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We consider the problem of autonomously locating a number of asynchronous sensor nodes in a wireless network. A strong focus
lies on reducing the processing resources needed to solve the relative positioning problem, an issue of great interest in resource-
constrained wireless sensor networks. In the first part of the paper, based on a well-known derivation of the Cramér-Rao lower
bound for the asynchronous sensor positioning problem, we are able to construct optimal preprocessing methods for sensor
clock-offset cancellation. A cancellation of unknown clock-offsets from the asynchronous positioning problem reduces process-
ing requirements, and, under certain reasonable assumptions, allows for statistically efficient distributed positioning algorithms.
Cramér-Rao lower bound theory may also be used for estimating the performance of a positioning algorithm. In the second part
of this paper, we exploit this property in developing a distributed algorithm, where the global positioning problem is solved sub-
optimally, using a divide-and-conquer approach of low complexity. The performance of this suboptimal algorithm is evaluated

through computer simulation, and compared to previously published algorithms.
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1. INTRODUCTION

Large-scale wireless sensor networks (WSNs) have been pro-
posed for a multitude of applications ranging from pas-
sive information gathered in remote and/or hostile environ-
ments to active automotive safety applications. Many inter-
esting problems arise from implementation aspects, for in-
stance, hard constraints on resources such as battery capacity,
bandwidth, or production cost. A “must-have” property of
many WSNs is the ability to autonomously position individ-
ual nodes, that is, without relying on surrounding fixed in-
frastructure, such as beacons, base-stations, or satellites. Au-
tonomous positioning algorithms have been proposed based
on a number of different techniques, where, recently, time-
of-flight (ToF) based techniques have seen the most atten-
tion, see, for example, [1, 2], and the references cited therein.
Positioning technique based on ToF measurements between
nodes is made more complicated if the nodes cannot be as-
sumed synchronized in time, a property not feasible in large-
scale sensor networks. Further, the complexity of the au-
tonomous positioning problem grows rapidly as sensor net-
works scale in number of nodes and/or connectivity.

The Cramér-Rao lower bound (CRB) is a lower bound on
the variance of all unbiased estimators which can be derived
for most estimation problems. In this paper, we employ CRB

theory for two reasons. First, it offers a measure of how accu-
rately we can estimate a set of unknown parameters, given a
vector of measurements. This measure is useful in position-
ing algorithm design, since it allows us to investigate the ef-
fects on the best possible performance, in a mean-squared-
error (MSE) sense, of an estimator, if we first transform the
measurement vector in some way. Also, it offers a practical
performance estimator, intuitive and easy to implement, that
can be used in positioning algorithms.

Drawing on CRB theory, we present two methods of op-
timally canceling a set of unknown clock-offsets from the au-
tonomous relative coordinate estimation problem. Optimal-
ity is measured with respect to the Fisher information [3] of
the relative coordinate estimation problem. The main reason
for wanting to cancel unknown clocks from the problem is,
of course, a reduction in the unknown parameter space. The
first method, called the QR-method, building on previous
work in [4], is suited for a centralized approach to the rel-
ative coordinate estimation problem, while the second clock-
cancellation method, based on the assumption that measure-
ment noise variance is similar on forward and reverse chan-
nels between two nodes, is well suited for distributed posi-
tioning algorithms.

In some WSN applications, such as environmental moni-
toring, accuracies predicted by the CRB are often not needed
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to fulfill the requirements of the served application. Posi-
tioning algorithms operating in resource-constrained WSNs
should therefore only spend as much processing resources
as needed in order to fulfill the current requirements of the
served application. Based on a performance estimator, given
by the CRB computed in estimated node coordinates, we,
based on work in [5], implement a suboptimal algorithm of
low complexity, employing a divide-and-conquer approach,
that is capable of increasing its positioning accuracy step-
wise, conserving energy in scenarios where demands on ac-
curacy are varying and the full power of statistically efficient
estimators is not needed.

2. PROBLEM FORMULATION

Given a set of asynchronous internode delay measurements
between sensor nodes, we wish to infer the relative two-
dimensional layout of the wireless sensor network.

2.1. Signal model

We assume global node identification, similar to the unique
addressing of Ethernet network interface cards, is available
for each node in the WSN. If one arbitrary node transmits
a message containing its node ID, all other nodes in range
of the transmitting node can measure the arrival time of this
message, relative to their local clocks. Since no synchroniza-
tion is assumed between nodes, each delay measurement will
be affected by unknown clock-offsets at both transmitting
and receiving nodes. In this framework, an asynchronous
delay, or pseudo-time-of-arrival (pTOA), measurement be-
tween nodes i and j, measured at node j, can be written

T,*)j=Ai—Aj+d(Xi,Xj)/C+V,‘,j, (1)

where A, is the unknown clock-offset of node n, d(x;,x;) is
the distance between nodes i and j, in meters, as a function of
their relative node coordinates x,, = [x, ¥]T, c is the elec-
tromagnetic propagation speed, and v;; is zero-mean Gaus-
sian noise with variance o; i where we assume afj is known.
The assumption of Gaussian measurement noise with known
variance greatly simplifies further developments. Most con-
cepts described in this work are, however, applicable also in
the case of non-Gaussian noise with unknown variance.

The clock-offsets A, are considered as deterministic, al-
beit unknown, and measured relative to one node in the net-
work, an N node network therefore has at most N — 1 un-
known clock-offsets. Without loss of generality, we take the
clock-offset of node 1 to be the reference clock in the network
and set it equal to zero. Further, the clock-drift is assumed to
be negligible in the relatively short period between node ID
transmissions. We also assume, that if a pTOA measurement
between nodes i and j is successfully made, the nodes are in
transmission range of each other, and therefore the reverse
pTOA measurement between nodes j and i is also available.

We denote the two pTOA measurements made between
two nodes a pTOA measurement pair. It should be noted that
the number of internode distances in a network of N nodes
is N(N — 1)/2, so that the maximum number of pTOA pairs

in a network of N nodes is Mpy.x = N(N — 1)/2. From (1),
assuming M pTOA measurement pairs have been made in
a network of N nodes, we can write the pair-wise ordered
pTOA measurement vector as

T=HA+Hidx) +veRM, (2)

where

T
T= [Ti(l),j(l) Tj(1,i(1) Ti(M),j(M) Tj(M),i(M)] . (3)

The indexing functions i(k) and j(k) denote the transmit-
ting and receiving nodes of the kth pTOA measurement pair.
Further,

T
A=[d - Ay] erNY, (4)
H, -=Hj® [_11} € RAMXIN-D), (5)
T
Ho = [htl htz htM:I (S [RMX(N?I), (6)
T
H, = %IM o1 1] e rRMM, (7)
r M
d(x) = [d(xixjm) -+ dxanxjan)] € RY,
T
X = I:XIT x7 xﬁ] e R, (8)

X; = [xl yl]T € R

The matrix I; denotes the M X M identity matrix and ®
denotes the Kronecker product. Each column vector h,, €
RN=1 in (6), selects one or two clock-offsets from A for each
element in 7 according to (1), that is, for 7y j;) and 7i),1,
(hyljiy-1 = —1 and [hy]ix-1 = 1, respectively, with ze-
ros elsewhere, because node 1 is the clock-reference node.
If node 1 is not involved in pair n, h;, would select two
clock-offsets, with opposite signs, from A, that is, for Tj(),j()
(hy, lim—1 = 1, [hy,]jm-1 = —1, with zeros elsewhere. Be-
cause T is pair-wise ordered, the (2n)th row of H; will be the
negative of the (2n — 1)th row. If some measurement pair m
cannot for some reason be obtained and is missing from 7,
that is, M < My, the corresponding internode distance el-
ement in d is removed, and the dimension of H; and H;, is
reduced accordingly. Also, if synchronized nodes are present
in the network, the dimensions of A and H; are reduced, that
is, vector A will always contain only unknown parameters.
The measurement noise v is assumed zero-mean Gaussian
with covariance matrix V. We assume V is known. If V is not
known, it will have to be estimated with a possible degrada-
tion in estimation performance as a consequence. We further
assume V to be symmetric and positive definite, which will
always be true for nondeterministic pTOA measurements.

2.2. Cramér-Rao lower bound

Due to the Gaussian properties of 7, and our assumptions on
V, the Fisher information matrix J of (2) is given as [3],

T
_ | Ax) | | (A X)
[](Z)]i,j - [ oz, :| v 1|: oz :|, 9)
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where z = [AT xI]", vector x, contain the unknown ele-
ments in X, and g, = E[7] = H/A + Hyd(x). Partial deriva-
tives are evaluated at the true value of [AT x7]". The CRB
on the variance of any unbiased estimator of unknown rela-
tive node coordinates and unknown clock-offsets, based on
a set of measured pTOAs as modeled by (2), given as the in-
verse of the Fisher information matrix J, is therefore

A H B
Var([ﬁu]> > [[[Hdvd]T}V 1 [Ht HdVd]] , (10)

where Var (x) = E[(x— E[x])(x - E[x])"], a matrix in-
equality on the form M; > M, should be interpreted as
M, — M, being nonnegative definite, and the matrix Vd
RM*2N=3 " assuming 2N — 3 unknown coordinates, and M
pTOA measurement pairs, is given by the Jacobian [3] of

d(x),

vd = 245 (11)
o0x,

The Fisher information matrix J quantifies the amount
of information a measurement data-set contains about the
unknown parameters that index the joint PDF of the data-
set [6]. The original data-set obviously offers maximum in-
formation. If the data is preprocessed in some way, we can
measure the “information-loss” due to the preprocessing op-
eration in terms of the Fisher information. If the Fisher in-
formation about a subset of parameters is unchanged after
preprocessing, we, following [6], denote this preprocessor an
invariant preprocessor.

3. CLOCK-OFFSET CANCELLATION METHODS

In this section, we develop two invariant preprocessors that
remove unknown clock-offsets from (2).

In canceling clock-offsets H;A from (2), we wish to find a
matrix H; that is orthogonal to Hy, that is, H; H; = 0. Many
such matrices exist, but, in order to ensure invariant prepro-
cessing, we need to find H; such that the Fisher information
about x is the same in 7(A, x) as in 7,(x) = H/ 7.

3.1. QR-cancellation

We can obtain H; from a QR-factorization of the sparse ma-
trix H;, H; = QR, such that Q”Q = I For the case of an
N node network, where one clock-offset is defined to be the
global clock reference and the other N — 1 clocks are un-
known, the rank of H; is N — 1, assuming 2M pTOA mea-
surements are available and that 2M > N — 1. Matrices Q
and R can therefore be divided into submatrices such that
H; = [Q Q][R{ 0]7 = QR;, where Q; € R?*N-D),
Q, € RMx@M-N+1) R, ¢ RIN-Dx(N-1) From this we con-
clude that

Q/H, = Q] [QR + Q0] =QJQR; =0,  (12)

since Q7 Q, = 0, that is, a possible choice of H} is H = QI.
Multiplying (2) from the left by QY , we obtain

Tor = Q7 = Q) Hud(x) + Q) v.

This preprocessed measurement vector Tqr € R*M~(N-1 jg
Gaussian with mean pq,(x) = Q2T H;d(x) and covariance
matrix Vor = QZT vQ..

For an N node network, the autonomous relative coor-
dinate estimation problem is now a problem of estimating
a maximum of 2N — 3 unknown parameters given a data-
set with a maximum size of (N — 1)?, that is compared to
the original problem stated in Section 2, we have reduced
the number of parameters by one third and decreased the
original data-set with a maximum of N(N — 1) elements for
M = Mmax by N — 1 elements.

Again, using (9), and the Gaussian properties of Tqr, we
can derive the CRB of the preprocessed problem as

B -1
var (Ran) > |[H:9a]7Q, [QIVQ,] ' QFHv4 | (13)

where we find that the bound in (13) is equal to the lower
right block of the bound in (10) for all parameter vectors
x and A and all positive definite noise covariance matrices
V, proof is given in Appendix A. The full Fisher information
about x in 7 is therefore preserved in Tqr and so this cancel-
lation method represents an invariant preprocessing method.

It should be noted that, in general, the elements of the
preprocessed measurement vector will be correlated, making
a distributed positioning algorithm more difficult to imple-
ment. As such, the QR-method is more suited for centralized
solutions to the autonomous positioning problem.

3.2. X>-cancellation

To make a distributed positioning scheme feasible after pre-
processing, we wish to find an invariant preprocessor H;
such that the effect of clock-offsets is eliminated from 7,
while the transformed problem can be distributed evenly
among the nodes in the network, reducing the need for long
distance, multiple-hop communication.

If we assume that the pTOA measurement noise vari-
ance only depends on the range between nodes and on sys-
tem parameters such as bandwidth (see, e.g., [7] for justifica-
tion of this assumption), we can assume that the pTOA mea-
surement noise variance on the forward and reverse chan-
nels between two nodes are equal. With this key assump-
tion, assuming a pair-wise ordered data-set T € R*M, V =
diag(at,07,07,03,...,04,0%), where 6} = of(k),j(k).

Then, upon inspection of the joint PDF of 7,

1

VQ2m)MIV|
X exp [ - %(T _.”T)TV_l(T _l‘r)]a

p(Tsx,A) =
(14)
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we find that, under the assumption of pair-wise equal vari-
ances, we can, as derived in Appendix B, factor the PDF as

prxA) = o exp | - 5(4-B)] .
X exp [ — %(C—D-FE)],
where

A = [Hgd(x)]" V"' Had(x),

B =2d"(x)V;'H]T,

C=1"vlg, (16)
D =2[TH,A]"V;'Dr,

E = [HA]'V IHA,
V, = diag (6?,0%,...,0%) € RMM (17)
D=Iy®[l —1]eR¥M, (18)
T=1Iy® [1 0] € RMx2M, (19)

Also, from (5) and (7) and the properties of the Kronecker
product, [A® B]T = AT @ B, [A ® B][C® D] = AC ® BD,
where it is assumed that all matrix products exist, we have

[%IM a1 1]T]T [Ho e [1 —1]T]

_ %IMHO ® ([1 1] [_11]> -0,

that is, H} is orthogonal to matrix H;. The PDF is now on
the form p(7;x,A) = f(S(7);x)h(7;A), where S(1) = HdTT,
that is, 73(x) = cHg‘r(x, A), the sum of forward and reverse
pTOAs is, under the above mentioned assumption of pair-
wise equal noise variances, a partially sufficient statistic [3, 8]
for the estimation of relative node coordinates x. That it is
also complete meaning there is only one function of 7x(x)
that is an unbiased estimator of d(x), follows from the fact
that the PDF in (14) is a member of the exponential fam-
ily of PDFs [3]. It follows from the partial sufficiency of 75,
that the full Fisher information about x in 7 is preserved in
Ty, [3, 8], and the preprocessor Hg is therefore invariant. Fur-
ther, since H)Hy = 21/c?, the mean of the Gaussian vector 75
is E [7x] = 2d(x)/c, that is, one half of a measured round-trip
time, multiplied by ¢, corresponds to the internode distance.
We can now formulate the ML estimator of relative node co-
ordinates, operating on 7s as

HIH,
(20)

~ . T -1
Xy = arg mxln(crz —2d(x)) [HdVHg] (cty — 2d(x)).
(21)

This problem is equivalent to minimizing the energy in a
system of point-masses and springs, where the springs obey
Hooke’s law. It is shown in [4] that a distributed algorithm
based on this analogy can indeed be considered statistically
efficient under a range of reasonable assumptions.

4. ADISTRIBUTED POSITIONING ALGORITHM

In this section, a distributed algorithm is presented, that di-
vides the global asynchronous relative positioning problem
into a set of separate subproblems distributed across the net-
work. CRB theory is then relied upon to fuse the solutions to
the subproblems, increasing accuracy step-wise up to the de-
sired performance, while keeping computational complexity
low.

4.1. The kernel algorithm

The kernel algorithm is an extension of the classic TDOA
positioning technique, widely employed and well known
throughout the positioning community. In a classic TDOA
positioning algorithm, pTOA measurements are made by
three fixed and synchronized reference stations, with respect
to the mobile node. The estimated position of the mobile
node is then obtained as the intersection of two hyperbolic
curves, resulting from a difference operation on the three
measured pTOAs [9, 10]. The kernel algorithm extends this
concept to the case where there are no fixed synchronized
reference stations, and more than three pTOA measurements
are available.
Basically, the kernel algorithm operates in three phases;

(i) Partition the network into groups of at least three
nodes (kernels). For each kernel, define a local coor-
dinate system.

(ii) Using standard time-difference-of-arrival (TDOA)
techniques, estimate the coordinates of all other nodes
in transmission range of the kernel.

(iii) For each positioned node outside the kernel, estimate
the accuracy in relative coordinates. If the accuracy is
found to be inadequate for the application at hand, use
the accuracy estimate in a fusion process with other
kernels in order to improve on position estimates.

Forming a kernel

To form a kernel, we first need to partition the network into
groups of three nodes. Due to the varying geometric proper-
ties of different network partitions [2], the choice of partition
will influence the accuracy of the position estimates. We are,
however, not assuming any prior knowledge of node loca-
tions and therefore partition the network randomly, that is,
without any attempts at optimization. It should be noted that
an initial random partition of the network does not have to
be complete in the sense that every node will be a member of
exactly one kernel, for the kernel algorithm to produce valid
coordinate estimates. Some nodes may be members of zero,
two or more kernels in an initial run of the algorithm, the
extension of our algorithm to this case being trivial. We as-
sume hard-wired global node identification is available, and
denote the coordinates of the ith node in the local coordi-
nate system of kernel k as Xx; = [%k; Yki]”. The indices of
the three nodes in the kth kernel are denoted k;, k,, and k3.
Assuming pTOA measurements have been exchanged by the
three nodes in kernel k, we first assign the center coordinates
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and a zero clock-offset to node kj, that is, Xxx, = [0 0]7,
and Ak, = 0. The estimated internode distances dAkl,kz, dAkl,k3 ,
and d,\kz,ks are obtained from the sum of two correspond-
ing pTOA distance measurements, C/Z\k,-,k,- = c(rki,kj + Tkj,k,.)/Z,
where 7;; is given by (1), eliminating the unknown clock-
offsets. It should be noted that as long as the measurement er-
ror characteristics are similar on the forward and reverse link
between two nodes, this fusion of pTOA measurements rep-
resents a sufficient statistic and therefore does not represent
any information loss, as derived in the previous section. We
assign the coordinates Xxx, = [0 c?kl,kz]T to the second node
within our kernel, fixing it on the y-axis of the local coordi-
nate system. Finally, we, using standard trigonometric iden-
tities, estimate the remaining unknown kernel coordinates
ik = [Xkks Yiks]T as

72 72 72
i Tk, — ik

~ >
2dj, )
72 ~2 e 72 ~2
Rep = Ak = Vikr Hdk g = ik, >0
K3 T .
0, otherwise.

Ifd bk~ Vix, <0, itis assumed that the third node is located
very close to the y-axis. When this happens, the nodes in ker-
nel k are almost colinear, resulting in poor locationing per-
formance, due to the high geometric dilution-of-precision
(GDOP) [2]. However, this poor performance is easily de-
tectable. We note a mirror ambiguity when forming a kernel.
This ambiguity may be resolved if at least two fixed nodes, or
other prior information, are available within the system, but,
since we are only interested in the relative location of nodes,
the algorithm is able to resolve this ambiguity in the fusion
process described in Section 4.3.

We also estimate the error covariance matrix Ciy, =
E[(Xpk — Xkk) Xik, — Xkk;) T | of the ith node in the kth ker-
nel in units of m?. Since node k; is taken as reference for ker-
nel k, the covariance matrix Cy, = 0. The covariance matrix
Cik, of node k, will, assuming pair-wise equal pTOA noise
variances, have a variance in the y-direction corresponding
to half of the pTOA measurement variance o} , translated
into distance, that is, Cxr, = c*diag(0, olfl,kz/Z). We finally

estimate the covariance matrix (Alk,kp of kernel member k3,
as the CRB on node coordinate estimates [Xk3 Vk3]”, com-
puted in estimated coordinates. The estimate is given as the
projection of internode distance variances on the reference
system formed by node k; and k, of kernel k [11],

A~ AT A~ AT -1
Cop = 2| Hokoks Mk | Whokoks ks ks (23)
ks 2 /2 2 ’
Ok, ks Ok ks
where
. Xk,j — Xk,
Ukij = T2 =~ 1 (24)
/ ||Xk,j — Xl

is the estimate of a unit vector in the direction of node j from
node i in the coordinate system of kernel k. The contribution

from node k; in (23) has a greater distance variance due to
the uncertainty in location of this node. An extension of co-
variance estimators to nonequal pTOA variances is trivial.

Finally, kernel nodes k, and k3 tune their local clocks to
the clock of node k;, using computed internode distances
and measured pTOAs.

4.2, Obtaining relative locations using information
available within a kernel

Now that we have, in a relative sense, fixed our kernel,
achieved approximate synchronization within the kernel and
estimated the accuracy in kernel positions, we move on to
position the remaining nodes of the network. To locate some
node [, not a member of kernel k, we use pTOA measure-
ments Ty, , Tik,, and 71, available within the kernel. As noted
above, the pTOA measurements are affected by Gaussian
noise with variance afki. Taking worst-case uncertainties in
kernel locations and clock-offsets into account, we estimate
the covariance matrix of the stacked pTOA measurements
Pix = [Tk ok, Tiks ] as [11],

P tr (ék k)
I I 2 2 5K 2
Qi = diag <Ul,k1’al,k2 + 2762 > Ok,

+2tr(czk,k3) )
(25)

The three-element vector of pTOA measurements can be
combined into two TDOA measurements,

B 1 =1 0 _ _ Tl,k1 - Tl,kz
tix = [1 0 _1} P = Hpyy = [T,’k‘ — T | (26)

canceling the unknown clock-offset A; of node I, with respect
to the clock of kernel node k;. The estimated covariance ma-
trix of transformed measurements is ﬁl,k = H(A)l)kHT.

Now, the kernel k estimator of the two-dimensional co-
ordinates Xi; of node ! in the network is given by

£ (%) )

T

-1 f
R, <tz,k - ("C"”)), (27)

ﬁk,l = arg min (tl,k -
X!

where

%6 = R || = |Ixit = K|
£ _ S 2hoki > PR . 2
(1) [ka,z T ] R

A minimizer of (27) is a solution, should at least one exist,
to f(Xx;)/c = tix, derived in [9]. Zero, one, or two solutions
may exist, corresponding to zero, one, or two intersections
of the TDOA hyperbolas. If two solutions exist, both loca-
tions are remembered and one is later discarded based on
information from other kernels. On some occasions, there
is no closed form solution to f(Xx;)/c = tix; then the algo-
rithm presented in [9] does not produce a minimizer in (27),
and the node is considered unfixed. Unfixed nodes are as-
signed high variance estimates, excluding them from future
steps of the algorithm. A possibility not considered in this
work is a numerical minimization of (27) when no closed-
form solution to f(Xx,)/c = t; exists. For the case of a kernel
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not having access to a complete set of three pTOA measure-
ments with respect to some node, due to, for instance, signal
strength issues, the node is also considered unfixed.

Under the assumption that t; is Gaussian with mean
E [le,k], and covariance matrix R;x, the CRB for an unbi-
ased estimator of x is given by the inverse of the Fisher in-
formation matrix in (9). We estimate the covariance matrix
Ckl of Xy as the CRB evaluated at the estimated coordmates
xk 1> usmg the estimated measurement covariance matrix Rl k>
that is,

A ~—1 -1
Cry = [ Vi HTR,HY, | (29)

where Vi = [Ukk,1 Ukjy,t Ukk,]T/c, and Gy is given by
(24). This approach to variance estimation, that is, using the
CRB calculated in estimated coordinates to estimate the ac-
curacy in a position estimate based on TDOA measurements,
as a rule of thumb, yields accurate estimates as long as the
true variance is reasonably small [3, 10]. If the true variance
is large, the error of the estimated variance will be large, but
so will the estimated variance, making this approach suitable
for fusion purposes.

4.3. Fusion of kernel estimates

In order for one kernel r to share its positioning informa-
tion with another kernel k, the estimate has to be trans-
formed so as to fit into the local coordinate system of ker-
nel k. Since both kernels will have different nodes located
in the origin and also different nodes fixed on the y-axis, a
bias as well as a rotation will separate the two estimates. As
noted above, a mirror ambiguity may also separate the two
estimates. To find this bias, rotation angle and possible am-
biguity, nodes that have a low location variance should be
given more weight than nodes that are poorly located or not
fixed at all. We wish to find the rotation matrix

| cosa,—k  sina,k
Glar-x) = [— sin ok cosocrﬁk] (30)

and the bias b,_j that, based on an ML estimator of rota-
tion angle and bias, derived under the assumption of zero-
mean Gaussian single kernel positioning errors, minimizes
the weighted sum of squared Euclidean distances,

&fﬂk . N ~2 ~D -1y A 2
~ = argmin > (wk)i + wr,i) ’ X, — Xk,i’ , (31)
brak ab -1

where X, ; = G(a)%,,;+b is the rotated and translated kernel r
estimate of node i, and W,%,i = tr(ék,i). If mirror ambiguities
have not been resolved beforehand, they can be resolved by
trying both possible orientations of kernel r in (31), and se-
lecting the orientation with maximum likelihood, that is, the
orientation with the best weighted MS fit. It can be shown

[11] that the angle a,_x that minimizes (31) is given by

N

-1 - =
Z <Wk,i+w‘f,l) (.X'k 1yr1 yk,iXVsi>’

a= arctan(
1

(32)

M=z

-1 ,- - - -
(Wk,l + Wr,l) (xk,lxr,l Tk r,l) ) >
]

1

where the function arctan(a,b) is the four-quadrant in-
verse tangent function, Xxi;, and fk)i are the x-coordinate
and y-coordinate of node i in kernel estimate k, centered
with respect to the weighted center of gravity at kernel k,

[Xki Yril" = [Xki Piil" — %, and

N -1 N 1
% = [z(w,iiJr@f,i) } > (W +#2) R (33)

i=1 I=1

Likewise, the estimated weighted bias f)p k> separating kernel
k and r estimates, and minimizing (31), is given by [11],

,ak—f Z(wk,-i-w ) Z(wkl+w e, (34)

where € = G(Q,_;)X,; — Xg; is the error of each node after
rotation.

Once the rotation angle and bias minimizing (31) has
been found, we also have to apply the rotation matrix
G(&,_y) to the covariance matrix of the kernel estimate sub-
ject to rotation,

C., = G@-C G @-x), Vie[L,N].  (35)

When kernel estimates have been rotated into a common
frame, the merged estimate is obtained as a straightforward
fusion of Gaussian variables [3],

~ ~/-1 ~A-17711A N

x=[C +C | [c, 2 +C, xk] (36)
where covariance estimators C dlag(C, 1> ..,ér,N) and
Cr = dlag(Ck,l,...,Ck,N), and coordinate estimators X =
[;(1{,1 e )A(,ZN]T and X, = [ﬁ;Tl oo X7 The fused es-

timate will, from the covariance matrix of a welghted mean of
two Gaussian vectors, weighted by the inverse of their respec-
tive covariance matrices, have covariance matrix estimate

~

Cu=[C" +6,j1]71. (37)

If the estimates of more than two kernels are to be fused, the
process is repeated for each additional kernel using the pre-
vious merging as base of rotation. The reason for merging
kernels in a successive manner is an increase in rotation ac-
curacy.

4.4. Simulation results

To evaluate the performance of our proposed algorithm, ran-
dom node coordinates in networks of varying sizes were gen-
erated from a uniform distribution, constrained within a
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Prob (coordinate error < abscissa)

10° 10!

Coordinate error (m)

-7 20 Kernels
% pTOA CDF
< RMS = 2.7m CDF

-o- 1 Kernel
—— 2 Kernels
-8~ 3 Kernels
-0 5 Kernels

FIGURE 1: 60 nodes random network layout, co = 2 m.

square with side 500 m. For each node, a clock-offset was
generated from a zero-mean Gaussian distribution with a
variance of 1 s2. Based on the node coordinates and the clock-
offsets, true pTOA distance measurements were calculated
and zero-mean Gaussian noise with a standard deviation of
co = 2m was added, that is, the noise variance was assumed
equal for all pTOAs. The nodes in the network were ran-
domly grouped into kernels, each containing three nodes,
and the algorithm was run to produce estimates, fusing a
varying number of kernel estimates. The node location er-
rors were saved and the process was repeated 100 times. In
Figure 1, the cumulative distribution function (CDF) of the
location error is plotted for different numbers of merged ker-
nels. The cumulative effect in accuracy is clear from Figure 1,
adding information from more kernels produces estimates
of higher accuracy. If none of the merged kernels have a so-
lution for some node, this node remains unfixed with infinite
variance. Obviously, the number of unfixed nodes decreases
drastically with the number of merged kernels. For compar-
ison purposes, the CDF of the pTOA measurement noise,
used in the simulations, has been included. The CDF of a
Gaussian positioning error with a root-mean-square (RMS)
value of 2.7m is also included. In [2], RMS locationing ac-
curacies between 0.9 and 2.7 m are reported for a TOA mea-
surement standard deviation of around 1.83 m. The compar-
ison to [2] being somewhat unfair since a smaller network,
including fixed reference nodes and oriented in a square grid
pattern, was implemented in [2].

If the simulation results are investigated in more detail,
we find that nodes located on the outskirts of the network
are often located with less accuracy than nodes situated near
the center. The same phenomenon is noted and explained in
[2].

If the measurement noise variance o2 is reduced, we ex-
perience a substantial performance gain. The main reason,

Prob (coordinate error < abscissa)

Coordinate error (m)

—#— 1 Kernel
—<+ 2 Kernels
—8- 3 Kernels

—©- 9 Kernels
~*- ML approximation

FIGURE 2: 27 nodes square network layout, co = 1 m.

of course, is more accurate kernel estimAates, but also a more
accurate covariance matrix estimate Cy, yielding a more
efficient fusion process. In Figure 2, the effect of using a
square node deployment pattern is exemplified, 27 nodes
were placed on a grid pattern, kernel assignments were ran-
dom, and the measurement accuracy was set to cc = 1m.
Compared to Figure 1, we note an improvement, especially
for a smaller number of fused kernels. This is mainly due to
the lower average GDOP, experienced by single kernel esti-
mators. For comparison purposes, we also plot the perfor-
mance of an approximation to the ML estimator of relative
node coordinates, given by (21), discussed in [1] and also in
[4].

The robustness of the algorithm was verified in each
simulation run. We investigate the relationship y between
instantaneous squared error and estimated MSE,

o
Y= ON 3

Al
eTCZf:1 & (38)

where e is a column vector of the stacked node location er-
rors and Cyx  is the covariance matrix estimate when K
kernels have been fused. Simulation runs producing values
of y below one indicate a pessimistic estimate of the node
coordinate errors while values greater than one indicate an
optimistic estimate. In Figure 3, the CDF of y is plotted for
simulation setups, all with 27 nodes and K = 9, distributed
uniformly within a square area with side 500 m, but with dif-
ferent pTOA measurement variances. Simulations were also
made for a scenario with 27 nodes located in a square grid
pattern, and a pTOA standard deviation of co = 1 m. Each
simulation was run for 1000 network layout and measure-
ment noise realizations. The obtained results indicate a ro-
bust algorithm. From simulation results, we note, that if the
measurement noise variance is low, or the network has a low
GDOP layout, yielding more accurate coordinate estimates,
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Prob (y < abscissa)

107! 10° 10!

= o=1m
- 0=2m
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= 0=0.1m

FIGURE 3: Indication of algorithm robustness.

the kernel algorithm produces somewhat pessimistic accu-
racy predictions. This is most likely due to the worst-case
assumption in (25). Extreme values of y, especially com-
mon for higher noise variances, are caused by poorly located
or unfixed nodes, where both estimated and true errors are
large. From a data fusion point of view, erroneous error es-
timates have little effect, as long as both true and estimated
error is large, in which case the estimates are heavily down-
weighted in the fusion process.

5. CONCLUSION

This paper, based on analysis of the Cramér-Rao lower
bound (CRB) of the asynchronous and autonomous relative
coordinate estimation problem, has derived two methods
for canceling unknown clock-offsets at individual nodes
from the coordinate estimation problem. Both methods were
shown to represent invariant preprocessors, that is, neither
method altered the CRB of the original estimation prob-
lem, and the methods fit well together with centralized
or distributed ML-type coordinate estimators, described in
[1, 2, 4]. It was also argued that CRB-type expressions may
be used in estimating the performance of a positioning algo-
rithm. This concept was exploited in a distributed, subopti-
mal algorithm, that had the ability to increase performance
step-wise, according to requirements from the served appli-
cation.

APPENDICES

A. INFORMATION PRESERVATION OF
THE QR METHOD

The proposition that the right-hand side of (13) is equal to
the lower right block of the right-hand side of (10), for all
parameter vectors x and A, and all symmetric and positive

definite noise covariance matrices V, may be stated as
TC,T" = C,, (A.1)
where T = [On-1 Ic],
H!'V 'H, HI'V'H; Ve |
“i= |:[Hdvd]TV_lHt [Hdvd]TV_lHdVd] ’ (A.2)
C. = [[H,va17Q,[QIVQ, ' QI H, v

H; is given by (5), Hy is given in (7), Vg4 is given by (11),
and Q, is defined in Section 3.1. Now, the matrix inversion

lemma states that
-A'BS;!
, (A3)

[A B]l [A1+A1BSA1CA1
CcD -S,'cA! S,

where S4 = (D — CA™'B) is the Schur complement of A. The
matrix TC]-TT can therefore be written as

TC,T" = [([HdVd]TV“HdVd) ~ ([H4va]"V'H,)
-1
><(HtTV‘lHt)_l(HtTV‘lHdVd)] .
(A.4)
The equality in (A.1) holds, that is, TC]-TT =G, if

V! - VIH,(H,V'H) 'HV! = Q,[QIVQ,] '],
(A.5)

where V is positive definite and symmetric, which implies
that positive definite and symmetric matrices V2 and V12
exist such that VY2V = Vand V12vV~12 = v~1,

The left-hand side of (A.5) can be written as

V! -V IH,(HV'H,) 'H,V!

=V 2 (1-AATA) ATV 2 (A6)
_V2gly 1
where A = V'Y?H,, and AT = [V'2H,]T = HIV 2

following from the symmetry of V"2, The matrix n; =
I - A(ATA)'AT is a projection matrix onto the orthogonal
complement subspace of range (A) [3, page 232]. The right-
hand side of (A.5) is

Q[QIVQ,] Q]
-1
_ V’I/ZV(W)QZ[QZTVl/szQz] Q2TV1/2V’1/2

— V*l/Znvil/Z’
(A7)

where 7g is a projection matrix onto the space spanned by
the columns of B = V2Q,.
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Now, since the projection matrix onto a subspace is
unique, it suffices to show that (range (A))* = range (B).
It is well known that the left null space of a matrix is the or-
thogonal complement of the column space (or the range),
that is,

(range(A))" = null(A”) = {x: H/V "x = 0}. (A.8)
Also, since A € R2M*WN-1) has full column rank,

dim (range(A) )" = 2M —rank (A) = 2M — N + 1. (A.9)

Further, we have range (B) = range (V?Q,) = {y : y =
V2Q,z, z € R*™-N+1} ‘and

dimrange(B) = rank (Q,) = 2M — N + 1. (A.10)
For all y € range (B), since H'Q, = 0, we have
Ay = H[V'*V?Q,z = H{Qz
(A.11)

=0 = range(B) c null(AT).

Comparing the dimension of subspaces, we have, from (A.8),
(A.9), and (A.10); dimnull(A”) = dim range (B) = 2M —
N + 1. We therefore conclude that range (B) = null (AT) =
(range (A))*, that is, V2Rv12 = v 275V12 ) and
(A.5) holds for all parameter vectors A and x, and all posi-
tive definite and symmetric covariance matrices V.

B. FACTORIZATION OF THE JOINT PDF OF

Consider the sum of squares in the exponent of (14),
(r—u) V'(r-p,)
= (r ~ Hyd(x)) 'V (r ~ Hyd(x))

—2(r - Hyd(x)) "V 'H,A + [H,A] "V 'H,A.

(B.1)
We may factor and rewrite the first term in (B.1) as
(t = Hed(x)) "' V7! (7 — Hyd(x))
=TV lr - 2[Hyd(x)] TV 1 (B.2)

+ [Had(x)] "V 'Hud (x).

Due to the special shape of V, we may rewrite the second
term of (B.2) as

2[Hd(x)]TV 7 = 2d(x)TV;'H 1, (B.3)

where V, is given by (17), and H}7 contain the sums of
corresponding pTOAs. Again, from the shape of V, we may
rewrite the second term in (B.1) as

2(r - Hyd(x)) "V'H,A = 2[TH,A]'V;'Dr,  (BA)

where T, given by (19), selects every second element of H/A,
and D, given by (18), takes the difference of corresponding
pTOAs. The exponent in (B.1) can therefore be written

(r—p) Vi (r—p,)
= [Hyd(x)]"V'Hud(x) — 2d" (x)V;'H 7

+7TVv- 17 = 2[TH,A] ' V;'Dr + [HA] "V 'H,A.
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