we tried to evaluate the performance of
segmentation systems based on different representations
with a combination of acoustic- and recognition-based fea-
tures. We experimented with a combination of MFCC and
entropy-dynamism features and MFCC and phoneme recog-
nition features. The latter representation yielded the highest
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TaBLE 3: SNS classification results on the COST278 database. Values in parentheses denote the results obtained from nonoptimal models
using equal threshold probability weights. The best results in nonfusion and fusion cases are emphasized.

Classification & features type Speech Non-speech Accuracy
HMM-GMM: MFCC 98.7 (97.8) 44,0 (54.2) 94.6 (94.6)
HMM-GMM: entropy, dynamism 98.5 (83.4) 38.4 (79.3) 94.0 (83.1)
HMM-GMM: SI-phonemes, CVS 96.6 (95.6) 76.9 (79.3) 95.1 (94.3)
HMM-GMM: EN-phonemes, CVS 97.9 (97.8) 71.1 (71.6) 95.9 (95.8)
BIC-GMM: SI-phonemes, CVS 97.1 (97.0) 76.3 (76.4) 95.6 (95.5)
BIC-GMM: EN-phonemes, CVS 98.1 (98.0) 75.0 (75.2) 96.4 (96.3)
HMM-GMM: fusion MFCC + EntDyn 99.4 (97.1) 34.7 (65.6) 94.6 (94.8)
HMM-GMM: fusion MECC + SI-CVS 98.6 (97.0) 70.5 (78.4) 96.5 (95.6)

scores overall, which confirmed our expectations that prob-
ably the most suitable representation for SNS classification is
a combination of acoustic- and recognition-based features.

The proposed phoneme recognition features employ
high-level information in SNS segmentation tasks, and in
our experiments demonstrated a strong ability to discrim-
inate between speech and non-speech. The effectiveness of
the proposed SNS segmentation approach will be further an-
alyzed in speaker diarization tasks on BN data. The speaker
diarization system will be built similar to systems presented
in [30, 37] based on methods derived from speaker verifica-
tion tasks. Since similar phoneme recognition features were
also successfully applied in the fusion systems for speaker ver-
ification [3, 10], we intend to integrate the proposed CVS fea-
tures in the speaker clustering procedures in our diarization
system.
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