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We propose robust distant speech recognition by combining multiple microphone-array processing with position-dependent cep-
stral mean normalization (CMN). In the recognition stage, the system estimates the speaker position and adopts compensation
parameters estimated a priori corresponding to the estimated position. Then the system applies CMN to the speech (i.e., position-
dependent CMN) and performs speech recognition for each channel. The features obtained from the multiple channels are inte-
grated with the following two types of processings. The first method is to use the maximum vote or the maximum summation
likelihood of recognition results from multiple channels to obtain the final result, which is called multiple-decoder processing. The
second method is to calculate the output probability of each input at frame level, and a single decoder using these output prob-
abilities is used to perform speech recognition. This is called single-decoder processing, resulting in lower computational cost. We
combine the delay-and-sum beamforming with multiple-decoder processing or single-decoder processing, which is termed multiple
microphone-array processing. We conducted the experiments of our proposed method using a limited vocabulary (100 words)
distant isolated word recognition in a real environment. The proposed multiple microphone-array processing using multiple de-
coders with position-dependent CMN achieved a 3.2% improvement (50% relative error reduction rate) over the delay-and-sum
beamforming with conventional CMN (i.e., the conventional method). The multiple microphone-array processing using a single
decoder needs about one-third the computational time of that using multiple decoders without degrading speech recognition per-
formance.

Copyright © 2006 Longbiao Wang et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

Automatic speech recognition (ASR) systems are known to
perform reasonably well when the speech signals are cap-
tured using a close-talking microphone. However, there are
many environments where the use of a close-talking micro-
phone is undesirable for reasons of safety or convenience.
Hands-free speech communication [1–5] has been more and
more popular in some special environments such as an of-
fice or the cabin of a car. Unfortunately, in a distant envi-
ronment, channel distortion may drastically degrade speech
recognition performance. This is mostly caused by the mis-
match between the practical environment and the training
environment.

Compensating an input feature is the main way to re-
duce a mismatch. Cepstral mean normalization (CMN) has
been used to reduce channel distortion as a simple and ef-
fective way of normalizing the feature space [6, 7]. CMN re-
duces errors caused by the mismatch between test and train-
ing conditions, and it is also very simple to implement. Thus,

it has been adopted in many current systems. However, the
system should wait until the end of speech to activate the
recognition procedure when adopting a conventional CMN
[6]. The other problem is that the accurate cepstral mean
cannot be estimated especially when the utterance is short.
However, the recognition of short utterances such as com-
mands, city names is very important in many applications.
In [8], the CMN was modified to estimate compensation pa-
rameters from a few past utterances for real-time recogni-
tion. But in a distant environment, the transmission charac-
teristics from different speaker positions are very different.
This means that the method in [8] cannot track the rapid
change of the transmission characteristics caused by change
in the speaker position, and thus cannot compensate for the
mismatch in the context of hands-free speech recognition.

In this paper, we propose a robust speech recognition
method using a new real-time CMN based on speaker posi-
tion, which we call position-dependent CMN. We measured
the transmission characteristics (the compensation param-
eters for position-dependent CMN) from some grid points
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in the room a priori. Four microphones were arranged in a
T-shape on a plane, and the sound source position was esti-
mated by time delay of arrival (TDOA) among the micro-
phones [9–11]. The system then adopts the compensation
parameter corresponding to the estimated position and ap-
plies a channel distortion compensation method to the
speech (i.e., position-dependent CMN) and performs speech
recognition. Speech recognition uses the input features com-
pensated by proposed position-dependent CMN. In our
method, cepstral means have to be estimated a priori from
utterances spoken in each area, but this is costly. The simple
solution is to use utterances emitted from a loudspeaker to
estimate them. But they cannot be used to compensate for
real utterances spoken by a human, because of the effects of
recording and playing equipment. We also solve this problem
by compensating the mismatch between voices from human
and loudspeaker using compensation parameters estimated
by a low-cost method.

In a distant environment, the speech signal received by a
microphone is affected by the microphone position and the
distance from the sound source to the microphone. If an ut-
terance suffers fatal degradation by such effects, the system
cannot recognize it correctly. Fortunately, the transmission
characteristics from the sound source to every microphone
should be different, and the effect of channel distortion for
every microphone (it may contain estimation errors) should
also be different. Therefore, complementary use of multiple
microphones may achieve robust recognition. In this paper,
the maximum vote (i.e., voting method (VM)) or the max-
imum summation likelihood (i.e., maximum-summation-
likelihood method (MSLM)) of all channels is used to ob-
tain the final result [12], which is called multiple-decoder
processing. This should obtain robust performance in a dis-
tant environment. However, the computational complexity
of multiple-decoder processing is K (the number of input
streams) times that of a single input. To reduce the computa-
tional cost, the output probability of each input is calculated
at frame level, and a single decoder using these output proba-
bilities is used to perform speech recognition, which is called
single-decoder processing.

Even when using multiple channels, each channel ob-
tained from a single microphone is not stable because it
does not utilize the spatial information. On the other hand,
beamforming is one of the simplest and the most robust
means of spatial filtering, which can discriminate between
signals based on the physical locations of the signal sources
[13]. Therefore beamforming cannot only separate multiple
sound sources but also suppress reverberation for the speech
source of interest. Many microphone-array-based speech
recognition systems have successfully used delay-and-sum
processing to improve recognition performance because of
its simplicity, and it remains the method of choice for many
array-based speech recognition systems [2, 3, 5, 14]. Nev-
ertheless, beams with a different property would be formed
depending on the array structure, sensor spacing, and sen-
sor quality [15]. Using a different sensor array, more robust
spatial filtering would be obtained in a real environment. In
this paper, a delay-and-sum beamforming combined with

multiple-decoder processing or single-decoder processing is
proposed. This is called multiple microphone-array process-
ing. Furthermore, position-dependent CMN (PDCMN) is
also integrated with the multiple microphone-array process-
ing.

Section 2 describes the 3D space speaker position esti-
mation based on the time delay of arrival (TDOA). An en-
vironmentally robust real-time effective channel compensa-
tion method called position-dependent CMN is described
in Section 3. A multiple microphone-array processing using
multiple decoders or single decoder is proposed in Section 4,
while Section 5 describes the experimental results of distant
speech recognition in a real environment. Finally, Section 6
summarizes the paper and describes future directions.

2. SPEAKER POSITION ESTIMATION

Speaker localization based on time delay of arrival (TDOA)
between distinct microphone pairs has been shown to be ef-
fectively implementable and to provide good performance
even in a moderately reverberant environment and in noisy
conditions [9, 11, 16–18]. Speaker localization in an acousti-
cal environment involves two steps. The first step is estima-
tion of time delays between pairs of microphones. The next
step is to use these delays to estimate the speaker location.

The performance of TDOA estimation is very impor-
tant to the speaker localization accuracy. The prevalent tech-
nique for TDOA estimation is based upon generalized cross-
correlation (GCC) in which the delay estimation is ob-
tained as the time lag which maximizes the cross correla-
tion between filtered versions of the received signals [10]. In
[9, 18, 19], some more effective TDOA estimation methods
in noisy and reverberant acoustic environments were pro-
posed.

It should be recalled, however, that it is necessary to
find the speaker position using estimated delays. The max-
imum likelihood (ML) location estimate is one of the com-
mon methods because of its proven asymptotic consistency.
It does not have a closed-form solution for the speaker posi-
tion because of the nonlinearity of the hyperbolic equations.
The Newton-Raphson iterative method [20], Gauss-Newton
method [21], and least-mean-squares (LMS) algorithm are
among possible choices to find the solution. However, for
these iterative approaches, selecting a good initial guess to
avoid a local minimum is difficult, the convergence consumes
much computation time, and the optimal solution cannot
be guaranteed. Therefore, it is our opinion that an ML lo-
cation estimate is not suitable for real-time implementation
of a speaker localization system.

We earlier proposed amethod to estimate the speaker po-
sition using a closed-form solution [22]. Using this method,
the speaker position can be estimated in real time using
TDOAs. This method involves relatively low computational
cost, and there is no position estimation error if the TDOA
estimation is correct because no assumption is needed for
the relative position between the microphones and the sound
source. Of course, this approach leads to an estimation error
caused by the measuring error of TDOA. If there are more
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than 4 microphones, we can also estimate the location by us-
ing the other combinations of 4 microphones. Thus, we can
estimate the location by the average of estimated locations at
only a small computational cost.

As will be mentioned in Section 5.1, we did not use po-
sition estimation for experiments but assumed that we could
estimate accurate position because various previous works
revealed the sufficient accuracy of the methods based on
TDOA for our purpose.

3. POSITION-DEPENDENT CMN

3.1. Conventional CMN and real-time CMN

A simple and effective way of channel normalization is to
subtract themean of each cepstrum coefficient (CMN) [6, 7],
which will remove time-invariant distortions caused by the
transmission channel and the recording device.

When speech s is corrupted by convolutional noise h and
additive noise n, the observed speech x becomes

x = h⊗ s + n. (1)

Spectral subtraction, and so forth, can be used to com-
pensate for the additive noise, and then the channel noise
can be compensated by the CMN. In this paper, we propose
methods to compensate for the effect of channel distortion
dependent on speaker position. For the sake of simplicity, we
assumed that the additive noises were negligible or well re-
duced by other methods. So the effect of additive noise was
ignored in this paper. We did, in fact, conduct our experi-
ment in a silent seminar room. So (1) is modified as x = h⊗s.

Cepstrum is obtained by DCT transforming a loga-
rithm of a power spectrum of the signal (i.e., Cx =
DCT(log |DFT(x)|2)), and thus (1) becomes

Cx = Ch + Cs, (2)

where Cx, Ch, and Cs express the cepstrums of observed
speech x, transmission characteristics h, and clean speech s,
respectively.

Based on this, the convolutional noise is considered as
additive bias in the cepstral domain, so the noise (transmis-
sion characteristics or channel distortion) can be compen-
sated by CMN in the cepstral domain as

˜Ct = Ct − ΔC (t = 0, . . . ,T), (3)

where ˜Ct and Ct are compensated and original cepstrums at
time frame t, respectively.

In conventional CMN, the compensation parameter ΔC
is approximated by

ΔC ≈ Ct − Ctrain, (4)

where Ct and Ctrain are cepstral means of utterances to
be recognized and those to be used to train the speaker-
independent acoustical model, respectively. Thus, when us-
ing conventional CMN, the compensation parameter ΔC can

be calculated at the end of input speech. This prevents real-
time processing of speech recognition. The other problem of
conventional CMN is that accurate cepstral means cannot be
estimated especially when the utterance is short.

We solve these problems under the assumption that
the channel distortion does not change drastically. In our
method, the compensation parameter is calculated from ut-
terances recorded a priori. The new compensation parameter
is defined by

ΔC = Cenvironment − Ctrain, (5)

where Cenviornment is the cepstral mean of utterances recorded
in a practical environment a priori. Using this method, the
compensation parameter can be applied from the beginning
of recognition of current utterance. Moreover, as the com-
pensation parameter is estimated from a sufficient number
of cepstral coefficients of utterances, so it can compensate
for the distortion better than the conventional CMN. We call
this method real-time CMN. In our early work [8], the com-
pensation parameter is calculated from past recognized utter-
ances. Thus, the calculation of the compensation parameter
for the nth utterance is

ΔC(n) = (1− α)ΔC(n−1) − α× (Ctrain − C(n−1)), (6)

where ΔC(n) and ΔC(n−1) are the compensation parameters
for the nth and (n− 1)th utterances, respectively, and C(n−1)
is the mean of cepstrums of the (n − 1)th utterance. Using
this method, the compensation parameter can be calculated
before recognition of the nth utterance. This method can
indeed track the slow changes in transmission characteris-
tics, but the characteristic changes caused by the change in
speaker position or speaker are beyond the tracking ability of
this method.

3.2. Incorporate speaker position information
into real-time CMN

In a real distant environment, the transmission characteris-
tics of different speaker positions are very different because
of the distance between the speaker and the microphone, and
the reverberation of the room. Hence, the performance of a
speech recognition system based on real-time CMN will be
drastically degraded because of the great change of channel
distortion.

In this paper, we incorporate speaker position informa-
tion into real-time CMN [23]. We call this method position-
dependent CMN. The new compensation parameter for
position-dependent CMN is defined by

ΔC = Cposition − Ctrain, (7)

where Cposition is the cepstral mean of utterances affected by
the transmission characteristics between a certain position
and the microphone. In our experiments in Section 5, we di-
vide the room into 12 areas as in Figure 1 and measure the
Cposition corresponding to each area.
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Figure 1: Room configuration (room size: (W) 3m× (L) 3.45m×
(H) 2.6m).

3.3. Problem and solution

In position-dependent CMN, the compensation parameters
should be calculated a priori depending on the area, but it is
not realistic to record a sufficient amount of utterances spo-
ken in each area by a sufficient number of humans because
that would take too much time. Thus, in our experiment,
the utterances were emitted from a loudspeaker in each area.
However, because the cepstral means were estimated by us-
ing utterances distorted by the transmission characteristics of
the channel including the loudspeaker, they cannot be used
to compensate for real utterances spoken by human.

In this paper, we solve this problem by compensating the
mismatch between voices from humans and loudspeaker. An
observed cepstrum of a distant human’s utterance is as fol-
lows:

Cx
human = Cs

human + Ch
environment, (8)

where Cx
human, C

s
human, and Ch

environment are the cepstrums of
observed human utterance, emitted human utterance, and
transmission characteristics from human’s mouth to the mi-
crophone, respectively. However, an observed cepstrum of a
distant loudspeaker’s utterance is as follows:

Cx
loudspeaker = Cs

loudspeaker + Ch
environment

= Cs
human + Ch

loudspeaker + Ch
environment,

(9)

where Cx
loudspeaker, C

s
loudspeaker, and Ch

loudspeaker are the cep-
strums of observed speech emitted by the loudspeaker, hu-
man utterances emitted by the loudspeaker, and transmis-
sion characteristics of the loudspeaker, respectively. That is,

the speech emitted by the loudspeaker is human speech cor-
rupted by the transmission characteristics of the loudspeaker.
The difference between (8) and (9) is Ch

loudspeaker, and this is
independent of the other environment such as the speaker
position.

Thus, the compensation parameter ΔC in (7) is modified
as

ΔC = {Cposition − Ctrain
}− {Cloudspeaker − Chuman

}

, (10)

where Chuman and Cloudspeaker are cepstral means of close-
talking human utterances and those of utterances from a
close-loudspeaker.We used far fewer human utterances to es-
timate Chuman than to estimate position-dependent cepstral
means. In addition, we need only close-talking utterances,
which are easier to record than distant-talking utterances.

A detailed illustration is shown in Figure 2.

4. MULTIPLEMICROPHONE SPEECH PROCESSING

The voting method (VM) and maximum-summation-likeli-
hoodmethod (MSLM) usingmultiple decoders (i.e.,multiple-
decoder processing) are proposed in Section 4.1. To reduce the
computational cost of the methods described in Section 4.1,
a multiple-microphone processing using a single decoder
(i.e., single-decoder processing) is proposed in Section 4.2.
In Section 4.3, we combine multiple-decoder processing or
single-decoder processing with the delay-and-sum beamform-
ing.

4.1. Multiple-decoder processing

In this section, we proposed a novel multiple-microphone
processing using multiple decoders, which is calledmultiple-
decoder processing. The procedure of multiple-microphone
processing using multiple decoders is shown in Figure 3, in
which all results obtained by different decoders are inputted
to a so-called VM or MSLM decision method to obtain the
final result.

4.1.1. Votingmethod

Because of the subtle differences in the features between in-
put streams, different channels may lead to different results
for a certain utterance. To achieve robust speech recognition
for the multiple channels, a good decision method for the
final result from the results obtained from these channels is
important. The signal received by each channel is recognized
independently, and the system votes for a word according to
the recognition result. Then the word which obtained the
maximum number of votes is selected as the final recogni-
tion result, which is called voting method (VM). The voting
method is defined as

̂W = argmax
WR

#channel
∑

i=1
I
(

Wi,WR
)

,

I
(

Wi,WR
) =

⎧

⎨

⎩

1 if
(

Wi =WR
)

,

0 otherwise,

(11)
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Figure 2: Illustration of compensation of transmission characteristics between human and loudspeaker (same microphone).

Input 1 Output probability 1 Decoder 1

Input 2
Output probability 2 Decoder 2

Result 1

Result 2

VM/MSLM
Final result

Input K
Output probability K Decoder K

Result K

...
...

Figure 3: Illustration of multiple-microphone processing using multiple decoders (utterance level).

where Wi is the recognition result of the ith channel, and
I(Wi,WR) denotes an indicator. If there are more than two
results that obtain the same number of votes, the result of
the microphone which is nearest to the sound source is se-
lected as the final result. In our proposed position-dependent
CMN method, speaker position is estimated a priori, so it is
possible to calculate the distance from the microphone to the
speaker.

4.1.2. Maximum-summation-likelihoodmethod

The likelihood of each microphone can be seen as a potential
confidence score, so combining the likelihood of all channels
should obtain a robust recognition result. In this paper, the
maximal summation likelihood is defined as

̂W = argmax
WR

#channel
∑

i=1
LWR(i), (12)

where LWR(i) indicates the log likelihood of WR obtained
from ith channel. We call this the maximum-summation-
likelihood method (MSLM). In other words, it is a maximum
production rule of probabilities.

4.2. Single-decoder processing

The multiple-microphone processing using multiple de-
coders may be more robust than a single channel. However,
the computational complexity of multiple-microphone pro-
cessing using multiple decoders is K (the number of input
channels) times that of a single input. To reduce the com-
putational cost, instead of obtaining multiple hypotheses or
likelihoods at the utterance level using multiple decoders, the
output probability of each input is calculated at frame level,
and a single decoder using these output probabilities is used
to perform speech recognition. We call this method single-
decoder processing, and Figure 4 shows its processing proce-
dure.

In a multiple-decoder method, a conventional Viterbi al-
gorithm [24] is used in each decoder, and the probability
α(t, j, k) of the most likely state sequence at time t which
has generated the observation sequenceOk(1) · · ·Ok(t) (un-
til time t) of kth input (1 ≤ k ≤ K) and ends in state j is
defined by

α(t, j, k) = max
1≤i≤S

{

α(t − 1, i, k)ai j
∑

m

λmjbmj
(

Ok(t)
)

}

,

(13)
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where ai j = P(st = j | st−1 = i) is the transition proba-
bility from state i to state j, 1 ≤ i, j ≤ S, 2 ≤ t ≤ T ;
bmj(Ok(t)) is the output probability of mth Gaussian mix-
ture (1 ≤ m ≤ M) for an observation sequence Ok(t) at
state j; and λmj is the mixture weights. In the multiple-
decoder method shown as Figure 3, the Viterbi algorithm is
performed by each decoder independently, so K (the num-
ber of input streams) times computational complexity is re-
quired. Thus, both the calculation of output probability and
the rest of the processing cost such as finding a best path
(state sequence), and so forth, are K times that of a single
input.

In order to use a single decoder formultiple inputs shown
in Figure 4, we modify the Viterbi algorithm as follows:

α(t, j) = max
1≤i≤S

{

α(t − 1, i)ai j max
k

∑

m

λmjbmj
(

Ok(t)
)

}

.

(14)

In (14), the maximum output probability of all K inputs at
time t and state j is used. So only one best state sequence for
all K inputs using the maximum output probability of all K
inputs is obtained. This means that extra K−1 times only the
calculation of the output probability is required compared to
that of a single input.

Here, we investigate further reduction of the computa-
tional cost. We assume that the output probabilities of K fea-
tures at time t from each Gaussian component are similar
to each other. Hence, if we obtained the maximum output
probability of the 1st input from the m̂th component among
those in state j, it is highly likely that the maximum out-
put probability of kth input will also be obtained from m̂th
component. Thus, we modify (14) as follows:

α(t, j) = max
1≤i≤S

{

α(t − 1, i)ai j max
k

bm̂ j
(

Ok(t)
)

}

,

m̂ = argmax
m

λmjbmj
(

O1(t)
)

.

(15)

In (15), only extra (M + K − 1)/M − 1 = (K − 1)/M times
calculation of output probability is required compared to
that of a single input. The methods defined by (14) and
(15) both involve multiple-microphone processing using the
single decoder shown in Figure 4. To distinguish these two
methods, the method given by (14) is called the full-mixture
single-decoder method, while the method given by (15) is
called the single-mixture single-decoder method.

4.3. Multiplemicrophone-array processing

Many microphone-array-based speech recognition systems
have successfully used delay-and-sum processing to improve
recognition performance because of its spatial filtering ability
and simplicity, so it remains the method of choice for many
array-based speech recognition systems [3, 4, 13]. Beam-
forming can suppress reverberation for the speech source of
interest. Beams with different properties would be formed
by the array structure, sensor spacing, and sensor quality
[15]. As described in Sections 4.1 and 4.2, the multiple-
microphone-array processing using multiple decoders or a

Input 1
Output probability 1

Output probability 2
Input 2

Output probability K
Input K

Decoder
Final result

...

Figure 4: Illustration of multiple microphone processing using sin-
gle decoder (frame level).

M3(0, 0,d)

M4(0,�d, 0) M1(0, 0, 0) M2(0,d, 0)

Z

Y

X

Figure 5: Microphones’ setup (d = 20 cm).

single decoder should obtain a more robust performance
than a single channel or a single-microphone array, because
only microphone-array processing may yield estimation er-
ror. We integrated a set of the delay-and-sum beamforming
withmultiple- or single-decoder processings.

In this paper, the 4 T-shaped microphones are set as
shown in Figure 5. Array 1 (microphones 1, 2, 3), array 2
(microphones 1, 2, 4), array 3 (microphones 1, 3, 4), array
4 (microphones 2, 3, 4), and array 5 (microphones 1, 2, 3, 4)
are used as individual arrays, and thus we can obtain 5 chan-
nel input streams using delay-and-sum beamforming. These
streams are used as inputs of the multiple- or single-decoder
processings to obtain the final result.We call this methodmul-
tiple microphone-array processing. These streams can also
be compensated by the proposed position-dependent CMN,
and so forth, before they are inputted into multiple-decoder
processing or single-decoder processing.

5. EXPERIMENTS

5.1. Experimental setup

We performed the experiment in the room shown in Figure 6
measuring 3.45m× 3m× 2.6m without additive noise. The
room was divided into the 12(3×4) rectangular areas shown
in Figure 1, where the area size is 60 cm×60 cm.Wemeasured
the transmission characteristics (i.e., the mean cepstrums of
utterances recorded a priori) from the center of each area. In
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our experiments, the room was set up as the seminar room
shown in Figure 6 with a whiteboard beside the left wall, one
table and some chairs in the center of the room, one TV and
some other tables, and so forth.

In our method, the estimated speaker position should be
used to determine the area (60 cm × 60 cm) in which the
speaker should be. It has been shown in [25] that an aver-
age location error of less than 10 cm could be achieved using
only 4microphones in a roommeasuring 6m×10m×3m, in
which source positions are uniformly distributed in 6m×6m
area. In our past study [22], we also revealed that the speaker
position could be estimated with estimation errors of 20–
25 cm by the 4 T-shaped microphone system as shown in
Figure 5 without interpolation between consecutive samples.
In the present study, therefore, we assumed that the position
area was accurately estimated, and we purely evaluated only
our proposed speech recognition methods.

Twenty male speakers uttered 200 isolated words, each
with a close microphone. The average time of all utterances
was about 0.6 second. For the utterances of each speaker, the
first 100 words were used as test data and the rest for es-
timation of cepstral mean Cposition in (7) and (10). All the
utterances were emitted from a loudspeaker located in the
center of each area and recorded for test and estimation of
Cposition to simulate the utterances spoken at various posi-
tions. The sampling frequency was 12 kHz. The frame length
was 21.3ms, and the frame shift was 8ms with a 256-point
Hamming window. Then, 116 Japanese speaker-independent
syllable-based HMMs (strictly speaking, mora-unit HMMs
[26]) were trained using 27992 utterances read by 175 male
speakers (JNAS corpus). Each continuous-density HMMhad
5 states, 4 with pdfs of output probability. Each pdf consisted
of 4 Gaussians with full-covariance matrices. The feature
space was comprised of 10 MFCCs. First- and second-order
derivatives of the cepstrums plus first and second derivatives
of the power component were also included.

5.2. Recognition experiment by singlemicrophone

5.2.1. Recognition experiment for speech emitted
by a loudspeaker

We conducted the speech recognition experiment of isolated
words emitted by a loudspeaker using a single microphone in
a distant environment.

The recognition results are shown in Table 1. The pro-
posedmethod is referred to as PDCMN (position-dependent
CMN). In Table 1, the average results obtained by the 4 in-
dependent microphones shown in Figure 5 are indicated. In
Table 1, PDCMN is compared with the baseline (recognition
without CMN), conventional CMN, “CM of area 5,” and
PICMN (position-independent CMN). Area 5 is in the center
of all 12 areas, and “CM of area 5” means that a fixed cepstral
mean (CM) in the central area was used to compensate for
the input features of all 12 areas. PICMN means the method
by which the averaged compensation parameters over 12 ar-
eas were used. Without CMN, the recognition rate was dras-
tically degraded according to the distance between the sound

Figure 6: Experimental environment.

Table 1: Recognition results emitted by a loudspeaker (average of
results obtained by 4 independent microphones: %).

Area
W/O Conv. CM of

PICMN PDCMN
CMN CMN area 5

1 86.3 92.8 94.2 95.0 95.7

2 95.4 95.7 97.4 97.7 97.4

3 94.3 94.6 96.8 97.1 96.8

4 87.4 92.9 93.1 94.6 95.6

5 92.1 93.8 96.3 96.0 96.3

6 90.9 93.2 95.2 96.1 95.9

7 89.0 92.4 94.3 94.8 95.7

8 91.4 91.4 93.8 94.1 94.7

9 92.3 93.1 95.9 96.4 96.0

10 84.9 90.0 90.5 91.8 93.5

11 86.9 90.9 91.7 93.2 94.1

12 85.9 89.8 90.9 93.3 93.3

Average 89.7 92.5 94.2 94.9 95.4

source and the microphone. Conventional CMN could not
obtain enough improvement because the average duration of
all utterances was too short (about 0.6 second). By compen-
sating the transmission characteristics using the compensa-
tion parameters measured a priori, all CM of area 5, PICMN,
and PDCMN effectively improved the performance of speech
recognition from without CMN and conventional CMN.

In a distant environment, the reflection may be very
strong and may be very different depending on the given ar-
eas, so the difference of transmission characteristics in each
area should be very large. In other words, obstacles caused
complex reflection patterns depending on the speaker po-
sitions. The proposed PDCMN could also achieve more ef-
fective improvement than “CM of area 5” and PICMN. The
PDCMN achieved a relative error reduction rate of 55.3%
from without CMN, 38.7% from conventional CMN, 20.7%
from CM of area 5, and 9.8% from PICMN, respectively. The
experimental result also shows that the greater the distance
between the sound source and the microphone, the greater
the improvement.

The differences of the performance between the PDCMN
and PICMN/CM of area 5 were significant, but not too large.
When assuming larger area, the performance difference must
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Table 2: Recognition results of human utterances (results obtained by microphone 1 shown in Figure 5 (%)).

Area W/O CMN Conv. CMN
CMN by human
utterances

CMN by utterances
from a loudspeaker

Proposed method

5 95.8 94.6 96.6 96.0 96.8

9 93.4 90.6 94.4 91.2 94.2

10 84.8 83.8 89.8 83.0 90.0

Average 91.3 89.7 93.6 90.1 93.7

Extended area

Original area

1 2 3

4 5 6

7 8 9

10 11 12

Figure 7: Extended area.

be much larger. So, we assume the extended area described in
Figure 7 and then the area 12 of the original area correspond
to the center of the extended area. We used “CM of area 12”
to compensate the utterances emitted from area 1 to simulate
the extended area. The result degraded from 94.2% (CM of
area 5) to 92.9%. This was much inferior to that of PDCMN
(95.7%). These results indicated that the proposed method
worksmuch better in the larger area. This degradationmeans
a larger variation of the transmission characteristics, and this
variation must cause the degradation of the performance of
PICMN.

5.3. Recognition experiment of speech uttered
by humans

We also conducted experiments with real utterances spoken
by humans using a single microphone (i.e., microphone 1 in
Figure 5 in this case).

The utterances were directly spoken by 5 male speak-
ers instead of those emitted from a loudspeaker in the first
experiment. The experimental results are shown in Table 2,
in which “CMN by human utterances” means the result of
CMN with the cepstral means of real utterances recorded
along with the test set (i.e., the ideal case). “CMN by utter-
ances from a loudspeaker” means the result of CMNwith the
cepstral means of utterances emitted by a loudspeaker. The
“proposed method” is the result of the proposed CMN given

by (10) which compensated for the mismatch between hu-
man (real) and loudspeaker (simulator). In the cases of CMN
by human utterances and proposed method, we estimated
the compensation parameters for a certain speaker from the
utterances by the other 4 persons. We also conducted recog-
nition experiments without CMN and with conventional
CMN. Since the utterances were too short (about 0.6 s) to
estimate the accurate cepstral mean, conventional CMN was
not robust in this case. In Table 1, the utterances were emitted
by a loudspeaker whose distortion is relatively large. Hence,
the gain of compensating these transmission characteristics
is greater than the loss caused by the inaccurate cepstral mean
estimated by short utterances. Conventional CMN worked
better than without CMN. On the contrary, in Table 2, the
utterances were spoken by humans, so the transmission char-
acteristics were much smaller than those in Table 1. Then
the degradation caused by the inaccurately estimated cepstral
mean became dominant, and the conventional CMNworked
even worse than without CMN. The results show that the
proposed method could approximate the CMN with the hu-
man cepstral mean and was better than the CMN with the
loudspeaker cepstral mean.

5.4. Experimental results formultiple-microphone
speech processing

The experiments in Section 5.3 showed that the proposed
method given by (10) could well compensate for the mis-
match between voices from humans and the loudspeaker. For
convenience’s sake, we used utterances emitted from a loud-
speaker to evaluate themultiple-microphone speech process-
ing methods.

The recognition results of a single microphone and mul-
tiple microphones are compared in Table 3. The multiple-
microphone processing methods described in Section 4.1
which use multiple decoders were conducted. Both voting
method (VM) and maximum-summation-likelihood method
(MSLM) are more robust than single-microphone process-
ing. The MSLM achieved a relative error reduction rate of
21.6% from single-microphone processing. The VM and
MSLM could achieve a similar result to the conventional
delay-and-sum beamforming. By combining theMSLMwith
beamforming based on position-dependent CMN, an 11.1%
relative error reduction rate was achieved from beamforming
based on position-dependent CMN, and a 50% relative error
reduction rate was achieved from beamforming with con-
ventional CMN (i.e., a conventional method). The MSLM
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Table 3: Comparison of recognition accuracy of single microphone with multiple microphones using multiple decoders (%).

Single Multiple microphones

micro-
VM MSLM

Beamforming VM + MSLM +

phone Array 1 Array 2 Array 3 Array 4 Array 5 beamforming beamforming

W/O CMN 89.7 91.3 91.6 90.9 91.3 91.3 91.0 91.4 91.9 91.9

Conv. CMN 92.5 94.2 94.5 93.5 93.3 93.3 93.4 93.6 94.1 94.2

PICMN 94.9 96.0 96.2 95.7 96.1 95.8 96.0 96.1 96.3 96.4

PDCMN 95.4 96.4 96.6 96.2 96.3 96.2 96.1 96.4 96.7 96.8

Table 4: Comparison of recognition accuracy of multiple microphone-array processing using single decoder with that using multiple de-
coders (%).

Multiple decoders (see Table 3) Single decoder

VM + MSLM + Full-mixture + Single-mixture +

beamforming beamforming beamforming beamforming

Recognition
rate

W/O CMN 91.9 91.9 93.0 92.0

Conv. CMN 94.1 94.2 93.9 92.9

PICMN 96.3 96.4 96.5 96.1

PDCMN 96.7 96.8 96.9 96.6

Computation ratio 5 5 3.58 1.77

proved more robust than the VM in almost all cases because
the summation of the likelihoods can be seen as the potential
confidence of all channels. The proposed PDCMN achieved
more efficient improvement than PICMN by using multiple
microphones. In the case of MSLM combining with beam-
forming, PDCMN achieved a relative error reduction rate
of 11.1% from PICMN. Both PDCMN and PICMN could
improve speech recognition performance significantly more
than without CMN and conventional CMN. It is not neces-
sary for PICMN to estimate the speaker postion. Therefore,
PICMN may also be a good choice because it simplifies sys-
tem implementation.

As described in Section 4.2, the computational cost of
multiple-microphone processing using multiple decoders
given by (13) is 5 (the number of microphone arrays) times
that of a single channel. Experiments were also conducted
on a full-mixture single-decoder processing given by (14) and
single-mixture single-decoder processing given by (15). The
computational costs of full-mixture single-decoder processing
and single-mixture single-decoder processing are 3.58 times
and 1.77 times that of a single channel, respectively. The
recognition results of the multiple microphone-array pro-
cessing using the multiple decoders and single decoder are
shown in Table 4. Since the multiple microphone-array pro-
cessing using the full-mixture single decoder selected a max-
imum likelihood of each input sequence at every frame,
it achieved slightly more improvement than the multiple
microphone-array processing using the multiple decoders.
The multiple microphone-array processing using the single-
mixture single decoder reduced computational cost about
50% more than that using the full-mixture single decoder.
In theory, the improvement of computational complexity
between the single-mixture single-decoder processing and the

multiple-microphone processing using themultiple decoders
is determined by the number of inputs K and the number of
Guassian mixtures M, as decribed in Section 4.2. The larger
the number of Gaussian mixtures was, the greater the reduc-
tion of computational cost became. In our experiments, the
number of Gaussian mixtures was 4. Comparing the results
in Tables 3 and 4, the delay-and-sum beamforming using the
single-mixture single decoder based on position-dependent
CMN achieved a 3.0% improvement (46.9% relative error re-
duction rate) over the delay-and-sum beamforming based on
conventional CMN with 1.77 times the computational cost.

6. CONCLUSION AND FUTUREWORK

In this paper, we proposed a robust distant speech recogni-
tion system based on position-dependent CMN using mul-
tiple microphones. At first, the 3D space speaker position
could be quickly estimated, and then a channel distortion
compensation method based on position-dependent CMN
was adopted to compensate for the transmission character-
istics. The proposed method improved the speech recogni-
tion performance more than not only conventional CMN
but also position-independent CMN. If the utterance con-
tained more than 3 words (about 2), the recognition rate
of the conventional CMN could approximate that of PD-
CMN in this experimental situation. However, it is unavail-
able in many short utterance recognition systems. We also
compensated for the mismatch between the cepstral means
of utterances spoken by humans and those emitted from
a loudspeaker. Our experiments showed that the proposed
method could also well compensate for the mismatch be-
tween voices from humans and the loudspeaker. Multimi-
crophone speech processing technology such as the Vot-
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ing method and theMaximum-summation-likelihood method
was used to obtain robust distant speech recognition. To
reduce the computational cost, the output probability of
each input was calculated at frame level, and a single de-
coder using these output probabilities was used to perform
speech recognition. Furthermore, we combined delay-and-
sum beamforming withmultiple-decoder processing or single-
decoder processing. The proposed multiple microphone-array
using the single decoder achieved a significant improvement
over the single-microphone array. Combining the multiple
microphone-array using the single decoder with position-
dependent CMN, a 3.0% improvement (46.9% relative error
reduction rate) over the delay-and-sum beamforming with
conventional CMN was achieved in a real environment at
1.77 times the computational cost.

In future work, we will integrate the speaker position esti-
mation with our speech recognition methods. Furthermore,
we will also attempt to track a moving speaker and expand
our speech recognition method to accommodate an adverse
acoustic environment.
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