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Given a signal $ € RN and a full-rank matrix D € RN*L with N < L, we define the signal’s overcomplete representations as all « €
R satisfying S = Da. Among all the possible solutions, we have special interest in the sparsest one—the one minimizing || a/l.
Previous work has established that a representation is unique if it is sparse enough, requiring [lally < Spark(D)/2. The measure
Spark(D) stands for the minimal number of columns from D that are linearly dependent. This bound is tight—examples can be
constructed to show that with Spark(D)/2 or more nonzero entries, uniqueness is violated. In this paper we study the behavior
of overcomplete representations beyond the above bound. While tight from a worst-case standpoint, a probabilistic point of view
leads to uniqueness of representations satisfying [|ally < Spark(D). Furthermore, we show that even beyond this point, unique-
ness can still be claimed with high confidence. This new result is important for the study of the average performance of pursuit
algorithms—when trying to show an equivalence between the pursuit result and the ideal solution, one must also guarantee that

the ideal result is indeed the sparsest.
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1. INTRODUCTION
1.1. General—sparse representations

In signal processing we are often interested in a replacement
of the representation, seeking some simplification for an ob-
vious gain. This is the rational behind the so many trans-
forms proposed over the past several centuries, such as the
Fourier, cosine, wavelets, and many others. The basic idea
is to “change language,” and describe the signal differently,
in the hope that the new description is better for the ap-
plication in mind. A natural justification for a transform is
that given a signal, a representation has already been im-
posed due to the use of the trivial basis (e.g., samples as a
function of time/space), and there is no reason to believe
that this representation is the most appropriate one for our
needs.

The ease with which linear transforms are operated and
analyzed keeps those as the first priority candidates in defin-
ing alternative representations. It is therefore not surprising
to find that linear transforms are the more popular ones in
theory and practice in signal processing. A linear transform
is defined through the use of a full-rank matrix D € KN*L,
where L > N. Given the signal S € K", its representation is
defined by

SZDQ> (1)

where @ € RL. For the case of L = N (and a nonsingular
matrix D due to the full-rank property), the above relation-
ship implies a linear operation both for the forward trans-
form (from S to «) and its inverse. Many of the practical
transforms are of this type, and many of them go further and
simplify the matrix D to be structured and unitary, so that its
inverse is easier to operate and both directions can be com-
puted with nearly O(N) operations. Such is the case with the
DFT, DCT, the Hadamard, orthonormal wavelet, and other
transforms.

In this paper we are interested in the case of L > N, re-
ferred to as the overcomplete transforms. When L > N, the
relationship in (1) is an underdetermined linear set of equa-
tions, and thus in general it leads to an infinite number of
possible solutions. Further information is therefore needed
in order to uniquely define the transform, and this is typi-
cally achieved by defining the representation as the solution
of

ném llell, subjecttoS = Da. (Py)

For p = 2 it is easy to show that again we obtain linearity in
both directions (forward and inverse transforms). This case,
typically referred to as “frame theory,” has drawn a lot of at-
tention because of this obvious simplicity. However, it is clear
that two-way linearity poses a hard restriction on the space of
possibilities, and may cost in performance.
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A different and far more complicated approach advo-
cated strongly in recent years is to consider p = 0. The £°
notation is an abused ¢ -norm with p — 0, effectively count-
ing the number of nonzeros in the vector a. In such an ap-
proach we seek among all feasible representations (satisfying
the constraint in (P,)) the one with the fewest nonzero en-
tries, this way achieving an ultimate simplicity in represen-
tation. Referring to the matrix D as a dictionary of signal-
prototypes as its columns, we build s as a linear combination
of only few of these columns, typically referred to as atoms.
Thus, we can think of our signal as a molecule, and the for-
ward transform decomposes it to its building atoms, where
we try to use the fewest in this construction [1].

From the numerical standpoint, the forward transform,
defined as (Py), is a nonconvex and highly nonsmooth op-
timization problem, with many possible local minimum
points. Prior work has established that this problem is an
NP-hard one, its complexity grows exponentially with the
number of columns in the dictionary [2, 3]. Recent study
of this problem and methods to approximate its solution
give promising new results, indicating that even though com-
plicated, means exist to solve it at least in some cases us-
ing either greedy [4-13] or convex programming approaches
[1, 10, 14-20]. One aspect of these recent works is the result
of uniqueness which will be the focus of this paper.

1.2. The uniqueness result—worst-case analysis

We consider the problem

min ||allp  subject to S = Da. (Py)
o

As explained above, the term ||«ally stands for the count of
the nonzero entries in «. Previous work has shown that if a
feasible solution « is sparse enough, it can be guaranteed
to be the solution of (Py) [18, 19]. The argument is sur-
prisingly simple and has the following reasoning: for a given
dictionary D, its Spark is defined as the smallest number
of columns from D that are linearly dependent. This scalar
characterizes the dictionary with respect to sparse represen-
tations from a worst-case standpoint. By definition, the vec-
tors in the null space of the dictionary D§ = 0 must satisfy
1810 = Spark(D), since they linearly combine columns from
D to give the zero vector, and at least such Spark columns are
necessary.

If «, represents S, that is, S = Da,, it implies that all
the alternative representations of the same signal are char-
acterized as a + 6, for § € Null(D). If g, satisfies [lallp <
Spark(D)/2, no vector ¢ from this null space exists such that
it could be added to &, nulling more entries than the newly
introduced ones. Thus, this representation must be the spars-
est one possible.

This result is very elementary and yet quite surprising,
bearing in mind that (Py) is a highly complicated optimiza-
tion task of combinatorial flavor. In general, one cannot ex-
pect to successfully solve it unless a brute-force search is used.
The above uniqueness result, while not constructive, implies
that if a sparse enough solution is found via some approxi-
mation method, it can be guaranteed to be the desired global

optimizer. In general, when solving such complicated opti-
mization problems, even if a solution is proposed, one can at
best guarantee that locally it is optimal, by searching a feasi-
ble descent direction and finding none. Here we are able to
guarantee globally that this is the best solution, and hence the
surprise.

Clearly, we can show that the above result is tight by def-
inition. Suppose that we have a null-space vector § such that
D& =0 with [|8]lo = Spark(D)—this vector is realizing the
Spark, and thus its existence is guaranteed. Then, taking its
first Spark(D)/2 nonzero entries and zeroing the rest, we get
anew vector @ with [|&|lp = Spark(D)/2 being the representa-
tion of a necessarily nonzero signal D& = S. For this specific
signal we have yet another representation of the same car-
dinality, because & — § has Spark(D)/2 nonzeros too, repre-
senting the same signal. Similarly, when choosing more than
half of the nonzeros in § to &, the remaining entries will
form an alternative sparser representation. This way we have
constructed a special signal for which uniqueness cannot be
guaranteed.

1.3. Behavior beyond the bound

Does the above example imply that beyond the Spark(D)/2
bound we are destined to nonuniqueness? The answer is yes,
if we think in terms of worst case. Does the above example
imply that a randomly chosen representation with cardinal-
ity beyond the bound is necessarily not unique? Definitely
not! In fact, given an arbitrary sparse representation with a
number of nonzeros beyond this bound but still relatively
low, chances are that this is the sparsest possible representa-
tion for the signal it forms. Said differently, examples show-
ing the tightness of the uniqueness theorem, as constructed
above, are very few and rare, and when a probabilistic point
of view is adopted, their relative weight is expected to dimin-
ish entirely.

Thus, the question we pose here is more general and ad-
dresses the uniqueness property of candidate solutions to
(Py), hoping to enable some guarantees even beyond the
worst-case bound mentioned above.

1.4. This work and prior art

In this paper we study the behavior of overcomplete rep-
resentations beyond the known uniqueness bound. When
adopting a probabilistic point of view, we show both em-
pirically and theoretically that uniqueness can be guaranteed
with high confidence with Spark(D)/2 and more nonzero en-
tries. We show that the above-mentioned counter examples
to uniqueness are of zero measure for representations satis-
fying llallo < Spark(D). Furthermore, we show that even be-
yond this point, uniqueness can be still claimed with reason-
able probability.

In order to build these results, we propose to characterize
the dictionary in a way that extends the Spark, forming the
signature of the matrix. Whereas the Spark “thinks” worst-
case, the signature gets the more general picture by gathering
all the subsets of columns from D that are linearly dependent.
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This signature is used to analyze the uniqueness and compose
the results presented.

At the heart of the analysis proposed here is a specific
probability density function (PDF) assumed on the signal
space. However, instead of specifying this PDF directly with
respect to the signals, it is driven via the representations.
A commonly used regularization in inverse problems forces
sparsity of the representation of the unknown signal, and
assumes independence in its coefficients [1]. Such regular-
ization is essentially the manifestation of a PDF on the un-
known signal. Thus, generating representations following
these rules, signals emerge with a PDF being a mixture of
Gaussians. Thus, motivated by how sparsity is used in inverse
problems, we propose a simple signal source model. The bot-
tom line to this work is the claim that when a sparse repre-
sentation is given from this source, it is most likely to be the
sparsest one possible. The bound for measuring how sparse is
sparse enough for this claim to be true is less restrictive than
previously believed.

One word of caution is necessary here: we use here a prob-
abilistic model to describe how signals and their originating
representations are constructed. For those signals once gen-
erated, the rules of uniqueness apply as indicated here. How-
ever, when a candidate representation describing a signal S
is given from a different source, we cannot apply the given
analysis. The reason is that the proposed representation may
be drawn from a different distribution, with more empha-
sis on the “dark zone” of nonuniqueness. This, for example,
explains why we cannot use the uniqueness results we obtain
and impose them on the output of the pursuit algorithms as a
simple test of success. Pursuit algorithms may (and will) tend
to generate nonunique representations, which explains why a
separate analysis for them is required. Still, for such analysis
to take place, we must start with representations known to be
unique, at least in probability, in order to carry out the study.
Such analysis will benefit from the results given here.

Indeed, in a very recent pioneering work by Candes and
Romberg (see [21]) and a parallel work by Donoho [22], the
average performance of the basis pursuit has been studied,
using the same signal source model as described above. A vi-
tal part of their analysis is the uniqueness claim: when trying
to show an equivalence between the pursuit result and the
ideal solution, one must also guarantee that the ideal result is
indeed the sparsest one possible. In their work, the authors
considered a special dictionary structure built of two uni-
tary matrices, and focused on asymptotic results. Here we
discuss the uniqueness for general dictionaries of arbitrary
finite sizes, and take a completely different route.

1.5. This paper

In the next section we start with a simple experiment that
explains what is the goal of this work. We show that the em-
pirical probability for obtaining uniqueness is far better than
theoretically suggested so far. In Section 3 we propose an
analysis to explain this behavior. Section 4 summarizes some
of our thoughts about the role of the pursuit algorithms in
seeking approximate solutions to (Pg), and our expectations

regarding their average performance, compared to the exist-
ing worst-case analysis. Section 5 summarizes and concludes

this paper.

2. EMPIRICAL EVIDENCE

Before proving new properties on sparse representations,
let us start by simple yet illustrative experiments that will
demonstrate the results we expect to theoretically document
later on. We start with the construction of the dictionary.
Assume that D € R%%0 s built by a concatenation of ran-
dom white and zero-mean multivariate Gaussian vectors as
its columns. We obtain a full-rank matrix and its Spark is
9, that is, no 8 columns in this matrix can be found to be
linearly dependent. This is a general property for such ran-
dom matrices, stemming from the fact that square random
matrices are nonsingular with probability 1 (see the seminal
work by Edelman and later by Shen [23, 24] on the proba-
bilistic behavior of the extreme singular values of such ma-
trices). Based on the known uniqueness result, every repre-
sentation with less than Spark(D)/2 = 4.5 nonzeros must be
unique. Thus, we are interested in studying the representa-
tions with [|all¢ > 4. Clearly, there is no point in considering
representations with [|allo > 8, since those cannot be unique
by definition.

Studying representations with [lallo = 8 is also expected
to give nonuniqueness, although of a weaker form. Any such
representation could be at least replaced by equally good rep-
resentations coming from all ( é ) column combinations from
D. Nevertheless, it is interesting to see whether better rep-
resentations (with cardinality strictly fewer than 8) could be
found in such cases. Thus, the range [|allo € [5,8] is to be ex-
perimented on. In our experiment we cover the interval [1, 8]
disregarding the lower part being theoretically guaranteed by
a known result. We can generate many such representations
by first choosing the k nonzero locations at random with uni-
form probability, and then assigning values to these k loca-
tions independently, using some scalar distribution rule. In
our experiment we assume that these values are drawn from
a zero-mean, unit variance, and independent Gaussian dis-
tribution.

In the above process we actually induce a probability
density function on the representations of cardinality k, and
through it a distribution on the signal family that has repre-
sentations of that cardinality. This is a key feature that will
be repeated in our theoretical analysis—rather than starting
from the signal PDE, we choose to embark from the represen-
tation vectors. As sparsity of representations has been shown
to be a powerful signal prior used in inverse problems, gen-
erating signals this way makes a lot of sense, not just due to
the ease of analysis it brings along here.

Given such a random representation, &, the signal it rep-
resents is given by Da = s. We can now search exhaustively
through all other combinations of k or less columns from
D to seek an alternative representation. For the size chosen,
L = 20, we have at most Z,%:l (2ko) ~ 264000 tests per each
representation, and such a sweep of tests is still doable
(though time demanding). This explains the sizes chosen for
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FIGURE 1: Results of the first experiment: a random dictionary of
size 8 x 20 with Spark = 9. Dark gray: relative number of examples
giving equally sparse alternatives. Light gray: relative number of ex-
amples giving no alternatives with equal or lower cardinality.

D in this experiment. Per each such candidate set of columns,
the least-squares (LS) solution with the submatrix containing
the chosen columns dictates the most suitable coefficients,
and if the LS error is below the arithmetic accuracy thresh-
old, a candidate representation is assumed found.

We have conducted this experiment as described, and
Figure 1 documents its results. Per every cardinality in the
range [1,8] we performed 100 experiments and we present
the relative number of experiments that ended with perfect
success (no sparser solution is found) and also the relative
number of experiments that ended with partial success (rep-
resentations with the same cardinality could also be con-
sidered as acceptable). We see that uniqueness can be em-
pirically guaranteed for all representations with cardinality
smaller or equal to 7. For representations with 8 nonzero
entries, while there are other equivalently sparse representa-
tions, there were no better (sparser) ones found.

A second experiment was performed following the same
structure, but with a modified dictionary. After creating
the random matrix as before, we replaced the first column
with a linear combination of the last five. This way we have
changed the dictionary’s Spark to 6 (or below, if we are re-
ally unlucky—again, probabilistic results on random ma-
trices suggest that in this case finding a group of less than
6 columns being linearly dependent is of probability zero).
Figure 2 presents the results obtained this time. We see sev-
eral interesting effects.

(1) The existing uniqueness bound suggests that unique-
ness can be guaranteed for 2 nonzero entries and below. We
see that up to 5 = Spark(D) — 1 entries, we empirically get
that the representations are unique.

(2) Even beyond this cardinality we can still get unique-
ness with high probability—a phenomenon we will explain
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FIGURE 2: Results of the second experiment: a random dictionary
of size 8 x 20 with Spark = 6. Dark gray: relative number of exam-
ples giving equally sparse alternatives. Light gray: relative number
of examples giving no alternatives with equal or lower cardinality.

later on. For representations with 6 and 7 nonzero entries,
even in cases of violated uniqueness, this violation is due to
other representations of the same cardinality and not ones
with a strictly sparser form.

(3) As in the previous experiment, for representations
with 8 nonzero entries we can find equivalently sparse repre-
sentations but not better ones, so this is a weaker uniqueness
success.

The obvious question raised by the above two experi-
ments is whether we can theoretically explain such results,
and in this way discuss average uniqueness performance,
rather than let extreme cases dictate the analysis of unique-
ness. The next section provides this theoretic explanation,
and as we will see, it is almost straightforward.

3. THEORETICAL STUDY OF UNIQUENESS
BEYOND THE BOUND

3.1. Some ugly preliminaries

Since our analysis is of a probabilistic flavor, it is clear that
it has to be built on a specific random distribution of the
signals, and the results will be different for different signals’
source models. As we have already indicated in the previous
section, instead of specifying this signal’s PDF directly, it will
be implied indirectly by the representation’s PDF we effec-
tively use. We assume the following on the PDF of the repre-
sentation vectors.

(1) The probability for each cardinality is fixed and
known:

pk = Prob{llallo = K} forK €1,2,...,L. (2)



Michael Elad

For example, px could be inversely proportional to K in some
way, to indicate that signals tend to have sparse representa-
tions, or it could be uniform in the range [1,N] and zero
elsewhere.

(2) The nonzeros in the representation vector are uni-
formly spread with no preference to one zone over another:

le 7éj2:
Prob {a(ji) #0 | llallo=K}=Prob {a(j2) #0 | llallo =K}

fOTK,j],jz = 1,2,...,L.
(3)

In fact, this condition can be relaxed substantially and
replaced by a nonuniform probability, as long as we avoid
degeneracy, that is,

Vj, Prob{a(j)# 0| llalo = K} >0. (4)

(3) The locations of the different nonzero entries in a
given representation are statistically independent:

Vi # ja»
Prob {a(j1),a(j2) #0 | llallo=K}
=Prob {a(j1) #0 | lallo =K} - Prob {a(j2) #0 | llallo=K}

fOI‘K,j],jz = 1,2,...,L.
(5)

Thus, the K locations are chosen at random with equal
and independent probability, and this means that every com-
bination of K entries has an equal chance to be selected.
Again, this condition could be relaxed to allow statistical de-
pendencies, as long as no degeneracies are encountered.

(4) The K nonzero entries in an representation are ran-
domly generated from a Gaussian distribution with zero-
mean and unit variance:

Prob {a(j) | llallo = K, a(j) # 0}

1 a(j)?
~ P { T2
There is no special reason for the Gaussianity, and any rea-
sonable nondegenerate alternative distribution can be as-
sumed in replacement.

(5) The nonzero entries in a representation are mutually
independent:

(6)

} forK,j=1,2,...,L.

Vi1 # ja
Prob {a(j1),a(j2) | lallo = K,a(j1) # 0,a(j2) # 0}
= Prob {a(ji1) | llallo = K, a(j1) # 0}
- Prob {a(f2) | llallo = K, a(j2) # 0}
for K, ji, j» = 1,2,..., L.
(7)

We refer hereafter to representations coming from the
above distribution as the output of the machine M. Those are

first generated by randomly choosing the cardinality based
on py, then by choosing the involved columns, and finally by
choosing the nonzero coefficients’ values.

When considering representations of cardinality K, there
are K specific columns from D multiplied by a random vector
of length K being a white multivariate normalized Gaussian.
Thus, referring to the dictionary as deterministic, the PDF
Prob{s/support{a}} is of a multivariate Gaussian distribu-
tion of dimensionality dictated by both the rank of the sub-
matrix of chosen columns from D, and |[|«lo. For example,
for ||lallo = Spark(D) — 1 = K, the rank of the subdictionary
is necessarily full (otherwise we contradict the definition of
the Spark), and thus we get an ellipsoid in the Kth dimen-
sions describing the spread of the signals related to such rep-
resentations. For more than Spark columns, the rank of the
submatrix used could be smaller, and then the dimensional-
ity of the signal space is degenerate.

Due to the above, the distribution of the signals
Prob{s/|lall = K} is expected to be a mixture of ( IL<) equally
probable Gaussians of the above form, each referring to a dif-
ferent choice of K columns from the dictionary. Similarly, the
signal source model Prob{s} is also a mixture of Gaussians,
this time with mixtures of different cardinalities and different
weights py.

In the coming subsections we will study the uniqueness
behavior for different cardinalities. We start with the easier
case where Spark(D) = N + 1 and then turn to discuss the
more general case of Spark(D) < N. Throughout our anal-
ysis we assume that L, the number of columns in D is fi-
nite.

3.2. Part1:Spark(D) = N +1

We start our analysis by treating the special case where the
Spark of the dictionary is at its peak, being Spark(D) = N+1.
In this case we can guarantee uniqueness for representa-
tions satisfying [lallo < (N + 1)/2. This case could refer to
dictionaries generated as Grassmanian frames [25, 26], ran-
dom dictionaries as discussed before, and possibly other con-
structions. This is the most optimistic scenario, paralleling
the first experiment from Section 2. In the coming analy-
sis we consider the following ranges of interest: [lallp > N,
lallo = N, and N/2 < |lallo < N.

3.2.1. Topinterval:|lallo > N

Assume a representation « is drawn from the above-
described random source M, with [|«llo > N. Clearly, we can-
not claim it is the sparsest one describing the signal s = Da.
Since Spark(D) = N+1, every subset of N columns from D is
linearly independent. This implies that s can be represented
by alternative representations with each of those N column
combinations, having only N nonzeros. Thus we have the fol-
lowing result.

Theorem 1 (Spark(D) =N + 1, [lallo > N). Assume a dictio-
nary D € RN*L is fixed with Spark(D) =N + 1, and a rep-
resentation & generated from M with cardinality ||allo > N.
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Then, the probability to find an alternative representation for
s with cardinality smaller than ||«l|¢ s 1.

The above result implies that the given representation is
necessarily nonunique, implying that for the signal s = Da
an alternative representation can be found with cardinality
N at most.

3.2.2. Middleinterval: ||a|lo = N

We now treat the case where the candidate representation
drawn from M is of cardinality N. As before, all the sub-
groups of N columns in D must be linearly independent and
thus, whatever signal we get, it can be generated alternatively
byall ( ) —1 other combinations of N columns from the dic-
tionary, leading to alternative representations with the same
cardinality N.

Could we do better? Can we find a group of N — 1
columns realizing the signal s = Da? The answer to this ques-
tion is the essence of this paper, and its rational will be used
repeatedly in later cases as well. We will therefore try to mo-
tivate our reply from both algebraic and geometric consider-
ations.

The signal in mind is originally generated as a linear
combination of N linear independent columns ([lallp = N).
Let us fix those columns and denote them as the subma-
trix Dy € RN*N. The N nonzero coefficients in a are of
random white normalized Gaussian values, implying that
as far as those coefficients are involved, the spread of the
representation vectors is spherical in this N-dimensional
space.

Multiplying the “cloud” of possible representations shar-
ing the same support by the matrix Dy, we get that the signal
is also a Gaussian random vector with zero-mean and a full-
rank autocorrelation matrix being DyD. This signal occu-
pies the N-dimensional space with nondegenerate ellipsoidal
density. By nondegenerate we mean that the volume of this
ellipsoid is nonzero, and this is an immediate consequence
of the positive definiteness of the autocorrelation matrix we
have formed.

Due to the value of the Spark, every subgroup of N — 1
(or smaller) columns from D is linearly independent, and as
such, spans a subspace of dimension N —1 (and below, resp.).
Multiplied by normalized Gaussian random vectors repre-
senting the nonzero part in candidate representations, ran-
dom signals are generated in an (N — 1)-dimensional space.
Since there are finite numbers of such subspaces to consider,
being all the combinations of 1,2, 3,...,N — 1 columns from
D, their union cannot cover the entire N-dimensional space.
Actually, this amalgam of subspaces has a zero volume in
the N-dimensional space. Thus, chances that the signal we
started with will be covered by one of those subspaces is zero.
This leads to the conclusion that a representation sparser
than N for the discussed case cannot be found. We conclude
with the following result.

Theorem 2 (Spark(D) = N + 1, [lallp = N). Assume a dic-
tionary D € RN*L is fixed with Spark(D) = N + 1, and a

representation o generated from M with cardinality ||allo = N.
Then, considering the signal s = Dq,

(1) there are () — 1 alternative representations for s

with the same cardinality N, and thus the probability to
find such alternative is 1,
(2) the probability to find an alternative representation
for s with cardinality smaller than N is 0.

This is a weak form of uniqueness, but nevertheless one
of interest, saying that we could find similarly sparse alter-
natives and not better ones. Let us give a very simple and
intuitive example to better explain our result. Suppose that
the dictionary D is of size 2 X 5, implying that our signals
are points in 2D. We further assume that the Spark of D is
3, meaning that every 2 X 2 submatrix from D is full rank.
Suppose that a specific signal is constructed by linear combi-
nation of the first two columns. Since the 2 coefficients used
by the linear combination are random normalized Gaussian
ones, the signals we can possibly generate are also Gaussian
and occupy the 2D space, although with a distorted spread
from spherical to ellipsoidal distribution. The shape of the
2D ellipsoid is dictated by the two eigenvalues of the 2 x 2
matrix formed by the first two columns used to build the sig-
nal.

In our analysis we concentrate on the 2D space of signals,
and we have just found out that every point in the plane is a
possible signal (with varying nonzero probability).

Now let us try building the same signal using only one
column, in an attempt to find a sparser representation. Con-
sider a specific column, and by randomly choosing the rep-
resentation coefficient, consider the signals this can gener-
ate. We get a set of 2D Gaussian vectors all on a specific line
passing through the origin, in a direction dictated by the col-
umn used. By considering all () = 5 columns, we have 5
such lines where the signals with representation cardinality 1
could reside. Any finite number of lines cannot cover more
than zero volume in the 2D plane, and thus chances are that
our signal can never find a sparser representation with cardi-
nality 1.

Note that this analysis suggests that if we are to approx-
imate a signal with some inaccuracies, rather than exactly
represent it, the same approach could be used. This time,
however, every such line should be replaced by a thick-
ened version of it, increasing chances of failure (i.e., finding
sparser representation alternatives). We leave such analysis
for future work.

3.2.3. Bottominterval: N/2 < ||lallo < N

The analysis required for the N/2 < |lallp < N case is
quite similar to the one we presented earlier, with one ma-
jor difference—whereas the previous case led to a weak ver-
sion of uniqueness, here we will get more conclusive, strong
uniqueness.

Suppose that a representation drawn from M is of car-
dinality [lallp = K, in the range (N/2,N). This implies that
the signal in mind is originally generated as a linear combi-
nation of K linearly independent columns. As before, fixing
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those chosen columns and denoting them as the subma-
trix Dx € R¥*K| due to the normalized Gaussianity of the
K nonzero coefficients in «, the signal obtained is also a
Gaussian random vector with zero-mean and a rank K auto-
correlation matrix being DgD¥. These signals reside in the
N-dimensional space, but fill only K < N dimensions of
1t.

Due to the value of the Spark, every subgroup of K — 1
(or smaller) columns from D is linearly independent, and as
such, spans a subspace of dimension K —1 (and below, resp.).
As before, those finite number of subgroups of columns de-
fine signal subspaces of dimensionality K — 1 and below, and
their union has zero volume in the overlap with the subspace
the original signals can be found in.

What about similarly sparse alternative representations?
There are ( IL< ) combinations of K columns from D that could
build a competing representation. Choosing one such candi-
date group, it creates a “cloud” of signals of the same dimen-
sionality K in the N-dimensional space. How overlapping are
the original and the newly formed subspaces? We will show
that this overlap could either be complete or empty (in mea-
sure of volume).

The complete overlap implies that the two different
groups of K columns are spanning the same subspace. Thus,
a group of K + 1 linear dependent columns can be built
by taking the first K-column group, and adding any of the
columns from the second group. Since these K + 1 columns
span a K-dimensional space, they must be linearly depen-
dent, and this contradicts the Spark. Thus, complete overlap
is impossible.

The alternative case where the two subspaces of dimen-
sionality K are different implies that their overlap is of di-
mensionality K — 1 at most (as an example, for a 3D space
with two subspaces of dimensionality 2, the complete over-
lap implies that the two planes passing through the origin are
the same, and if they are not so, their intersection is a line).
As we have already stated, a subspace of dimensionality K — 1
has zero volume in the K-dimensional space. Even union of
many such subspaces will not change this fact, if finite num-
ber of members participate in this union. This all leads to the
conclusion that even equivalently sparse representations will
not be found with probability 1. We thus have the following
result.

Theorem 3 (Spark(D) = N + 1,N/2 < |lallo < N). Assume
a dictionary D € RN*L is fixed with Spark(D) = N + 1, and
a representation « generated from M with cardinality ||l in
the range (N/2,N). Then, considering the signal s = Da, the
probability to find an alternative representation for s with car-
dinality ||allo or smaller is 0.

This is a strong form of uniqueness, but as opposed to the
classic result, it leans on probabilistic considerations, mean-
ing that while counter examples to this uniqueness result can
be created, their overall weight is negligible in the space of
signals we have formed.

3.2.4. Relation to the empirical results

In the first experiment in Section2 we had N = 8 and
Spark(D) = 9, matching the case studied here. Due to
Theorem 1 it is clear that there is no uniqueness for [|a|lo > 8,
and this range was not part of the simulation. Theorem 2
gives us a weak guarantee of uniqueness for [|«allo = 8, with
(280 ) — 1 alternative representations with the same cardinal-
ity and no sparser ones. This aligns well with the result doc-
umented in Figure 1. Theorem 3 supplies us with the results
for [lallp < 8, guaranteeing uniqueness, as indeed empirically
obtained. Figure 3 presents a graph parallel to Figure 1, as we
expect to obtain for general N (assumed for convenience to
be even).

3.3. Part2:Spark(D) < N

We now turn to discuss the more common case where
Spark(D) < N. This case refers to dictionaries generated
from overcomplete wavelets, ridgelets, curvelets, many other
types of frames, and amalgams of them [15-17, 19, 27, 28].
This is the more realistic scenario, paralleling the second ex-
periment from Section 2.

In this case we can guarantee uniqueness for representa-
tions satisfying |lallo < Spark(D)/2. This time the ranges of
interest to consider are ||all > N, Spark(D) < [lallp < N,
and Spark(D)/2 < [|allp < Spark(D) — 1. As we will see next,
the analysis here is similar but more involved. The range
Spark(D) < |lallp < N in particular is problematic and re-
quires a definition of the signature of a dictionary in order to
get an evaluation of the uniqueness probability.

Definition 1 (signature). For a matrix D € RN*L, its signa-
ture is defined as the discrete function Sigp (K), for K = 1,
2,3,...,L, counting the relative number! of K-column com-
binations in D that are linearly dependent.

Here are some properties of the signature.

(i) Due to the definition of the Spark, Sig, (K) is zero for
all K < Spark(D).

(i) For K > Spark(D) there are ( ;) possible combina-
tions and at least one is linearly dependent, thus leading to
strictly positive values, Sigp, (K) > 0.

(iii) For K > N we necessarily have Sigp, (K) = 1 since all
groups of K such columns are linearly dependent.

(iv) We conjecture that the signature is monotonic non-
decreasing. This property should be proven, but we leave this
as an open problem at the moment, as we do not need to use
it in the analysis that follows.

(v) For the case Spark(D) = N + 1, the signature is nec-
essarily a simple step function, being zero for K < N, and
1 for K > N. This will explain the ease with which the pre-
vious analysis was carried out, and the reason for separating
the study of this case.

! By relative we mean that the values Sigp, (K) are in the range [0,1], due to
division by ( 1% ), the number of all combinations of K columns from the
L existing ones.
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Ficure 3: A schematic graph of the probability of uniqueness
for Spark(D) = N + 1. The different zones are (a) the classic
known uniqueness result, (b) Theorem 3, (c) Theorem 2, and (d)
Theorem 1.

(vi) The signature is NP-hard to compute, just as the
Spark. Still, bounds on it can be derived. One such inter-
esting bound based on known Spark is described in the ap-
pendix, based on result due to Bjorner, related to analysis of
matroids [29].

While for the worst-case analysis the exact value of
Sigp (K) has no consequence, this value becomes of extreme
importance in evaluating probabilities of uniqueness under
our probabilistic regime of signals. For illustration, the sig-
natures of both dictionaries used in Section 2 are given in
Figure 4.

3.3.1. Topinterval: ||allo > N

Assume a representation ¢ is drawn from the above-de-
scribed random source M, with [|a|lo > N. Just as in Section
3.2.1, we cannot claim it is the sparsest one describing the
signal s = Da. No matter what Spark(D) is, a subset of lin-
early independent N columns from D can be found, since
we assume that D is full rank. Thus, s can be represented by
alternative representations with N nonzeros only, leading to

the following result.

Theorem 4 (Spark(D) < N, [lallo > N). Assume a dictionary
D € RN*L s fixed with Spark(D) < N, and a representation «
generated from M with cardinality ||allo > N. Then, the proba-
bility to find an alternative representation for s with cardinality
smaller than ||«||o is 1.

This case resembles the case of ||«llg > N with the max-
imal Spark, as discussed in Section 3.2.1. There is one ma-
jor but unimportant difference here—whereas in the max-
imal Spark case we could have claimed that any group of N
columns is linearly independent, here we can just say that one

such group exists. Again, this difference has no influence on
the outcome, being a complete and certain loss of unique-
ness, as expected.

3.3.2.  Medium-low interval: Spark(D) < |lallp < N

Given a candidate representation with ||allo = K in the range
[Spark(D), N1, if the K columns chosen are linearly depen-
dent, an immediate reduction can lead to an alternative rep-
resentation with a smaller cardinality. By replacing one col-
umn in this group with a linear combination of the K — 1
others, uniqueness is lost. Thus, at least a Sigp, (K) portion of
the cases lead to loss of uniqueness this way. Note that all the
K-column combinations are equally probable due to prior
assumptions, and thus the signature value is applicable di-
rectly without weighting.

If the K columns pointed to by « are linearly indepen-
dent, alternative sparser representations cannot be found,
leaning on the same rational we have exercised earlier.
Any other group of K — 1 columns or smaller could po-
tentially create a competing representation for the signal
in mind. However, the union of all the volumes of these
subspaces will not cover a substantial portion of the K-
dimensional signal space, and thus no sparser solutions will
be found. Thus, in the search for sparser representations,
the probability that the given representation is the sparsest
is 1 — Sigp, (K), with problems encountered only with linear
dependent groups.

When addressing the quest for the same cardinality al-
ternatives, we focus on the linearly independent cases since
those have no sparser alternatives. For a given such set of K
columns used by the original representation, assume that the
first K — 1 of them together with another column form a lin-
early dependent set. This implies that K — 1 alternative repre-
sentations with the same cardinality are possible by replacing
each of the K — 1 first columns with the external one, and
those combinations lead to a weak uniqueness result.

Similarly, if the first K — 2 columns in the original group
can be merged with a different column to give a linear de-
pendency, we get K — 2 alternative representations of the
same cardinality. This could continue with small groups with
K —3,K —4,...,Spark(D) — 1 alternatives. Going below this
set leads to no other alternatives.

Let us look closely into the first case generating the com-
peting solutions, and count the number of combinations that
may lead to this problem. We consider Sigp, (K) - (¢ ) groups
of K linearly dependent columns. Choosing one such group
and replacing one of its columns by a different column from
the remaining L—K ones, we get K(L—K) such replacements,

all leading to the weak uniqueness result.

Similarly, taking the Sigp(K — 1) - (,*,) groups of

K — 1 linearly dependent columns, we can propose per each
(K—1)(L—K+1) replacements, and per each of those add an
arbitrary column among the remaining L — K + 1 ones, get-
ting a total of (K — 1)(L — K +1)(* 51 Sig (K — 1) - (KL_1 )
combinations of K columns where competing equally sparse
alternatives can be built. This could continue with smaller
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FIGURE 4: The signatures of the two dictionaries used in Section 2: (a) first experiment and (b) second experiment.

dependent groups, giving that there are no more than

K—Spark(D)
N= > (K-j)(L-K+j)Sigy(K - j)
j=0 (8)

() (0

possible combinations of K columns that lead to the ex-
istence of alternative representations. The last term in the
above expression takes all the groups of j columns from the
remaining L — K + j ones in order to finally get K columns.
Clearly, in gathering all those, we should count only the lin-
early independent ones, and discard of repetitions. Thus, the
above number is an upper bound on the K-column combi-
nations that lead to the weak uniqueness. Divided by ( ;)
we get a bound on the probability for weak uniqueness. We
summarize with the following result.

Theorem 5 (Spark(D) <N, Spark(D) < [lallo < N). Assume a
dictionary D € RN*L is fixed with Spark(D) < N, and a rep-
resentation « generated from M with cardinality Spark(D) <
llallo = K < N. Then, considering the signal s = Da,

(1) the probability that the given representation is the
sparsest of all (disregarding equally sparse alternatives)
is 1 — Sigp (K),

(2) the probability to find an alternative representation of
the same cardinality is

K —Spark(D)

> (K-j)(L-K+j) (7) Sigh(K —j)  (9)

j=0

or lower.

3.3.3.  Bottom interval: Spark(D)/2 < ||allo < Spark(D)

Suppose that a representation drawn from M is of cardinal-
ity |lallo = K, in the range Spark(D)/2 < [lally < Spark(D).
This implies that the signal in mind is originally generated
as a linear combination of K linear independent columns.
The same reasoning leads us to the interpretation of those
signals as a K-dimensional Gaussian cloud of signals in the
N-dimensional signal space. Every subgroup of K — 1 (or
smaller) columns from D is linearly independent as well, and

as such, all those together span subspaces of dimension K — 1
(and below, resp.), thus leading to the conclusion that with
probability 1 no sparser representation can be found.

As to similarly sparse alternatives, the same analysis
as in Section 3.2.3 gives that no such alternatives can be
found. Thus we have the following strong uniqueness re-
sult.

Theorem 6 (Spark(D)<N+1, Spark(D)/2 <||||o<Spark(D)).
Assume a dictionary D € RN*L is fixed with Spark(D) < N+1,
and a representation « generated from M with cardinality
llallo in the range (Spark(D)/2, Spark(D)). Then, considering
the signal s = Da, the probability to find an alternative repre-
sentation for s with cardinality || allo or smaller is 0.

3.3.4. Relation to the empirical results

In the second experiment in Section 2 we had N = 8 and
Spark(D) = 6, matching the case studied here. Due to
Theorem 4 it is clear that there is no uniqueness for ||a|lo > 8.

Theorem 5 supplies the results for 6 < [lally < 8, sug-
gesting that the probability to get a strong uniqueness is
1 — Sigp(llallo). Since this number is very close to 1 (e.g.,
for ||allo = 8 this value is 1 — 7.2e — 4), the 100 experiments
found no such cases, as can be seen in Figure 1.

As to equally sparse alternatives, the probability of find-
ing those for K = 61is 6 - 14/(%)) = 0.0022, and for K = 7 it
is 0.0316—in both cases quite low but possible to encounter,
as indeed displayed in the shown results.

Figure 5 presents a graph parallel to Figure 2, assuming
that Spark(D) is even for convenience.

4. RELATION TO AVERAGE PERFORMANCE OF
PURSUIT ALGORITHMS

Given a signal S € R known to have a sparse represen-
tation over the dictionary D, we are interested in finding
its representation faithfully, and with a reasonable amount
of computations. We assume that the signal is drawn from
the presented source model, by generating first a repre-
sentation & at random from M and computing S = Da.
This way we have characterized in full how signals are dis-
tributed.

Applying pursuit algorithms on S, could we guarantee
successful recovery of a? Clearly, if & is not the unique
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FIGURE 5: A schematic graph of the probability of uniqueness for
Spark(D) < N + 1. The different zones are (a) the classic known
uniqueness result, (b) Theorem 6, (¢) Theorem 5, (d) Theorem 5,
and (e) Theorem 4.

(sparsest) representation of S, there is no point to this ques-
tion, since we do not want to recover & in those cases. So, our
question focuses on the cases where uniqueness holds true,
and ask whether the pursuit algorithms succeed.

Previous work analyzed this question for several variants
of the greedy algorithm [6—13]. Other work studied the basis
pursuit algorithms [10, 14-20]. All these works concentrated
on the worst-case scenario, just as described above with re-
spect to the uniqueness property, showing that if the sig-
nal has a sparse enough representation, the pursuit will suc-
ceed. The bound on sparsity is more restrictive compared to
the uniqueness one, and its development is far more com-
plicated in general. This bound is built on the definition
of the mutual incoherence (M(D)), as the maximum over-
all absolute off-diagonal entries in the Gram matrix DD.
In order to guarantee successful recovery of the represen-
tation, it should have smaller than 0.5(1 + M~!) nonze-
r0s.

Thus, parallel to the results summarized in the previous
section, there is great interest in knowing whether the pur-
suit algorithms are successful beyond this bound in proba-
bility. As we have mentioned earlier, the works in [21, 22]
are the first to address this question directly, with results for
a specific structure of dictionaries, and with an asymptotic
formulation. Here we offer some empirical results that will
set the stage for a theoretical analysis that will study the be-
havior of the pursuit algorithms using general dictionaries.

Figures 6 and 7 present the results for two dictionaries
of size 30 x 80. The first, being completely random leads
to the maximal Spark, and its mutual incoherence is 0.5575.
Thus, success of the pursuit algorithms is guaranteed for rep-
resentations with one nonzero entry. Similarly, the second
graph corresponds to a dictionary of the same size, but with
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0.3 F
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Cardinality of representation
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FIGURE 6: The probability of success (recovering at least equally
sparse solution in 1000 random examples) of the basis pursuit and
the orthogonal matching pursuit algorithm. The dictionary is a ran-
dom matrix of size 30 X 80, its Spark is 31, and its mutual incoher-
ence is 0.5575.
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FIGURE 7: The probability of success (recovering at least equally
sparse solution in 1000 random examples) of the basis pursuit and
the orthogonal matching pursuit algorithm. The dictionary is a ran-
dom matrix of size 30 X 80, its Spark is 15, and its mutual incoher-
ence is 0.7075.

a deliberate reduction of the Spark to 15. This dictionary’s
mutual incoherence is 0.7075 again implying that only one
nonzero representation can be recovered well by the pursuit
algorithms. As can be seen from the results,

(1) in both cases the success rate is high for [|allp < 5, and
decays gracefully from there,
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(2) although the two dictionaries have very different
Spark, the results of the pursuit algorithms in both
cases are very similar,

(3) the two pursuit algorithms perform very similarly with
weaker performance of the greedy algorithm for small
cardinalities, and slower decay in performance as the
cardinality grows.

An analysis of these results from a theoretical point of
view is valuable and should be carried out. In particular, it
is interesting to ask whether the Spark or the signature have
any role in dictating the pursuit results in probability.

5. CONCLUSIONS

In this paper we have studied the uniqueness of sparse rep-
resentations of signals over a given overcomplete dictionary.
We saw both empirically and theoretically that such repre-
sentations are likely to be the sparsest ones for the signal they
form if they are sparse enough. Previous work has shown
that below half the Spark of the dictionary, the representa-
tion is necessarily the sparsest. Here we have extended this
result and showed that representations with less than Spark
nonzero entries are the sparsest with probability 1, and even
beyond this cardinality, uniqueness can be still claimed with
high probability.

A very helpful tool in our analysis is the signature of the
dictionary. Further work is required in order to find ways
to approximate or bound this function. Another promising
direction for future research is the analysis of pursuit algo-
rithms using the same probabilistic model drawn here, ex-
tending the results in [21, 22]. Simulation results here and
in [15] indicate that these algorithms are expected to per-
form far better than the worst-case bounds suggest. A similar
analysis could shed light on this behavior.

Approximate representations rather than exact ones are
appealing as well for many applications. A parallel study of
the uniqueness of such representations is of great importance
as well, extending prior results given in [10].

APPENDIX
AN UPPER BOUND ON THE SIGNATURE
We have given the following definition.

Definition 2 (signature). For a matrix D € RN*L its signa-
ture is defined as the discrete function Sigp, (K), for K = 1,2,
3,...,L, counting the relative number of K-column combi-
nations in D that are linearly dependent.

The signature is NP-hard to compute, just as the Spark
(and actually harder). Still, bounds on it can be derived. One
such interesting bound that we will show here is based on
the assumption that the Spark is known. This result is due
to Bjorner, who analyzed and bounded matroids properties
[29]. This was adapted to the bounding of the signature by
Goldberg [30]. We will state the result here without proof
or discussion. Further work is required in order to bound

the signature better, taking into account known interactions
between the dictionary’s columns, and more.

Theorem 7 (upper bound on the signature). For a full-rank

dictionary D € RN*L (rank N) with Spark(D) = 0 < N + 1,
the signature of the dictionary is upper bounded by

Sigh(K) <1 —

(%) ’ (A.10)

The rational behind this result is that if Spark(D) = o,
it does not necessarily mean that every ¢ combination of
columns from D is linearly dependent. In fact, only a lim-
ited number of such sets can be dependent without violating
the rank of the matrix. As a simple example, for a full-rank
dictionary of size 3 X 4 and Spark(D) = 3, if every triplet
is linearly dependent, then the rank must be 2. This can be
proven by construction of the column space representation:
we drop the first column as it is spanned by the next two. The
remaining triplet is also dependent and thus we can drop one
more column without affecting the columns space spanned.
Thus the rank is 2, violating the initial assumption about
D being full rank. In such case, only one of the 4 possible
triplets can be linearly dependent. The above theorem gener-
alizes this idea.
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