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The localization problem is fundamentally important for sensor networks. This paper, based on “Estimation bounds for local-
ization” by the authors (2004 © IEEE), studies the Cramér-Rao lower bound (CRB) for two kinds of localization based on noisy
range measurements. The first is anchored localization in which the estimated positions of at least 3 nodes are known in global
coordinates. We show some basic invariances of the CRB in this case and derive lower and upper bounds on the CRB which can be
computed using only local information. The second is anchor-free localization where no absolute positions are known. Although
the Fisher information matrix is singular, a CRB-like bound exists on the total estimation variance. Finally, for both cases we dis-
cuss how the bounds scale to large networks under different models of wireless signal propagation.
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1. INTRODUCTION

In wireless sensor networks, the positions of the sensors play
a vital role. Position information can be exploited within
the network stack at all levels from improved physical layer
communication [1] to routing [2] and on to the application
level where positions are needed to meaningfully interpret
any physical measurements the sensors may take. Because it
is so important, this problem of localization has been studied
extensively. Most of these studies assume the existence of a
group of “anchor nodes” that have a priori known positions.
There are three major categories of localization schemes that
differ in what kind of geometric information they use to
estimate locations. Many, such as those of [3-7], use only
the connectivity information reflecting whether node i can
directly communicate with node j or anchor k. Such ap-
proaches are attractive because connectivity information is
accessible at the network layer due to its use in multihop
routing.

The second category uses both ranging and angular in-
formation for localization. Such schemes are studied in [8—
10]. These are useful when there is a line of sight and antenna
arrays are available at the sensor nodes so that beamforming
is possible to determine the angles.

The third category is localization based solely on rang-
ing measurements among nodes and between nodes and an-
chors. In [11, 12], the schemes for estimating ranges are dis-
cussed. References [13, 14] estimate the positions directly
based on such node-to-anchor ranging estimates. In con-

trast, [15, 16] first estimate positions in an anchor-free co-
ordinate system and then embed it into the coordinate sys-
tem defined by the anchors. In this paper we also focus on
localization using ranging information alone.

The Cramér-Rao lower bound (CRB) [17] is widely used
to evaluate the fundamental hardness of an estimation prob-
lem. The CRB for anchored localization using ranging infor-
mation has been studied in [18-20]. The expression for the
CRB was derived in [18]. In [20], a comparison of the CRB
with the simpler Bayesian bound has been studied. In [19],
simulation is used to study the impact of the density of the
anchors and the size of the sensor network on the CRB.

As far as anchored localization goes, our additional con-
tribution is giving a geometric interpretation of the CRB and
deriving local lower and upper bounds on the CRB. The
lower bounds imply that local geometry is critical for lo-
calization accuracy. The corresponding upper bounds show
through simulation that the errors are not a lot worse if only
the nearby anchors or nodes are involved in the position es-
timation of a particular node. These results show that dis-
tributed localization schemes are promising.

For anchor-free localization, as mentioned in [9], the
Fisher information matrix (FIM) is singular and so the stan-
dard CRB analysis fails [21]. The CRB on anchor-free local-
ization has not been thoroughly studied. In this paper, we
give a geometric interpretation on a modified CRB and de-
rive some properties of it. Furthermore, we show by example
that anchor-free localization sometimes has a lower total es-
timation variance bound than anchored localization.
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1.1. Outline of the paper

After reviewing some basics in this introduction, Section 2
studies bounds for anchored localization. Assuming the
ranging errors are i.i.d. Gaussian, we give an explicit expres-
sion for the FIM solely based on the geometry of the sensor
network and show that the CRB is essentially invariant under
zooming, translation, and rotation. Using matrix theory, we
give a lower bound on the CRB that is determined by only
local geometry. This converges to the CRB as the local area is
expanded. We also give a corresponding local upper bound
on the localization CRB. Finally we study the wireless situa-
tion in which the noise variance on the range measurements
depends on the inter-sensor distance. Simulation results val-
idate our intuition that the faster the signal decays, the less
the CRB benefits from faraway information. A heuristic ar-
gument reveals the basic scaling laws involved.

Section 3 studies the bound for anchor-free localization.
The rank of the FIM for M nodes is shown to be at most
2M — 3. The corresponding modified CRB is interpreted as
a bound on the sum of the estimation variances. We observe
that the per node bound in simulations appears to be pro-
portional to the average number of neighbors and conjec-
ture that the total estimation variance scales with the total
received signal energy.

1.2. Cramér-Rao bound on ranging

Since range is our basic input, we first review the CRB for
wireless ranging. The distance between two nodes is cty,
where ¢ is the speed of light and t; is the time of arrival
(TOA). TOA estimation is extensively studied in the radar
literature. If T is the observation duration, A(¢) is the pulse,’
and Nj is the noise power spectral density, then for any un-
biased estimate of t; [22],

~ 2 Ny

— > —
E[(—t] = (T [9A(t)/0t) dt =
Notice that [, (QA(t)/dt)2dt is proportional to the energy in
the signal with the proportionality constant depending on
the pulse shape. Because of the derivative, we know that hav-
ing a pulse with a wide bandwidth is beneficial. Calling that
proportionality 72, we have

2

E[(fa-1)"] = o 2)

The CRB on ranging is a fundamental bound coming only
from the Gaussian thermal noise in the received signal. In re-
ality, there are other sources of small ranging errors including
interference, multipath spreading, unpredictable clock drifts,

! Notice that ranging estimates can be obtained from any pulse whose shape
is known at the receiver. This includes data carrying packets that have
been successfully decoded as long as we know the time they were supposed
to have been transmitted. In a wireless sensor network, we are thus not
restricted to use a dedicated radio for ranging.

: o :
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FIGURE 1: A sensor network. Solid dots are anchors; circles are nodes
with unknown positions. The range d; ; is estimated for sensor pairs
i,j s.t. di,j < Rvisible-

operating system latencies, and so forth. These can cause the
ranging error to be non-Gaussian even near the mean. More
significantly, these ranging errors do not scale with SNR. We
ignore all these other sources of error in this paper.

1.3. Models of localization

We idealize the localization problem by assuming all the sen-
sors are fixed on a 2D plane. We have a set S of M sensors with
unknown positions, together with a set F of N sensors (an-
chors) with known positions. Because the size of each sensor
is assumed to be very small, it is treated as a point.

Each sensor generates limited-energy wireless signals that
enable node i to measure the distance to some nearby sensors
in the set adj(i), as illustrated in Figure 1. We assume j €
adj(i) if and only if i € adj(j) for symmetry. Throughout,
we also assume high SNR? and so are free to assume that the
distance measurements are only corrupted by independent
zero mean Gaussian errors.

1.3.1.  Anchored localization

If there are at least three nodes with positions known in
global coordinates (|F| = 3), then it is possible to estimate
such global coordinates for each node using observations D
and position knowledge Pg:

D=1{dylieSUF, jeadj(i},

(3)
PF = {(x,-,y,-)T | i€ F}
Our goal is to estimate the set
Ps={(5)" lies}. (4)

2 Suppose that we are estimating the propagation time by looking for a peak
in a matched filter. By high SNR we mean that the peak we find is in the
near neighborhood of the true peak. At low SNR, it is possible to become
confused due to false peaks arising entirely from the noise.
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(x> yi) 1s the position of sensor i. The measured distance
between sensors i and j is d;; = \/(xi —xi)?2+(yi—yj)? + j
€ij, where €; ;’s are modeled as independent Gaussian errors (xj,7)
~ N(0,07).
X
1.3.2.  Anchor-free localization
If [F| = 0, no nodes have known positions. This is an appro- ) i
priate model whenever either we do not care about absolute i ;,)
positions, or if whatever global positions we do have are far ’
more imprecise than the quality of measurements available
within the sensor network. However, local coordinates are
not unique. If Ps = {(x;, ;)T | i € S} is a position estimate, y
then P§ = {R(a)(%;, )T + (a,b)T | i € S} is equivalent to
Pg where the + represents reflecting the entire network about FIGURE 2: aj; illustrated.
the y axis and R(«) is a rotation matrix:
R(a) = cos(@) —sin(a) (5) For nondiagonal entries j # i, if j € adj(i)
sin(a) cos(a) |~ S JEBYJ AU
Thus, the performanceA measure foAr anchor-free localization Jaic12j-1 = Jajo12i1 = — Lz cos” (aij),
should not be >;(x; — X;)? + (y; — 7:)%. The distance between ij
equivalence classes should be used instead. Since the FIM for _ 1,
anchor-free localization is singular [9], the bound will be de- Jaigj = Dajai = = Z% sin” (a5), (10)
veloped using the tools provided in [21].
Jaic12j = D2jpi-1 = higj-1 = hj-12
2. ESTIMATION BOUNDS FOR ANCHORED = —iz sin (j) cos (aij) = —% sin (2a;;).
LOCALIZATION %ij 20j;
The Cramér-Rao bound (CRB) can be derived from the FIM.  If j & adj(i), the entries are all zero.
.. 5
2.1. Theanchored localization FIM Proof. We have the conditional pdf
In [18-20], expressions for the localization FIM were de- (d»| Sy~ ] o (dij—dij)*/20] a1
rived. The derivations are repeated below for completeness 4 N i< icadi(i) 2nok
and furthermore, we observe that the FIM for localization is I Y
a funct.ion .Of the angles between nodes and anchors. A§ ilhlls.- The log likelihood is
trated in Figure 2, the angle a;; € [0,2m7) from node i to j is
defined as Gi—di)
Xj — Xi Xj — Xi In(p(d|x,yf)=C- > = (12)
cos (ajj) = = > = , T 207,
dij i<j,j€adj(i) j
Vg —x) + (55— 1) i ©)
. _ Yi— )i )i~ i and so
sin ((X,‘j) = \/( )2 ( )2 4
Xi — Xi + PR . 1] -
e (@I (p(d | <, y)
Let x;, y; be the (2i — 1)th and 2ith parameters to be Jai-12i-1 = E axiZ
estimated, respectively, i = 1,2,..., M. The FIM is Lpxom- )
Theorem 1 (FIM for anchored localization). For all i = = Z iz sz_ X > (13)
1,..., M, e % \ (= %) + (3 — )
cos? (aij) cos” (at;;)
Dicipic1 = . ——25, (7) = 2 Tz
jeadiy i jeadj(i) ij
)
Jigi = >, M’ (8)  and similarly for other entries of J. O
jeadiy il
cos (a;j) sin (aj) T
Jaic12i = inic1 = Z 0_—2 ) 3d = {dij | i< j,j € adj(i)} is the observation vector. M = (x1, %2,
jeadj(i) Y xum), similarly for M.
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2.2. Properties of the anchored localization CRB
Given the FIM, the CRB for any unbiased estimator is*
~ 2 _
E((x,- - i) ) = hit1pict>
~ 2 -
E((J’i = i) ) = Jainie

Corollary 1 (the FIM is invariant under zooming and
translation). J({(x;, y:)}) = J({(ax; + c,ay; + d)}) fora # 0.

(14)

Proof. The angles «;; and noise o;; are unchanged and so the
result follows immediately. O

Corollary 2. The CRB for a single node is invariant under ro-
tation and reflection: let A = J({(xi, yi)}), B = J({R(xi, yi)}),
where Ris a 2 X 2 matrix, with RRT = L. Then A3} ;| +
Ashi =Byl iy + Byhy foralli=1,2..., M.

Proof. Going through the derivation of the FIM, we find that
B = QAQT, where Q is a 2M X 2M matrix with the following

form:
(inl,zil QZil,Zi) R (15)
Quigi-1 - Qaipi

with all other entries of Q being 0. Obviously QTQ = QQT =
Daxoy and so B™1 = QA™'QT. Write

Ast i At
A(l)z( 2i—1,2i—1 2 1,2) (16)

-1 -1
A2i,2i71 A2i,2i

and similarly for B(i). Then B(i) = RA({)R". Since
Tr(XY) = Tr(YX), we have B! |, + B35 = Tr(B(i) =
Tr(RA()RT) = Tr(RTRA(i) = Tr(AG)) = Ayl +
A U

2.3. Alower bound to the anchored localization CRB

In order to invert the FIM and thereby evaluate the CRB, we
need to take the geometry of the whole sensor network into
account. In this section, we derive a performance bound for
node ! that depends only on the local geometry around it.
This has the potential to be valuable to “local” algorithms
that try to do localization without performing all the com-
putations in one center.
First we review a lemma for estimation variance.

Lemma 1 (submatrix bound). Let the row vector 8 = (0,
02,...,0n) € RN; for all M,1 < M < N, write 0% =
(ON-M+1>- - > ON); then for any unbiased estimator for 0,

E((6* - 6%) (6" - 0%)) = C, (17)

where C is the (N — M) X (N — M) matrix:

Jw):(§~§), (18)

4 We write (A71);j as Agjl for a nonsingular matrix A.

where ] (0) is the nonsingular, and hence positive definite, FIM
for 6.

Proof. Write the inverse of J(0) as
A" B
](9)_1 = (BrT C/) . (19)

J(0) is positive definite, then Theorem 5 in Appendix A guar-
antees

C' =cC. (20)

The CRB theorem then gives E((6* — 05)7(6* - 6%)) =
C'=C. O

Notice that for any subset of M nodes, we can always
reorder them to get indices N — M + 1,...,N. By directly
applying Lemma 1 we get the following.

Theorem 2 (a lower bound on the CRB). Write 6 = (x5, y;)"
and write

. (}(9)211,211 ] (9)211)21) . (1)

T\ J@ua O
Then for any unbiased estimator @, E((é; - 01)(§1 -)T) =

This means we can give a bound on the estimation of
(x1, y1) using only the local geometry around sensor .

Corollary 3. J; only depends on (x1, y1) and (x;, yi), i € adj(I).

Proof. ] in (7) only depends on (ayj,01;), j € adj(l). These
only depend on (x;, y1) and (x;, y;). O

Assume that the ranging errors are ii.d. Gaussian with
zero mean and common variance o2 and define the normal-
ized FIM K = ¢2]. This is similar to the geometric dilution
of precision (GDOP) in radar [23] since K is dimension-
less and only depends on the angles a;;’s. Let W = |adj(])|
with sensors € adj(l) being I(1),...,I(k),...,I[(W). Using
elementary trigonometry and writing ax = ayj(x), we have

SV sin (2az)

w N S cos (2ax)

oLz 2 2
o Zl‘c/\il sin (20) w Zl?il cos (2ak)
2 2 2
(22)
The sum of the estimation variance
E((xa - )"+ (= 5)’)
=ty
B 4Wo?
= 2 2
w2 - (z,?il cos (2¢xk)) - (2}?;1 sin (Zak))
402
s 20
w
(23)
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F1GURE 3: Bounds for 20 randomly chosen nodes indexed with de-
creasing adj(i).

with equality when ZZ\LI sin(2ax) = 0, ZZ‘LI cos(ax) = 0.
This happens if the centroid of the unit vectors (cos(2ay),
sin(2ay)) is the origin. A special case is when the angles 2a’s
are uniformly distributed in [0, 27).

Above, we used one-hop geometric information around
node i to get a lower bound on the CRB. This bound can be
interpreted as the CRB given perfect knowledge of the po-
sitions of all other nodes.” We can use more information to
tighten the bound. The lower bound using two-hop informa-
tion is the CRB given the positions of all nodes j, j  adj(i),
and similarly for multiple hops. The larger the local region
we use to calculate the CRB is, the tighter it is. We define the
CRB on such an estimation problem as the N-hop bound for
that particular node. Obviously, the N-hop bound is nonde-
creasing with N, and the c-hop bound is the same as the
CRB for the original estimation problem.

In our simulation, we have 200 nodes and 10 anchors
all uniformly randomly distributed inside the unit circle,
j € adj(i), if and only if d;.; < 0.3. In Figure 3, we plot the
bounds for 20 randomly chosen nodes.

2.4. Anupper bound to the anchored localization CRB

The CRB in Theorem 1 gives us the best performance an un-
biased estimator can achieve given all information from the
sensor network, including the positions of all anchors and
all the available ranging information c?,] This bounds the
performance of a centralized localization algorithm where a
central computer first collects all the information and then
estimates the positions of the nodes.

> It is equivalent to knowing the positions of all the neighbors.

5
7 3 =] =] =] o =] =} o
6 ® o o o o o o o
5 o Cl o o \:\C2 o o
B By
CoTRLTT T
I N I
4 % o o :-Alﬁ. uA,;: o o o
[ L
y i 4
1 1
3 o o : o- .o : o o o
|.'A4 . ,.A3|
Lo & S
By B3
2w o o o o o o o
C4 CS
1% o o o o o o o
0 "y & & e &
0 1 3 5
X

FiGure 4: The setup of the sensor network anchors are shown as
squares, nodes are shown as dots, nodes inside the central grid are
shown as black dots.

In a sensor network, distributed localization is often pre-
ferred. In this “local” estimation problem only a subset of the
anchors F; € F and a neighborhood of the nodes I € §; = S
may be taken into account. The CRB V' (x;) and V(y;) of this
local estimation problem computed from the 2[S;| X 2[S]
FIM is an upper bound on the CRB for the original prob-
lem because strictly less information is used for estimation.°
In this section, the two bounds are compared through simu-
lation.

The wireless sensor network is shown in Figure 4. An-
chors are on the integer lattice points in a 7 X 7 square re-
gion. There are 20 nodes with unknown positions uniformly
randomly distributed inside each grid square. Sensors i and
j can see each other only if they are separated by a distance
less than 0.5.

We compute the normalized CRBs (V; = V¥ + V7,
i=1,2,...,20) for localization of the nodes inside the cen-
tral grid A;A,AsA, in 4 different cases corresponding to in-
formation from within the squares: A;A;A3A4, B1ByB3By,
C1C,C5Cy, and the whole sensor network. As shown in
Figure 5, Vi(A) = Vi(B) = Vi(C) = Vi(ALL), i = 1,2,...,20.
We observe that V;(C) (squares in Figure 5) is extremely close
to Vi(ALL) (the curve in Figure 5). More surprisingly, we ob-
serve that V;(B) is much smaller than V;(A).

To explore further, we gradually increase the size of the
square region and compute the average CRB for A;A;A3A,.

©In [18], a rigorous proof is given for the equivalent proposition that the
localization CRB for a node is nonincreasing as more nodes or anchors
are introduced into the sensor network.
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FiGURE 5: Cramér-Rao bounds.

As shown in Figure 6, the average CRB decreases as the
network size increases. After first dropping significantly, the
upper bound levels off once we have included all the nodes
directly adjacent to our neighborhood. This bodes well for
doing distributed localization—distant anchors and ranging
information do not significantly improve the estimation ac-
curacy.

2.5. CRBunder different propagation models

In the previous discussion, the ranging information was as-
sumed to be corrupted by i.i.d. Gaussian errors. The ranging
CRB, (2), implies that the variance af]- of the additive noise
on the distance measurement should depend on the distance
d;,; between two nodes i, j, because the received wireless sig-
nal A(t) attenuates as a function of d. We assume ofj = o?d]
where o2 is the noise variance when d = 1.7 Furthermore,
we assume a range estimate is available between all sensors,
though it may be bad if they are far apart. Interference is ig-
nored. This is reasonable only when there is no bandwidth
constraint for the system as a whole, or if the data rates of
communication are so low that all nodes can use signaling
orthogonal to each other.

Define K = ¢2] to be the normalized FIM. Just as in the
case where a = 0, translations of the whole sensor network
do not change the FIM. Rotation does not change the CRB
on any node K3;! | ;| + K3;5;. However, zooming does have
an effect on the FIM.

Corollary 4 (the normalized FIM K is scaled under

zooming). If the propagation model is d°, a = 0, and the

7 Earlier, we had a hybrid model with a = 0 locally and a = oo at a great
distance since the range is only available for sensor pair i, j, if d; j < Ryisible-
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FIGURE 6: Average CRB versus sensor network size.

whole sensor network is zoomed by a zooming factor ¢ > 0,
K({c(xi, yi)}) = (1/c¢M)K({(xi, yi)}), ¢ # 0.

Proof. Zooming does not change the angles «; ; between sen-
sors. If the zooming factor is ¢, then the decaying factor
changes to (cd;;)* = c*d};. Substituting the new decaying
factors into the FIM as in Theorem 1, we get K({c(x;, yi)}) =
(1/¢)K ({(xi yi)}). O

The CRB 02K;;' changes proportional to ¢?, if the whole
sensor network is zoomed up by a factor c.

Next, we have a simulation in which we fix the node
density and examine the average CRB for different a’s as we
vary the size of the sensor network. The sensor network is
the same as in Figure 4 and the sizes are taken at 1 X 1,3 X
3,...,13x13. We calculate the average CRB inside the central
square and plot the average estimation bound in 10log,,
scale in Figure 7.

The average CRB decreases as the size of the sensor net-
work increases. This is expected since there is more informa-
tion available and no interference by assumption. Asymptot-
ically, the CRB decreases at a faster rate for smaller a since the
noise variance increases more slowly with range.

Heuristically, the localization accuracy for node i is
mainly determined by the total energy received by it. Sup-
pose that the distance between nodes is > r,,, and the nodes
are uniformly distributed. We approximate the total received
energy Pr coming from sensors within distance R as

2 (R R
Pr=p L J pipdpdd = Zﬁﬂj p'~dp
Zﬁﬂ 2—-a _ ,2-a : (24)
_ 2—a(R rie) ifa#+ 2,
2Bn(In(R) —In (ry)) ifa=2.

When a < 2, P behaves like R>~* which grows unboundedly
as the network grows and similarly for a = 2 where Py be-
haves like In(R). In such nonphysical cases, it would be possi-
ble to save each node’s transmitter power by going to a larger
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FIGURE 7: Average CRB in the central grid for different a. Circle:
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network and then turning down the transmit power in such
a way as to keep the position accuracy fixed. But in the physi-
cally relevant case of a > 2, Py converges to (2fn/(a — 2))rk @
and local measurements should be good enough. This heuristic
explanation is a qualitative fit with simulations as illustrated
in Figure 7.

3. ESTIMATION BOUNDS FOR ANCHOR-FREE
LOCALIZATION

For anchor-free localization, only the inter-node distance
measurements are available. The nature of anchor-free
localization is very different from anchored localization, in
that the absolute positions of the nodes cannot be deter-
mined. We first review the singularity of the FIM using the
treatment from [17].

Lemma 2 (rank of the FIM). Let d be the observation vec-
tor, and let 0 be the n-dimensional parameter to be estimated.

Write the log likelihood function as l(d* | 0) = ln(p(d* | 6)).
The rank of the FIM ] is n — k, k > 0, if and only if the expec-

tation of the square of directional derivative of I(d | 0) at 0 is
zero for k independent vectors by, ..., b, € R".

Proof. The directional derivative of / (dal 0) at 0, along direc-
tion b; is T(b,‘) = (81/861, 0l/db,,.. ., BZ/BGn)b,

E(7(b)*)
= E(b] (31/6,....,01/30,) " (31/26),...,01/30,) ;)

= b/ Jb;.
(25)

If k independent vectors by, ..., by make b,-T]b,- = 0, the rank
of J is n — k, since ] is an n X n symmetric matrix. O

The FIM for anchor-free localization is given in Theorem
1, just with no anchors. With the above lemma, we can prove
that the rank of this FIM is deficient by at least 3. This is
intuitively clear since there are 3 degrees of freedom coming
from rotation and translation.

Theorem 3. For the anchor-free localization problem, with M
nodes, the FIM J(0) is of rank 2M — 3.

Proof. The log-likelihood function of this estimation prob-
lem is

1(d] )

:1n<p<{¢fi,j, 1<i, j<M, jeadj(i)} |
{\/(xi—xj)%(yi—yj)z, 1<i, j<M, andj(i)}>)

-5 (i o))

1<i,j<M,jeadj(i)
(26)

The last equality comes from the independence of the mea-
surement errors. The directional derivative of each term
in the sum is 0 along the vectors by, by,b3 € R*M.
by = (1,0,1,0,...,1,0%, by = (0,1,0,1,...,0,1)T, by =
(V1> =X15, Y25 =X25 0> YM> —xp) T where 131 and I;Z span the 2D
space in R*M corresponding to translations and l;3 is the in-
stantaneous direction when the whole sensor networks ro-
tates. U

Since the FIM is not full rank, we cannot apply the stan-
dard CRB argument because ]! does not exist. Instead, the
CRB is the Moore-Penrose pseudo-inverse JT [21].

3.1. The meaning of J1: the total estimation bound

When the FIM is singular, we cannot properly define the
parameter estimation problem in R”. However, we can es-
timate the parameters in the local subspace spanned by all k
orthonormal eigenvectors Viyeoos Vi corresponding nonzero
eigenvalues of J. In that subspace, the FIM Q is full rank.
Write V = (v1,...,v), Vis an n X k matrix and VTV = I};
then Q = VIJV,and Q! = VTJtV; thus JT is the intrinsic
CRB matrix for the estimation problem. The total estima-
tion bound for the estimation problem in the k-dimensional
subspace is Tr(Q7!), and Tr(Q™') = Tr(J!) by elementary
matrix theory.

Unlike the anchored case, we cannot claim the estimation
accuracy of a single node to be bounded by

E((fz - xi)2> +E<()?i - )’i)z) = ];i—l,zi—l +]2Ti,2i (27)

since there always exists a translation of the entire network
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to make the estimation of node i perfectly accurate. How-
ever, the total estimation bound constrains the performance
of anchor-free localization since the trace is invariant.?

Definition 1. Total estimation bound Viera1(J) on anchor-free
localization? is as follows:

M
Viotat(J) = Z (]21:'71,21‘71 +]2Jri,2i) =Tr (J1). (28)
i=1

By the definition we know that Vi1 (K) is invariant un-
der rotation, translation, and zooming.

Theorem 4 (total estimation bound Viym(J) on an an-
chor-free localization problem). Vipi(J) = Zfiwl%(l//li),
where A;’s are nonzero eigenvalues of J.

Proof. The correctness follows the fact that the eigenval-
ues of JT are 1/11,1/A5,...,1/A201-3,0,0,0. And so Tr(Jt) =
ST/ O

3.1.1.  Total estimation bound on 3-node anchor-free
localization

Using Theorem 4, we can give the total lower bound on any
geometric setup of an anchor-free localization. The simplest
nontrivial case is when there are only 3 points. We fix two
points at (0,0), (0,1). We plot the contour of the total esti-
mation bound as a function of the position of the 3rd node
e [0,1] x [0, 1].

The result shows that the total estimation bound is re-
lated to the biggest angle of the triangle. The larger that angle
is, the larger the total estimation bound is. From Figure 8, we
find that the minimum total estimation bound is achieved
when the triangle is equilateral, where the 3rd node is at
(0.5,/3/2). Figure 9(b) shows what is happening around the
minimum.

3.1.2. Total estimation bound for different network shapes

The shape of the sensor network affects the total estimation
bound. We illustrate this by a simulation with M sensors
randomly and uniformly distributed in a region with all the
pairwise distances measured. We plot the average normalized
total estimation bound of 50 independent experiments.
Figure 10 reflects a rectangular region with dimension
Ly X Ly, L = L,. Since the zooming does not change the
total estimation bound, only the ratio R = L,/L, matters and

8 A geometric interpretation of this total estimation is as follows. Imagine
that the estimation is done in the (2n — 3)-dimensional subspace which

is orthogonal to the 3-dimensional space spanned by l;l N l;z, 1;3. Then the
expectation of the square of the error vector will be upper bounded by
Tr(t).

¥ For anchored localization, J is nonsingular. Thus J~! = J T It is immediate
from the definition of the CRB that X; E((Xi—x;)2+(9i—y:)?) < Tr(J7!) =
Te(t).

F1GURE 8: The contour shows the total estimation bound in 101log,,
scale for the 3rd node at (x, y).
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F1Gure 9: The total estimation bound. The 3rd node is at (0.5, y)
along the dotted line in Figure 8.

it turns out that the normalized CRB increases as R increases,
or as the rectangle becomes less and less square.!? However,
once the number of nodes had gotten large enough, the total
estimation error bound did not change with more nodes. The
error was reduced per-node in a way that simply distributed
the same total error over a larger number of nodes.

10 Tn [24], we also studied the total estimation bound for an annular region.
Let R = rinner/Touter be the ratio of the radius of the inner circle over
the radius of the outer circle, we observe that the total estimation bound
decreases as R increases and again the total estimation bound is roughly
constant with respect to the number of nodes. The best case is having the
nodes along the circumference of a circle!
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Figure 10: The normalized total estimation lower bound versus
number of nodes. Rectangular region (R = L,/L,).

3.2. Why not set a node at (0,0) and another node
on the x axis

It is tempting to eliminate the singularity of the FIM by
just setting some parameters. If we fix node 1 at posi-
tion (x1,y1), node 2 with y-coordinate 0, it is equiva-
lent to doing the estimation in the subspace through point
(X1, ¥1>---»%m> yu) perpendicular to ¢; = (1,0,0,0,..., 0)7,
c =(0,1,0,0,...,0)7, ¢5 = (0,0,1,0,...,0)". In general, the
subspace generated by ¢}, ¢, ¢5 is not the same as that gener-
ated by by, by, bs and so the choice of which nodes we choose
to fix can impact the bounds!

3.3. Comparison of anchored and anchor-free
localization

Sometimes a bad geometric setup of anchors results in bad
anchored estimation, while the anchor-free estimation is still
good! As such, it is not useful to view the anchor-free case
as an information-limited version of the anchored case. Af-
ter all, in the anchored case, we also have a more challeng-
ing goal: to get the absolute positions correct, not just up to
equivalency. In Figure 11, we have a sensor network with 3
anchors very close to each other; the total estimation bound
for anchored localization is 195.20; meanwhile the total esti-
mation bound for anchor-free localization is 4.26.!!

3.4. Total estimation bound under different
propagation models

It can be easily seen that just as in the anchored localization,
] is invariant under translation and Vi (J) is invariant un-
der rotation as well. Just as in anchored localization, the total
estimation bound Vio1(J) changes proportional to ¢, if the
whole sensor network is zoomed up by a factor c.

11 As a result, we suggest that algorithm designers avoid fixing the global
coordinate system unless they are confident on the setup of the anchors.
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FIGURE 11: A bad setup of anchors.
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FIGURE 12: The average normalized total estimation lower bound
versus size of the sensor network for different a.

In simulation, we study the effect of the size of the sensor
network on the average estimation bound in different prop-
agation models, that is, for different a’s using the same setup
as Figure 4.

As shown in Figure 12, we observe that the average es-
timation bound decreases as the size of the sensor network
increases with fixed node density. Just as in the anchored
case shown in Figure 7, the estimation accuracy is mainly
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determined by the received power and so the heuristic expla-
nation for the anchored case also fits the simulation results
we have for the anchor-free case.

4. CONCLUSIONS AND FUTURE WORK

In this paper, we studied the CRB for both anchored and
anchor-free localization and gave a method to compute the
CRB in terms of the geometry of the sensor network. For an-
chored localization, we derived both lower and upper bounds
on the CRB which are determined by only local geometry.
These showed that we can use local geometry to predict the
accuracy of the position estimation that bodes well for dis-
tributed algorithms. The implication of our results on sensor
network design is that accurate position estimation requires
good local geometry of the sensor network. For anchor-free
localization, the singularity of the FIM was overcome by
computing the total estimation bound instead. Finally, we
considered the implications of wireless signal propagations
and found that if the signals propagate very well, then there
are potentially significant gains by using larger networks and
doing estimation in a manner that uses this information.
However, such path-loss models are unphysical and so prac-
tical schemes should work fine with only local information.

So far, we have only computed the CRB. For the de-
sign of algorithms, it would also be good to know the sen-
sitivity of the bound to individual observations. It might be
very helpful in localization if one can identify the bottle-
necks of the problem, that is, figure out which distance mea-
surement could help to increase the localization accuracy the
most. With the knowledge of the bottlenecks, it may be pos-
sible to allocate the energy or computation in a smart way
to improve localization accuracy. Finally we do not know if
we can approach the bound with distributed or centralized
localization.!?

APPENDICES
A. PROOF OF (20)

The lemmas and the theorem in the appendix can be treated
as corollaries of the results in [25]. We prove all the lemmas
and the theorem here for self completeness.

Theorem 5. For a positive definite N X N matrix ],

]—(A g)

where A is an M X M symmetric matrix, C is an (N — M) X
(N — M) symmetric matrix, and B is an M X (N — M) matrix,

if we write
A" B
-1 _
] - (B/T C/) >

(A1)

(A.2)

12 In Appendix B, we compare the CRB of anchored localization with the
biased-localization scheme proposed in [24] to illustrate another impor-
tant caveat.

where A and A’ have the same size, B and B’ have the same
size, so do C and C'.

C' — C!is positive semidefinite.

First we need several lemmas.

Lemma 3. A is positive definite.

Proof. Forallx € RM, x # 0. Let y = (x, 0)T, where 0 is the
1 x (N — M) all 0 vector, y is an N-dimensional vector. Then
xTAX = yT]y > 0.

The last inequality is true because J is positive definite,
and y # 0. X is arbitrary, so A is positive definite. O

Similarly C is positive definite, and thus A, C are nonsin-
gular.

Lemma4. A — BC~'BT is positive definite.

Proof. First notice that for a positive definite matrix J, J can
be written as J 5 Ju, where Ji is an N X N nonsingular matrix.
Write Jy = (S R), where Sis an N X M matrix and R is an
N x (N — M) matrix. Then

A =S8Ts; B =S"R; C=RTR; (A.3)

C is nonsingular, so R has full rank N — M. The singular value
decomposition of Ris R = UAV, where U is an N X N ma-
trix, UTU = UUT =1, Visan (N — M) X (N — M) matrix,
VIV =VVT =I,and Aisan N x (N — M) matrix.

A= (dlag (Al,... ,/\NM))

Oprx(N—) (A-4)
Ai > 0 because R has full rank N — M. Now
A - BC'BT
= §TS — STR(RTR) 'RTS
= ST(I-R(RR)'R")S
= sT(I — (UAV)((UAV)T(UAV)) " (UAV)T)S
(1-UAV(VTATAV) 'VIATUT)S
_ ST<I
(

UAVVT(ATA)'VIVATUT)S

= ST(I - UA(ATA)™ ATUT)S
= STU(I - A(ATA)'AT)UTS = STUAUTS,
(A.5)
where A = diag(6,6,,...,0n), where §; = 0, i =

SN—-Mand 6 = I, N-M < i < N. Obviously
A — BC'BT is positive semidefinite. Suppose 3x € RM,
x # 0, but xXTSTUAUTSX = 0. Then we have UTSx =
(yl,yz,...,yN)T = yand yN_m+1»---» yn all equal to 0. Now
Sx = Uy, and from the fact that yN_p+1,--., yn all equal to
0, we have A(ATA) ATy = y. Write z = VT(ATA)1ATy,
then Sx = Uy = UAVZ = Rz, where x # 0. This contradicts
the fact that (S R) is full rank. O

Similarly, C — B T A=1B is positive definite, and thus both
C - BTA'Band A — BC'BT are full rank.
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Lemma5. (C—BTA"'B)"! = C"'BT(A-BC~'BT)"'BC '+
cL.

Proof. Notice that both A and (A — BC~'B”) are full rank;
then,

(C'BT(A-BC'BT)'BC"'+C!)(C-BTA'B)
=I+C'BT(A-BC'BT) 'B-C!'BTA'B
—C'BT(A-BC'BT) 'BC'BTA B
=I1+C'BT((4-BC'BT) " — A"
—(A-BC'B") 'BC"'BTA"!)B
=I1+C'BT((4-BC'BT) "
x (A—BC'BT)A' —A B =1

(A.6)
O
Lemma 6. ]! If we write
(A B L (A B
] - (BT C) > ] = (B/T CI) 5 (A7)

then C' = (C — BTA-1B)~L.

Proof. Given the form of J~!, we have BTB + CC' =
In—myx(n—m) and AB” + BC' = 0. From the latter equation,
we get B = —A~!BC’. Substitute into the first equation to get
—BTA-'BC’ + CC'" = I\N-m)x(N-m)- Since the dimensions of
the matrices all match, we get the desired result. O

Now we can give the proof of Theorem 5.

ple localization algorithm. Nodes are indexed by their estimation
variance.

Proof. C' = (C—BTA~'B)~!, following Lemma 6. Then from
Lemma 5, we know that (C — BTA"!B)~! = C'BT(A -
BC'BT)"'BC™! + C'. Thus C' — C' = C'BY(A -
BC'BT)'BC™! = C"'"B"(A — BC"'B")"'BC"". The sec-
ond equality follows since CT = C. Finally, (A — BC™'BT)~!
is positive definite by Lemma 4. O

Definition 2 (upper-left submatrix). 1 < n < m, the upper-
left n X n submatrix of an m X m matrix A is an # X n matrix
B,st.B(i,j) = A(i, j), forall l <i<n 1< j=<n

Corollary 5 (monotonically increasing matrices). For a posi-
tive definite N XN matrix ], let] <n; <ny <--- <ny =N,
let A be the upper-left n; X n; submatrix of A, and let B; be the
upper-left ny X ny submatrix of A;'. Then

A;'=B  <B,<B;<---<By. (A.8)
Proof. Notice that an upper-left submatrix of a positive def-
inite matrix is still positive definite as shown in Lemma 3.
Repeatedly applying Theorem 5 gives the desired result. [

B. A CASE STUDY OF A LOCALIZATION ALGORITHM

The CRB only applies for unbiased estimators. To see why
this is important, consider the simple localization scheme
based on laceration and averaging that was proposed in
[24]. To compare the CRB with the average estimation vari-
ance of our localization algorithm, we set up the sensor
network as follows. All the sensors are located inside the
unit circle. Three anchors are located at (0,1), (+/3/2, —1/2),
(—+/3/2,—1/2). Twenty nodes with unknown positions are
uniformly distributed inside the unit circle as shown in
Figure 13.

Figure 14 compares the CRB on the estimation vari-
ance with the estimation variance for our simple localization
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scheme. Ryisiple = 2 and the additive Gaussian errors have
o0 = 0.05. The estimation variance for some nodes is smaller
than the CRB for unbiased estimators because our localiza-
tion scheme is biased.
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