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A novel motion compensation technique is presented for the purpose of forming focused ISAR images which exhibits the robust-
ness of parametric methods but overcomes their convergence difficulties. Like the most commonly used parametric autofocus
techniques in ISAR imaging (the image contrast maximization and entropy minimization methods) this is achieved by estimating
a target’s radial motion in order to correct for target scatterer range cell migration and phase error. Parametric methods generally
suffer a major drawback, namely that their optimization algorithms often fail to converge to the optimal solution. This difficulty
is overcome in the proposed method by employing a sequential approach to the optimization, estimating the radial motion of the
target by means of a range profile cross-correlation, followed by a subspace-based technique involving singular value decomposi-
tion (SVD). This two-stage approach greatly simplifies the optimization process by allowing numerical searches to be implemented
in solution spaces of reduced dimension.
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1. INTRODUCTION

Imaging of targets using inverse synthetic aperture radar
(ISAR) exploits the large effective aperture induced by the
relative translational and rotational motion between radar
and target and has the ability to create high-resolution im-
ages of moving targets from a large distance. The technique
is independent of range if rotational motion is significant,
and it therefore has good potential to support automatic tar-
get recognition. A target image is formed by estimating the
locations of target scatterers in both range and cross-range
but the scatterer motion needs to be compensated for in or-
der to avoid image blurring which can occur due to scatterer
migration between range cells and scatterer acceleration.

The common autofocusing methods can be categorized
into parametric and nonparametric approaches. Computa-
tionally, nonparametric methods are much more efficient
and easy to implement. The compensation for translational
motion normally comprises two separate steps: range cell
realignment and phase-error correction. Range cell realign-
ment is considered to be routine and is based upon, for in-
stance, the correlation method (see Chen and Andrews [1])
or the minimum-entropy method (see Wang and Bao [2]).
Phase autofocus is more stringent in its requirements and
many nonparametric methods have been proposed, most of

which track the phase history of an isolated dominant scat-
terer (prominent point processing (PPP), see Steinberg [3])
or the centroid of multiple well-isolated scatterers (multiple
scatterer algorithm (MSA), see Carrara et al. [4], Haywood
and Evans [5], Wu et al. [6], Attia [7]). The phase-gradient
algorithm (PGA, see Wahl et al. [8]) is another popular non-
parametric technique, which iteratively estimates the residual
phase by integrating over range an estimate of its derivative
(gradient). Because nonparametric methods are based on the
assumption of well-isolated dominant scatterers, they do not
perform satisfactorily in many practical situations. On the
other hand, parametric methods (Berizzi and Corsini [9], Xi
et al. [10], Wu et al. [11], and Wang et al. [12]) are much
more robust but more numerically intensive.

Common parametric techniques that use a polynomial
model to approximate the target’s translational motion and
use an image focus criterion to estimate the model parame-
ters are the image-contrast-based technique (ICBT, see [13])
and entropy-based technique (EBT, see [10, 14]). The chal-
lenge for autofocus is to devise algorithms which not only
focus adequately for target recognition but are also both ro-
bust and efficient. This generally involves a tradeoff, between
efficiency and effectiveness.

The nonlinear optimization techniques are employed to
search for a solution for the parameters by optimizing the
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image focus quality which is formulated as an objective func-
tion. Depending on the order of the model, the search is nor-
mally carried out over a two- or three-dimensional space.
One major drawback of these methods is that the optimiza-
tion algorithm (minimization/maximization routine or op-
timizer) often converges to a suboptimal solution if the ob-
jective function is highly multimodal or has a large number
of local minima/maxima. Moreover, most deterministic op-
timization methods, such as Newton, gradient, and so forth,
are constrained by the fact that the objective function has to
be continuously differentiable.

In summary, a successful convergence to the optimal so-
lution and the numerical efficiency of the method very much
depend on various factors in relation to the nature of the
objective function, such as differentiability and continuity,
number of local minima/maxima, as well as the robustness
of the optimization algorithm, for example its sensitivity to
the initial guessed value.

The motion compensation technique described in this
paper is a parametric method that does not depend upon the
assumption of prominent scatterers but estimates the target’s
radial velocity based upon the composite of all of the target
scatterers. It uses this to correct the data for the slant-range
and cross-range phase errors due to the translational motion
of the target, thereby significantly improving image quality.

In the proposed optimization procedure, the first-order
and higher-order parameters of the target’s radial motion
are estimated sequentially by means of a range profile cross-
correlation and a subspace-based technique involving eigen-
decomposition. By decoupling the first- and higher-order pa-
rameter searches, the technique allows the optimizers (min-
imization/maximization routines) to be implemented over
spaces of lower dimension, and thus reduces the likelihood
of converging to a suboptimal solution as encountered with
other parametric methods. An overview of autofocus meth-
ods is given by Xi et al. [10] and Li et al. [14], and a recent
survey is presented by Berizzi et al. [15].

2. PROBLEM FORMULATION

Consider a target with complex reflectivity function ζ(r) in
the imaging plane of the target’s frame of reference, that is,
in slant-range x̂ and cross-range ŷ (see Figure 1). The target
motion with respect to the radar line of sight (RLOS) can
be decomposed into radial motion of an arbitrary reference
point O′ on the target and rotational motion about the ref-
erence point. Let R0(t) denote the radial distance of O′ from
the radar at time t then O′ may be chosen to be the origin of
the target’s coordinate system (see Figure 1).

If the radial motion of the target’s reference pointO′ (due
to translational motion) is defined by the initial velocity v0r
and constant acceleration ar , and if the target is rotating at
an angular velocity of Ω about O′, then the distance from an
arbitrary scatterer (xk, yk) on the target to the radar at time t
can be written as

Rk(t) = R0(t) + ΔRk(t), (1)

where R0(t) = R0(0) + v0r t+ art2/2 and ΔRk(t) = xk cosΩt−
yk sinΩt.

Scatterer on
the target

Point of
reference

Target

RLOS

Radar

ŷ

v̂t(t)

(x, y) x̂

r̂(t)

Ω
O′
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Figure 1: System geometry.

Let us define the transmitted RF signal for a coherent
processing interval (CPI) of period T as the real part of

z(t) = u(t)e2π j f0t, (2)

where f0 is the carrier frequency and u(t) is the complex en-
velope of the waveform given by u(t) = A(t) exp{ jφ(t)}, and
with Fourier transform U( f ), where A(t) and φ(t) are the
amplitude and phase modulation of the signal, respectively.
Then the received signal after demodulation and downcon-
version to baseband can be written as

sR(t) =
K
∑

k=1
ζku
(

t − τk(t)
)

exp
{− j2π f0τk(t)

}

, (3)

where K is the number of scatterers on the target, ζk is the
reflectivity of the kth scatterer which has local coordinates of
(xk, yk) with respect to O′ and is of distance Rk(t) from the
radar, τk(t) is the delay function given by τk(t) = 2Rk(t)/c,
and c is the velocity of light.

If Ω is small in comparison to T and the target’s radial
displacement is negligible for the duration of fast time sam-
pling, then we can write the Fourier transform of the received
signal as

S( f , t) = U( f )
K
∑

k=1
ζk exp

{− 2π j f τk(t)
}

, (4)

where t now refers to slow time, that is, pulse-to-pulse. The
Fourier transform of the range profile, following the devel-
opment in [9, 16], is therefore

SR( f , t) = S( f , t)
U( f )

=
K
∑

k=1
ζk exp

{− 2π j f τk(t)
}

. (5)
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Now τk(t) = 2Rk(t)/c = (2/c)[R0(t) + ΔRk(t)], hence

SR( f , t)

= exp

{

− 4π j f R0(t)
c

} K
∑

k=1
ζk exp

{

− 4π j f ΔRk(t)
c

}

,

(6)

where ΔRk(t) ≈ x̂k − ŷkΩt, from which we see that phase
changes occur in slow time for each scatterer but that the
phase changes associated with radial target motion are sep-
arate from those associated with target rotation. The phase
changes associated with the radial motion of the reference
scatterer may therefore be corrected for by making the phase
adjustment 4π j f R0(t)/c to each pulse in the frequency do-
main. Since R0(t) = R0(0)+v0r t+art2/2, we need to estimate
v0r and ar for the reference scatterer.

The corrected range profile Fourier transform is then

S′R( f , t) = exp

{

4π j f R0(t)
c

}

SR( f , t)

=
K
∑

k=1
ζk exp

{

− 4π j f ΔRk(t)
c

}

,

(7)

fromwhich the realigned and phase-compensated range pro-
file may be recovered by means of an inverse FT. Frequency
estimation may then be performed in each range cell for
cross-range velocity estimation. In a radar system, f and t
take the digitized forms of f = fm (m = 1, . . . ,M) and
t = pT (p = 1, . . . ,N), where fm is themth sample in the fre-
quency domain and T is the pulse repetition interval (PRI);
M and N are the number of frequency samples and Doppler
pulses, respectively.

The radial motion of the target has the effect of causing
scatterers to migrate between range cells, and hence smear-
ing of the image in the range dimension; whereas the 1/2art2

term alone causes nonlinear phase variation in slow time,
and hence smearing of the image in the cross-range dimen-
sion. If the length of the burst is sufficiently small compared
with the rotation rate of the target, then the ykΩt term is
approximately linear and provides the Doppler information
necessary for cross-range imaging.

3. VELOCITY AND ACCELERATION
CORRECTION TECHNIQUE

The purpose of the present paper is to estimate the ra-
dial velocity and acceleration so as to determine the de-
lay τ and hence correct for the phase in the data. The op-
timization procedure comprises maximizing the objective
functions Fv(v0r) and Fa(ar) separately for the single vari-
able v0r and ar spaces, respectively, whilst keeping the other
motion parameter fixed. The objective functions are formu-
lated in a way such that Fv(v0r)/Fa(ar) is relatively invari-
ant to the changes of the fixed parameter ar/v0r . This not
only allows the optimization to be implemented solely in
one-dimensional space, but also guarantees a fast conver-
gence rate. The two-stage estimation technique procedure is

Initialize
v0r & ar

Compute
z(m, p)

Compute Fv(v0r)
to estimate v0r

Fv(v0r)
maximized?

Compute
z(m, p)

Compute Fa(ar)
to estimate ar

Fa(ar)
maximized?

Recompute
z(m, p)

Successive
estimates

within error
bound?

Completed

Yes

Yes

Yes

No

No

No

Figure 2: Flowchart showing the procedure for estimating velocity
and acceleration.

summarized in Figure 2 and as follows: initial estimation of
velocity using a cross-correlation technique followed by es-
timation of acceleration using a subspace-based approach.
Further refinement is achieved as required by repeating the
previous steps although in practice, at most only three itera-
tions are required.

Denote the matrix of complex radar signals organized ac-
cording to range cell and pulse, respectively, by z(m, p). For
assumed values of v0r and ar , the previously described pro-
cedure for range realignment and phase compensation is ap-
plied to the recorded data of (6) . The range profile z(m, p)
produced for range cells m = 1, . . . ,M and Doppler pulses
p = 1, . . . ,N is written as the inverse discrete Fourier trans-
form of (6) after being adjusted for phase errors as follows:

z(m, p) = IDFT
[

ξ
(

v0r , a0r , pT
)

SR
(

fm, pT
)]

, (8)

where ξ(v0r , a0r , p) = exp{− j4π f R0(v0r , a0r , pT)/c} is the
term associated with phase compensation of the received
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data, and R0 is the corresponding radial range displacement
of the target at time t = pT given some estimates of velocity
and acceleration (v0r , a0r). In the following, it is shown how
the objective functions are formulated separately in terms of
the parameters v0r and a0r for optimization.

The measure of how well the range realignment and
phase compensation have been achieved is to compute the
cross-correlation function r1,p(0) between the first range
profile (i.e., for the first pulse) and each of the remaining
range profiles, and summing their moduli, thus

Fv
(

v0r
) =

N
∑

p=2

∣

∣r1,p(0)
∣

∣, (9)

where r1,p(0) =
∑M

m=1 z∗(m, 1)z(m, p). The velocity estimate
is that value of v0r (given the correct a0r) which maximizes
the objective function Fv(v0r), either by a blind search proce-
dure or by formal optimization.

Following the improvement in the estimate of v0r , the
range realignment and phase compensation procedure are
repeated. The acceleration ar is estimated as follows. The ac-
celeration estimation technique exploits the fact that there
will be many scatterers within the range cells occupied by
the target to be imaged, which have a very similar radial ve-
locity, although there will be a relatively small spread due
to the superimposed varying cross-range rotational veloci-
ties. Because we are concerned with estimating a radial ve-
locity which changes within the duration of a burst, we take
a fixed window within which it is assumed that the radial ve-
locity is approximately constant and fit a linear model to all
of the range cells. This produces a covariance matrix which
is averaged over range cells. This has the advantage of incor-
porating all of the energy from the target’s scatterers rather
than having to find and depend upon one of a small number
of prominent scatterers. As a general criterion for spectral
estimation techniques, the size of a fixed window of pulses
should be chosen to be greater than or equal to the size of the
signal subspace.

A data matrix is constructed from range profiles taken
within a window superimposed on the pulses in slow time,
thus

Zi =

⎡

⎢

⎢

⎣

z
(

1,ni
) · · · z

(

1,ni +Nd − 1
)

...
. . .

...
z
(

M,ni
) · · · z

(

M,ni +Nd − 1
)

⎤

⎥

⎥

⎦

, (10)

where the window begins with the nith pulse and containsNd

pulses. Then the covariance matrix Ri = (1/M)ZH
i Zi for the

ith window is formed by averaging over the range cells. Sub-
space theory tells us that the principal eigenvectors span the
same subspace as the signal vectors. In general, we will not
know the dimensions of these subspaces (except that their
sum isNd), but it is sufficient for our purposes to identify the
dominant signals associated with the signal subspace through
eigendecomposition.

Therefore, the covariance matrix is subject to the eigen-
decomposition

Ri = ViΛiVH
i , (11)

where the Λi = diag(λ1, λ2, . . . , λNd ) is the diagonal ma-
trix of eigenvalues with λ1 ≥ λ2 ≥ · · · ≥ λNd and Vi =
[vi,1 vi,2 · · · vi,Nd ] is the matrix containing all the corre-
sponding eigenvectors.

Computationally, singular value decomposition (SVD) is
a more practical approach to computing the set of eigenvec-
tors directly from the data matrix Zi = UiΣiVH

i , where Ui

is an M-by-M unitary matrix, Σi is a diagonal matrix of the
formΛi = diag(σ1, σ2, . . . , σNd ), and σk(1, . . . ,Nd) are the sin-
gular values which are related to the eigenvalues by λk = σ2k .
The diagonal matrix Σi (Λi) is always full rank because of re-
ceiver noise. The noise power is small in comparison to the
signal power, and thus the signal subspace can be determined
by examining the singular values.

The assumption behind the method is that the principal
eigenvectors contain the Doppler information for the dom-
inant scatterers on the target for the ith window. All of the
scatterers will be subject to phase changes between pulses:
one component will be a linear phase shift due to the com-
mon initial velocity v0r and the other nonlinear phase shift
due to acceleration ar . This may be seen from the range
response function ζ0e−4π j f0/c(R0+v0r t+1/2ar t2) for the reference
scatterer. The Doppler information implicit in two data ma-
trices taken from different time intervals, say Zi and Zi+ j , will
differ by an amount proportional to the change in the veloc-
ity or acceleration ar . In mathematical terms, this difference
corresponds to the “rotation” of the signal subspace with re-
spect to the origin of the vector space. However, when the
acceleration has been correctly adjusted, the signal subspace
or the principal eigenvectors associated with the windows
should coincide (within an arbitrary phase).

We suppose that only two windows are chosen. A mea-
sure of how well the principal eigenvectors coincide between
the first and second windows of the burst is the sum of the
moduli of their respective inner products:

Fa
(

ar
) =

Np
∑

k=1

∣

∣vH1,kv2,k
∣

∣, (12)

where Np is the number of principal eigenvectors chosen to
represent the signal subspace. This objective function Fa(ar)
is to be maximized over ar . For simplicity, we choose the
eigenvector which corresponds to the largest eigenvalue for
each window so that Fa(ar) = |vH11v21|. In fact, the number of
windows chosen is arbitrary and is always a compromise be-
tween accuracy and efficiency. For example, if we choose Nw

windows and use the first window as the reference, then the
objective function is reformulated as Fa(ar) =

∑Nw
i=1 |vH11vi1|.

It can be easily shown that the number of computer op-
erations required for calculating Fv(v0r) isM(N − 1) and for
Fa(ar) is approximately 4MN2

p − 4N3
p/3 (the number of op-

eration required for SVD).

4. RESULTS

A summary of the radar parameters used in the simulation
is given in Table 1 and a diagram showing the configuration
of point scatterers on the test target is displayed in Figure 3.
The reflectivity of the scatterers is indicated by the size of
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Table 1: Radar parameters.

Pulse compression Stepped frequency

Number of sweeps 64

Number of transmitted frequencies 64

Centre frequency 10GHz

Frequency step 2.34MHz

Bandwidth 150MHz

PRF 74.46 kHz

x

y

4

4

4

43

3

3 3 3

3

2

2

Figure 3: Simulated target point reflector configuration.

the circles in the drawing. The relative sizes are 0.5, 1 and
2, respectively. The target is travelling towards the radar with
an initial velocity of 5m/s and with constant acceleration of
2m/s2, with self-induced rotation of 0.16 π rad/s.

Our technique is compared to Haywood-Evans MSA [5]
and PGA [8] motion compensation techniques with a signal-
to-noise ratio (SNR) of 20 dB. The results are shown in
Figure 4 and it can be seen that the present technique gen-
erates a better focused image than the other techniques. Us-
ing our technique, v0r and ar are estimated to be 5.15m/s
and 2m/s2, respectively. For a detailed examination of the
behavior of the objective functions, Fv and Fa are plotted
against v0r and ar in Figures 5(a) and 5(b). The objective
functions are also plotted with respect to fixed parameters in
Figures 6(a) and 6(b). It can be seen that their variation is rel-
atively insignificant as compared to the previous figures. An-
other similar set of data but with lower signal-to-noise ratio
(SNR = 10 dB) was tested and used for comparison between
the different techniques. The resulting images are shown in
Figure 7. Again our technique outperforms MSA and PGA.

In computing these plots, the subspace technique was
implemented using two windows of size 8. Only the eigen-
vector which corresponds to the largest eigenvalue was used
to maximize Fa(ar). The computation time taken was less
than 1 second on a Pentium IV 2.5GHz computer and took
roughly 10 times longer than the PGA method. This is com-
parable to the ICBT and EBT methods as stated in [15].
The algorithm was run on Matlab and the maximization was
implemented by a toolbox function called fminbnd (used to
minimize the negative of the objective functions). It took

only two iterations for the optimization algorithm (Figure 2)
to converge to the desired results. On average, it required
about 10 iterations for fminbnd to maximize each objective
function.

Next, we show an experimental example of a Boeing
737 (Figure 8) ISAR image reconstructed using MSA and
the proposed subspace algorithm in Figure 9. The radar is
at ground level and the parameters are lowest frequency
= 9.26GHz, frequency step = 1.5MHz, range resolution
= 0.78m, PRF/sweep rate = 20 kHz/156.25Hz; and the size
of the data matrix is 64 by 64. Again it is seen that the pro-
posed technique produces a much better image.

5. CONCLUSIONS

This paper has proposed a new parametric autofocusmethod
for simultaneously realigning range and compensating for
phase by estimating radial velocity and acceleration using a
combination of range profile correlation for velocity estima-
tion and subspace eigenvector rotation for acceleration esti-
mation. The method does not suffer from the limitation of
assuming the existence of prominent scatterers as in other
nonparametric methods.

As shown in the paper, by formulating the objective func-
tions with respect to only a single variable and implementing
the optimization in two separate steps, the problem of con-
vergence to a suboptimal solution suffered by other paramet-
ric methods can be avoided. It has proven to be both robust
and has demonstrated that good results can be achieved in
terms of image quality.
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Figure 4: Range-Doppler image of simulated target (SNR = 20) using (a) MSA technique [5]; (b) PGA technique [8]; (c) proposed subspace
technique.
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Figure 5: Plots of objective functions against the estimated parameters (a) Fv versus v0r (ar = 2m/s2) and (b) Fa versus ar (v0r = 5.15m/s2).
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Figure 6: Plots of objective functions against the fixed parameters (a) Fv versus ar (v0r = 5.15m/s2) and (b) Fa versus v0r (ar = 2m/s2).
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Figure 7: Range-Doppler image of simulated target (SNR = 10) using (a) MSA technique [5]; PGA technique [8]; (c) proposed subspace
technique.
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Figure 8: Schematic of a Boeing 737 (top view).
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Figure 9: ISAR image of a Boeing 737: (a) MSA technique [5] (3 reference cells used); (b) proposed subspace technique.
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