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An adaptive direction-of-arrival (DOA) trackingmethod based upon a linear predictivemodel is developed. This method estimates
the DOA by using a database that stores PARCOR coefficients as key attributes and the corresponding DOAs as non-key attributes.
The k-dimensional digital search tree is used as the data structure to allow efficient multidimensional searching. The nearest
neighbour to the current PARCOR coefficient is retrieved from the database, and the corresponding DOA is regarded as the
estimate. The processing speed is very fast since the DOA estimation is obtained by the multidimensional searching. Simulations
are performed to show the effectiveness of the proposed method.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. INTRODUCTION

Estimation of the direction-of-arrival (DOA) for multiple
sources plays an important role in the fields of radar, sonar,
high-resolution spectral analysis, and communication sys-
tems. A lot of high-resolution DOA estimation methods us-
ing a linear array antenna [1–3] or using two identical sub-
arrays [4] have been developed. The linear prediction (LP)
method [5] is one of the well-known methods. The LP
method characterises the bearing spectrum by the LP coeffi-
cients, and provides a high-resolution spectrum even with a
small number of antenna elements. However, the LP method
requires to find local maxima (peak) of the bearing spectrum.
The peak searching is computationally heavy, and thus the LP
method is unsuitable for DOA tracking when DOAs change
with time. Recently, Markov chain, Monte Carlo (MCMC)
[6, 7] method, and Gershman’s optimisation method [8, 9]
have been studied. MCMC method has high-resolution and
Gershman’s method can be used for estimation of moving
sources. These methods achieve a high estimation accru-
acy, however their computational complexities are very large
since optimisation problems need to be solved.

An adaptive DOA estimation method using a database
has been proposed by one of the authors [10, 11]. This meth-
od uses autocorrelation coefficients as key attributes, and
DOAs as non-key attributes. The nearest neighbour to the
autocorrelation coefficients estimated from observation sig-

nals is retrieved from the database, and the corresponding
DOA is regarded as the estimate. This method estimates the
DOA by only a database retrieval method, and thus the pro-
cessing speed is fast. However, the dimension of the key vec-
tor increases in proportion to the number of antenna ele-
ments. Therefore, as the number of antenna elements in-
creases, the database size becomes larger and thus the pro-
cessing speed is slower.

There is a one-to-one correspondence between the LP
coefficients and the partial autocorrelation (PARCOR) coef-
ficients, and therefore the PARCOR coefficients also charac-
terise the bearing spectrum. The PARCOR coefficient is more
suitable as a key vector than the LP coefficient, because the
PARCOR coefficient is robust against rounding errors and
the absolute value is assured to be less than or equal to unity.

We propose an adaptive DOA tracking method using a
database of PARCOR coefficients. We put the PARCOR coef-
ficients as key attributes and the DOAs as non-key attributes.
In the database construction process, we quantise DOAs and
signal powers, and compute a set of true auto-correlation
matrices for various combinations of the quantised DOAs
and signal powers. We further compute a set of PARCOR co-
efficients from the set of true auto-correlation matrices by
using the modified Levinson-Durbin algorithm, and then
store pairs of PARCOR coefficients and the corresponding
DOAs into a database. In the estimation process, we esti-
mate the PARCOR coefficients from observation signals by
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Figure 1: Distant wave source and linear array antenna.

using the Levinson-Durbin algorithm, retrieve a record with
a key value nearest to the current key from the database, and
use the corresponding DOA as the estimate. We then use the
k-d trie (k-dimensional digital search tree) [12] as the data
structure to allow efficient multidimensional searching. The
proposed method does not require exhaustive peak search-
ing, and provides the estimation by only the database re-
trieval method. Using this, we can reduce the dimension of
the key vector to the number of signal sources even if the
number of antenna elements is larger than the number of sig-
nal sources. The size reduction of the key vector is extremely
useful in decreasing search time.

2. DOA ESTIMATION PROBLEMAND
LINEAR PREDICTION

2.1. DOA estimation problem

Consider L mutually uncorrelated signals with center fre-
quency fc (wavelength λc) arriving at a linear array antenna
of N (N > L) inter-elements with distance d. We assume that
the signals are narrow banded and the signal sources are far
apart from the array. Let the ith arriving signal at time t, the
DOA, and the signal power be si(t), θi, and σ2i , respectively.
Let the signal received by the jth element, the noise input on
the jth antenna element, and the output of the array antenna
be xj(t), nj(t), and y(t), respectively. The relation between
the signal sources and the linear array antenna is illustrated
in Figure 1. The output vector from the array antenna is ex-
pressed as

x(t) = (x0(t), . . . , xN−1(t)
)T =

L∑

i=1
a
(
θi
)
si(t) + n(t). (1)

Here n(t) = (n0(t),n1(t), . . . ,nN−1(t))T is an N-dimensional
complex white noise vector, and (·)T denotes the transpose.
We assume that noises {nj(t)}N−1j=0 and signals {si(t)}Li=1 are
mutually uncorrelated.

In the case of the omnidirectional element, the response
vector a(θi) is given by

a
(
θi
) = (1, e jϕi , . . . , e jϕi(N−1))T (2)

with ϕi = 2πd cos θi/λc. We define the weight coefficient on
the jth array output as wj ( j = 0, . . . ,N − 1) and the weight
coefficient vector as w = (w0,w1, . . . ,wN−1)T. The array out-
put is then expressed as

y(t) =
N−1∑

j=0
w̄ jx j(t) = wHx(t), (3)

where ¯(·) denotes the conjugation and (·)H denotes the Her-
mitian transpose. We define the auto-correlation matrix of
the output signal x(t) by

R = E
[
x(t)xH(t)

] =
L∑

i=1
σ2i a
(
θi
)
a
(
θi
)H

+ σ2I

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

r0 r1 r2 · · · rN−1
r̄1 r0 r1 rN−2

r̄2 r̄1 r0
...

...
. . . r1

r̄N−1 · · · r̄1 r0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
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(4)

where I denotes the identity matrix of size N , E[·] denotes
the expectation operator, and σ2 denotes the noise power.
The first term of the right-hand side of (4) is the signal term,
of which rank is always L if θi �= θj (i �= j), and the sec-
ond term is the noise term. The inclusion of the noise term
guarantees R to be full-rank ofN . Using the auto-correlation
matrix, the output power is represented by

E
[∣∣y(t)

∣
∣2] = E

[∣∣wHx(t)
∣
∣2] = wHRw. (5)

2.2. Linear prediction

When we set w0 = 1 in (3), we can have

x0(t) = −
N−1∑

j=1
w̄ jx j(t) + y(t). (6)

When we predict x0(t) with a weighted linear combination
of the output signals {xj(t)}N−1j=1 , we can regard y(t) as the
prediction error. We will determine the weight coefficients
{wj}N−1j=1 so that the mean-square error is minimised. This is
formulated as

min
w

wHRw subject to cHw = 1, (7)
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Figure 2: DOA estimation using the LP method for the case of
(θ1, θ2) = (45◦, 120◦).

where c = (1, 0, . . . , 0
︸ ︷︷ ︸

N−1
)T. The constrained optimisation prob-

lem is easily solved by using the Lagrange multiplier method.
The solution is given by

w∗ = (1,w∗1 , . . . ,w∗N−1
)T = 1

cHR−1c
R−1c. (8)

Here the weight coefficients {w∗j }N−1j=1 are referred to as the
“LP coefficients.” It is here noted that the Capon spectrum is
obtained by replacing c by a(θ) in (7).

The conventional LP method estimates the DOAs by lo-
cally maximising the following bearing spectrum:

P(θ) = 1
∣
∣aH(θ)w∗

∣
∣2

. (9)

Figure 2 shows an example of the bearing spectrum obtained
by the LP method for the case of (θ1, θ2) = (45◦, 120◦).
The extremely large peaks correspond with the DOAs, and
the other small peaks are spurious. We have to perform the
computationally expensive peak searching to find the two
large peaks. The peak searching requires O(NK) computa-
tion steps, where K is the number of bins. When the DOAs
change with time, the peak searching has to be performed at
each time. The iterative use of the peak searching requires a
large amount of processing time. Thus the conventional LP
method is unsuitable for adaptive DOA estimation.

3. DOA ESTIMATION USING A DATABASE
RETRIEVAL SYSTEM

We have explained in Section 2 that the peaks of the bear-
ing spectrum are uniquely characterised by the LP coeffi-
cients. We can thus estimate the DOAs by searching the near-
est neighbour to the current LP coefficients in the database
which stores pairs of the LP coefficients and the DOAs. This
method can estimate the DOAs by only a database retrieval
method. The processing speed is very fast, since exhaus-
tive peak searching is not required. We first explain how to

construct the database, and then how to estimate the DOAs
by database searching.

3.1. Database construction

3.1.1. Selection of model coefficients

We construct a database, which stores model coefficients as
key attributes andDOAs as non-key attributes. The LP coeffi-
cients {w∗j }N−1j=1 seem to be good candidates for themodel co-
efficients. However, the LP coefficients are unsuitable as keys,
because they take values in the range (−∞,∞). Instead of
the LP coefficients, we use the PARCOR coefficients {ρj}N−1j=1
which have a one-to-one correspondence to the LP coeffi-
cients, as the keys.

We define the jth LP coefficient of order i as w(i)∗
j . When

the PARCOR coefficients {ρj}N−1j=1 are given, the correspond-

ing LP coefficients {w(N−1)∗
j }N−1j=1 are computed by using the

recursion

w(i)∗
j = w(i−1)∗

j + ρiw̄(i−1)∗
i− j ( j = 1, 2, . . . , i). (10)

Here the recursion is initiated with i = 2 and stopped when
i reaches the final value N − 1. On the other hand, when
{w(N−1)∗

j }N−1j=1 are given, the corresponding PARCOR coef-

ficients {ρj}N−1j=1 are computed by using the recursion

w(i−1)∗
j = w(i)∗

j − ρiw̄(i)∗
i− j

1− ∣∣ρi∣∣2
( j = 1, 2, . . . , i− 1) (11)

and the fact that w(i−1)∗
i−1 = ρi−1. Here the recursion is initi-

ated with i = N − 1 and stopped when i reaches 2. Equations
(10) and (11) show that there is a one-to-one relationship
between the LP coefficients and the PARCOR coefficients.
The PARCOR coefficients are more suitable as keys than the
LP coefficients, because the PARCOR coefficients are robust
against rounding errors and the absolute values are assured
to be less than or equal to unity [13].

We see from (8) that the LP coefficients {w(N−1)∗
j }N−1j=1

are uniquely computed from the auto-correlation matrix
R. Consequently, the PARCOR coefficients {ρj}N−1j=1 are also
uniquely computed from R. We also see from (4) that R is ex-
pressed as functions of θi, σ2i , and σ2. As a result, {ρj}N−1j=1 is
expressed as functions of θi, σ2i , and σ2. We define the noise-
free auto-correlation matrix by

R̃ = R− σ2I =
L∑

i=1
σ2i a
(
θi
)
a
(
θi
)H

, (12)

and then define the jth noise-free PARCOR coefficient com-
puted from R̃ by ρ̃ j . Since ρ̃ j does not depend on the noise
power σ2, it is a function of only (θi, σ2i ).

Let the rank of R̃ be p. When L DOAs are different from
each other, we have p = L. Otherwise, we have p < L. There-
fore, p is always less thanN , and the (N×N) auto-correlation
matrix R̃ is not invertible. Consequently, we cannot com-
pute the noise-free LP coefficients from R̃ by the standard
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ε20 = r0

j = 1, 2, . . . ,N − 1

Δ j = r̄ j +
j∑

i=1
w

( j−1)∗
i r̄ j−i

ρ̃ j = w
( j)∗
j = − Δ j

ε2j−1
· · ·

if
∣
∣ρ̃ j
∣
∣2 > α, then stop

ε2j = ε2j−1
(
1− ∣∣ρ̃ j

∣
∣2)

i = 1, 2, . . . , j − 1

w
( j)∗
i = w

( j−1)∗
i + ρ̃ j w̄

( j−1)∗
j−i

(A)

Algorithm 1: Modified Levinson-Durbin algorithm.

Levinson-Durbin algorithm. To solve this problem, we de-
velop a modified Levinson-Durbin (L-D) algorithm which
recursively computes the LP and the PARCOR coefficients
from the auto-correlation matrix by utilising the Toeplitz
structure of R̃. Using this algorithm, we can determine the
noise-free LP coefficients and the noise-free PARCOR coeffi-
cients of order p from R̃.

Algorithm 1 summarises the modified L-D algorithm.
When applying the standard L-D algorithm to the noise-
free auto-correlation matrix R̃ of order p, the value of |ρ̃p|
becomes unity during order update, and then ε2p becomes
zero. We cannot compute the succeeding PARCOR coeffi-
cients {ρ̃ j}N−1j=p+1, because division by zero occurs in (A). For
the solution, when |ρ̃p| is larger than a threshold α(� 1),
we regard |ρ̃p| as unity, terminate the update, and set the
succeeding noise-free PARCOR coefficients as zeros, that is,
ρ̃p+1 = · · · = ρ̃N−1 = 0. The reason for using this proce-
dure is that the value of |ρ̃p| does not become exactly equal
to unity due to estimation errors. Using the modified L-D
algorithm, we can obtain N − 1 noise-free PARCOR coeffi-
cients (ρ̃1, ρ̃2, . . . , ρ̃p, 0, 0, . . . , 0

︸ ︷︷ ︸
N−1−p

). Since p ≤ L, we always have

ρ̃ j = 0 for j = L+1, L+2, . . . ,N −1. Zero coefficients do not
depend on the DOAs. Thus we use the L noise-free PARCOR
coefficients (ρ̃1, ρ̃2, . . . , ρ̃L) as the database key.

3.1.2. Quantisation of data

We quantise the DOAs θi into θi(u) (u = 1, 2, . . . ,U) and
the signal powers σ2i into σ2i (v) (v = 1, 2, . . . ,V), where U
and V are the numbers of the DOA and signal power bins,
respectively. Denoting the total number of the quantised data
asM, we have

M = UL ×VL. (13)

We put the quantisation step sizes of θi and σ2i as δθi and
δσ2i , respectively. As δθi and δσ2i are smaller, the estimation

accuracy is higher while the database size is larger. We there-
fore have to determine the values of δθi and δσ2i so that
a good tradeoff between the estimation accuracy and the
database size is achieved. While θi takes values in the range
[0,π), σ2i may take a very large value. The straightforward
quantisation of σ2i significantly increases the size of V . We
have thus normalised the signal power σ2i with respect to∑

i σ
2
i so that the normalised signal power is restricted to the

range (0, 1).
We define the noise-free auto-correlation matrices as

{R̃(m)}Mm=1, and the noise-free PARCOR coefficients corre-
sponding to each of the M quantised data as {ρ̃ j(m)}Mm=1.
We compute R̃(m) by using (12), and then compute ρ̃ j(m)
from R̃(m) by using the modified L-D algorithm. We further
quantise the real and imaginary parts of ρ̃ j(m) to the integer
values z2 j−1(m) and z2 j(m) with b bits. Then we can have

(
z1(m), z2(m), . . . , z2L(m)

)

= (Q(Re [ρ̃1(m)
])
,Q
(
Im
[
ρ̃1(m)

])
,

Q
(
Re
[
ρ̃2(m)

])
,Q
(
Im
[
ρ̃2(m)

])
, . . . ,

Q
(
Re
[
ρ̃L(m)

])
,Q
(
Im
[
ρ̃L(m)

]))
,

(14)

where Q is the output of the quantiser, and Re[x] and Im[x]
denote the real and imaginary parts of x, respectively. Note
that zj(m) takes value in the range [0, 2b − 1].

3.1.3. Database storage

We define the PARCOR vector corresponding to the mth
quantised data as

ρ(m) = (z1(m), z2(m), . . . , z2L(m)
)

(m = 1, 2, . . . ,M)
(15)

and the DOA vector corresponding to ρ(m) as

θ(m) = (θ1(m), θ2(m), . . . , θL(m)
)

(m = 1, 2, . . . ,M).
(16)

We successively store the pairs of {(ρ(m), θ(m))}Mm=1 into the
database. If the database has already stored the same PAR-
COR vector as the current one, we delete it. We denote the
number of data sets which are actually stored in the database
as C. Then C is much smaller than M due to the deletion of
data sets.

3.2. DOA estimation

3.2.1. Estimation of PARCOR coefficients

We will present a method of estimating the auto-correlation
matrix R from observation signals xj(t) ( j = 0, 1, . . . ,N −1).
When the DOAs change with time, we recursively estimate it



E. Mochida and Y. Iiguni 5

by

R̂t = xtxHt + λxt−1xHt−1 + λ2xt−2xHt−2 + · · ·
1 + λ + λ2 + · · ·

= λ
xt−1xHt−1 + λxt−2xHt−2 + λ2xt−3xHt−3 + · · ·

1 + λ + λ2 + · · ·
+

1
1 + λ + λ2 + · · ·xtx

H
t

= λR̂t−1 + (1− λ)xtxHt .

(17)

Here, λ (usually 0.95 ≤ λ ≤ 0.995) is a forgetting factor that
controls the influence of the previous estimations, and R̂t is
the estimation of the auto-correlation matrix at time t. Un-
fortunately, the recursive estimation using (17) does not pre-
serve the Toeplitz structure of R. We thus average the diago-
nal elements of R̂t to obtain the estimation of r j as follows:

r̂ j =
∑N− j

l=1
(
R̂t
)
l,l+ j

N − j
( j = 0, 1, . . . ,N − 1), (18)

where (R̂t)i, j denotes the i jth element of R̂t. We next sub-

tract the noise power σ2 from the diagonal elements of R̂t to
estimate the noise-free auto-correlation matrix R̃ as follows:

̂̃Rt = R̂t − σ2I. (19)

Here the noise power σ2 is assumed to be known. It needs
to be estimated a priori in the absence of source signals or
needs to be estimated by using the eigenvalue decomposition
of auto-correlation matrix R. We denote the estimation of ρ̃ j

as ̂̃ρ
j
. We recursively calculate { ̂̃ρ j}N−1j=1 from ̂̃Rt by using the

modified L-D algorithm. In the same way as in the database

construction, when | ̂̃ρ j| > α, we put ̂̃ρ
j+1 = · · · = ̂̃ρ

N−1 =
0, and take the estimation of the PARCOR vector as

ρ̂ =
(
Q
(
Re
[
̂̃ρ
1])

, Q
(
Im
[
̂̃ρ
1])

, Q
(
Re
[
̂̃ρ
2])

,

Q
(
Im
[
̂̃ρ
2])

, . . . ,Q
(
Re
[
̂̃ρ
L])

, Q
(
Im
[
̂̃ρ
L]))

≡ (ẑ1, ẑ2, . . . , ẑ2L
)
.

(20)

3.2.2. Database retrieval

Mutidimensional searching is performed to retrieve the PAR-
COR vector nearest to ρ̂ from the database. More concretely,
the PARCOR vectors lying in the hypercube {(z1, z2, . . . ,
z2L) | |ẑ j − zj| ≤ D, j = 1, 2, . . . , 2L} are retrieved from the
database. Here D denotes the searching range which is a pos-
itive integer number such that 0 ≤ D ≤ 2b − 1. We take the
DOA vector corresponding to the retrieved PARCOR vec-
tor as the DOA estimate, and denote the DOA estimation
at time t as θ̂t . When more than one PARCOR vector is
retrieved during the multidimensional searching, we select
the PARCOR vector which minimises the Euclidean dis-
tance

∑2L
j=1
√
(ẑ j − zj)2 out of the retrieved ones. If no data

are retrieved, we take the previous estimation θ̂t−1 as the cur-
rent estimation θ̂t .

4. PERFORMANCE EVALUATION

We performed simulations for the cases of L = 2 and L =
3 to evaluate the estimation performance of the proposed
method.

4.1. DOA estimation for two signals

We constructed the database of L = 2, and estimated the
DOAs of two moving sources.

4.1.1. Database construction

We consider the case where two signals arrive on the linear
array antenna of N = 6 and d = λc/2. We quantise the DOA
by sampling cos θ with constant sampling interval 0.02, and
quantise the normalised power with the constant sampling
interval 0.25. Then we haveU = 99 andV = 4, and therefore
M = UL × VL = 156816. We put b = 8 and α = 1 − 2/2b =
0.992 so that better estimation accuracy was obtained. We
successively entered the data set {(ρ(m), θ(m))}Mm=1 into the
database. Then C = 22229 (= 0.14×M), and the size of the
database was about 776 (KB).

4.1.2. DOA estimation

We estimated the DOAs of two moving signals, where we put
σ21 = 40, σ22 = 50, and σ2 = 1. Then we have SNR1 = 16 dB
and SNR2 = 17 dB. We have recursively estimated R̂t by (17)
with λ = 0.995. As λ is smaller, tracking capability is im-
proved while stability of the estimations is lost. Therefore we
have to make a tradeoff between tracking capability and sta-
bility in the choice of λ (usually 0.95 ≤ λ ≤ 0.995). Since the
nonstationarity is weak in this case, we put λ = 0.995. We
put the searching range D = 10. Figure 3 shows the results
for the case where θ1 and θ2 change by 1◦ per 4000 snapshots
starting from 60◦ and 70◦, respectively. For example, when
the sampling frequency fs is 1.0 (MHz), the time interval τ
is τ = 1/ fs = 1.0 (μs). Then the duration of 4000 snapshots
is 4.0 (ms). Figure 4 shows the results for the case where θ1
changes by 1◦ per 333 snapshots starting from 60◦ and θ2
changes by −1◦ per 666 snapshots starting from 110◦. Fig-
ures 3(a) and 4(a) show the results of the proposed method.
Figures 3(b) and 4(b) show the results of the conventional LP
method, where the peaks of P(θ) were obtained by sampling
cos θ with constant sampling interval 0.02. We see that the
proposed method well tracks the DOA changes. The erratic
results of the proposed method are due to the quantisation
errors of PARCOR coefficients. The MSEs of the proposed
method and the LP method are 22.81 and 7.22, respectively,
and the estimation accuracy of the LP method is better than
that of the proposed method. However, the estimation of the
LP method sometimes fails due to the existence of the spuri-
ous of the bearing spectrum.Moreover the proposedmethod
is much faster than the the LP method as shown later.
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Figure 3: Estimation results for two moving signals: (a) proposed method (b) LP method.
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Figure 4: Estimation results for two moving signals: (a) proposed method (b) LP method.

4.2. DOA estimation for three signals

We constructed the database of L = 3, and estimated the
DOAs of three moving signals. We used the same quanti-
sation step sizes as the previous ones. Then we had M =
62099136 and C= 3821007 (= 0.06 ×M). The database size
was about 64 (MB).

4.2.1. DOA estimation

We put λ = 0.995 and D = 10 in the same way as in the pre-
vious case. We estimated the DOAs of three moving signals

(SNR1=16 dB, SNR2=17 dB, SNR3=17 dB). Figure 5 shows
the results for the case where θ1, θ2, and θ3 change by−1◦ per
1000 snapshots starting from 80◦, 95◦, and 110◦, respectively.
Figure 6 shows the results for the case where θ1 changes by 1◦

per 333 snapshots starting from 60◦, θ2 changes by −1◦ per
666 snapshots starting from 110◦, and θ3 changes by 1◦ per
400 snapshots starting from 50◦. Figures 5(a) and 6(a) show
the results of the proposed method. Figures 5(b) and 6(b)
show the results of the conventional LP method. We see that
the proposedmethod well tracks the DOA changes. Similarly,
the estimation accuracy of the LP method is better than that
of the proposed method, however the estimation of the LP
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Figure 5: Estimation results for three moving signals: (a) proposed method (b) LP method.
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Figure 6: Estimation results for three moving signals: (a) proposed method (b) LP method.

method sometimes fails due to the existence of the spurious
peaks of the bearing spectrum, and the proposed method is
much faster than the the LP method as shown later.

The proposed method requires a priori knowledge of the
number of signals L, because the database contents depend
on the value of L. Consequently, L needs to be estimated by
using the model selection method such as Akaike informa-
tion criteria (AIC) [14, 15]. Fortunately, the proposed meth-
od can well estimate the DOAs of L′ signals using the data-
base designed for L(>L′) signals, although it fails when L<L′.

The reason is that estimation of L′ signals is equivalent to the
estimation of L signals where L−L′ signals arrive at the same
angle.

We will denote a database designed for the L signals as
DB(L). Figure 7 shows the results of estimating the DOAs of
two signals with DB(3). We see that the proposed method
using DB(3) correctly estimates the DOAs of two signals.
Figure 8 shows the results of estimating the DOAs of three
signals with DB(2). We see that the proposed method fails to
estimate the DOAs.
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Figure 7: Estimation results for two moving signals using DB(3).
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Figure 8: Estimation results for three moving signals using DB(2).

4.3. Processing time

Table 1 summarises the computation times of the proposed
method and the LP method. In the proposed method, the
values in the columns “R̂t,” “ρ̃ j ,” “k-d trie,” and “total” are
the time requirements of computing R̂t by (17), estimating

{ ̂̃ρ j}Lj=1 by using the modified L-D algorithm, multidimen-
sional searching, and the total processing time, respectively.
In the LP method, the values in the columns “ŵ∗j ” and “peak
searching” are the time requirements of estimating {ŵ∗j }N−1j=1
by using the L-D algorithm and peak searching, respectively.
In the proposed method, the database has been constructed a

priori, and it has been fixed during the estimation. Therefore,
we do not need to include the time requirement of database
construction in the processing time. All computations were
done on an IBM PC/AT compatible computer with an Intel
Pentium IV 2.4GHz. The time of computing R̂t is the same
in both methods, that is, about 10.5 μs per snapshot. When
comparing the computation times excluding it, the proposed
method with L = 2(L = 3) is about 50(30) times faster
than the LP method. As the number of signal sources L in-
creases, the database size gets larger and the processing time
increases.

4.4. Determination of searching range

We have measured the estimation accuracy and the process-
ing time for different values of the searching range D. We
have evaluated the estimation accuracy by

J = 1
T

T∑

t=1

L∑

i=1

(
θ̂ti − θti

)2
, (21)

where θti denotes the ith DOA at time t, and T denotes the
total snapshot.

Figure 9 shows the estimation accuracy for different val-
ues of D. We examined six cases of (θ1, θ2) = (a)(30◦, 135◦),
(b)(30◦, 90◦), (c)(45◦, 100◦), (d)(45◦, 90◦), (e)(60◦, 100◦),
( f )(60◦, 135◦).We setT=10000 and (SNR1, SNR2)=(10 dB,
11 dB). We see that the estimation accuracy is improved as
the value of D is larger, and that the estimation accuracy is
fixed at some value for D larger than 10. The reason is that,
when choosing D = 10, we can retrieve the nearest neigh-
bour to the current key by multidimensional searching in al-
most all cases. Figure 10 shows the processing time per snap-
shot for different values ofD. We see that the processing time
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Table 1: Comparisons of processing time (per snapshot).

Simulation
Proposed method (μs) LP method (μs)

R̂t
̂̃ρ

j
k-d trie Total R̂t ŵ∗j Peak searching Total

L = 2 10.5 7.0 2.3 19.8 10.5 6.6 441.9 459.0

L = 3 10.5 8.0 7.8 26.3 10.5 6.6 441.9 459.0
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Figure 9: Estimation accuracy for different values of D.

18

16

14

12

10

8

6

4

2

0

P
ro
ce
ss
in
g
ti
m
e
(μ
s)

0 2 4 6 8 10 12 14 16 18 20

Searching range D

(a)
(b)
(c)

(d)
(e)
(f)

Figure 10: Processing time for different values of D.

increases as the value of D is larger. There is a tradeoff be-
tween the estimation accuracy and the processing time in de-
termining D. We thus judged from Figures 9 and 10 that the
appropriate value is 10, and put D = 10 in the previous sim-
ulations.

5. CONCLUSION

We proposed the adaptive DOA estimation method using the
database of PARCOR coefficients. In this method, the dimen-
sion of key vector is equal to the number of signal sources and
does not depend on the number of antenna elements. Thus
the database size becomes relatively small and the processing
speed is very fast. Although we found from simulation results
that some erratic behaviours were observed due to quantisa-
tions of PARCOR coefficients, the proposed method is much
faster than the LP method and is robust against the spurious
of the bearing spectrum.
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