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We present a novel hybrid scheme called “hyper-resolution” that integrates image probability-filtering-based interpolation and
improved Poisson maximum a posteriori (MAP) super-resolution to respectively enhance high spatial and spatial-frequency res-
olutions of a single down-sampled image. A new approach to interpolation is proposed for simultaneous image interpolation and
smoothing by exploiting the probability filter coupled with a pyramidal decomposition and the Poisson MAP super-resolution
is improved with the techniques of edge maps and pseudo-blurring. Simulation results demonstrate that this hyper-resolution
scheme substantially improves the quality of a single gray-level, color, or noisy image, respectively.
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1. INTRODUCTION

Basically, the quality of an image can be evaluated on its
spatial and spatial-frequency resolutions. Image interpola-
tion and super-resolution are perhaps the way to respectively
produce high spatial and spatial-frequency resolutions of im-
ages especially for a single down-sampled image. For conve-
nience, the term “hyper-resolution” used here represents the
approach to enhancing the spatial and the spatial-frequency
resolutions of an image. Some algorithms have been pro-
posed in the literature [1-6], where a high resolution image
is reconstructed by combining multiple low resolution im-
ages and incorporating with some constraints for the spe-
cific purpose. This paper will consider hyper-resolution for
a single gray-level or color image without any constraint.
Furthermore, hyper-resolution of a noisy image is also per-
formed; generally, the procedure for processing noisy im-
ages is shown in Figure 1(a), that is, noise removal, inter-
polation, and then super-resolution; whereas the proposed
scheme is dealing with interpolation and noise removal si-
multaneously, as shown in Figure 1(b).

As known, the process of decimation or down-sampling
is an effective way aid often used to reduce image sizes; thus,
reducing the amount of information transmitted through the
communication channels and the local storage requirements,

while trying to preserve as much as possible the image qual-
ity. Conversely, the reverse procedure of this, referred to as
interpolation or up-sampling, is useful in restoring the orig-
inal high resolution image from its decimated version or for
resizing or zooming a digital image. Decimation and inter-
polation are used for several purposes in many practical ap-
plications, such as progressive image transmission systems,
multimedia applications, and so forth. These problems are
further aggravated in the case of color images which usually
require larger storage capacity and processing time.

A number of conventional interpolation techniques [7-
9] have been proposed to increase the spatial resolution of an
image. Undoubtedly, these techniques degrade quality of the
magnified image. Those degradations become worse as the
magnification ratio increases and there also exists tradeoff
between reducing blocking artifacts and excessive smooth-
ness [10]. Often, image interpolation is performed by pixel
replication in a small neighborhood of each existing pixel.
This is equivalent to a first-order linear filter. Obviously, such
a scheme is very simple, but can hardly provide a satisfactory
solution. The performance can be slightly improved by em-
ploying higher-order linear filters [11, 12]. However, it seems
that there do not exist good criteria for the design of optimal
linear interpolators. As known, linear interpolation is gener-
ally preferred not for the performance but for computational
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FIGURE 1: The block diagram of hyper-resolution for a noisy image. (a) Conventional approach and (b) proposed approach.

simplicity whereas adaptive methods [13-15] aim to avoid
these problems by analyzing the local structure of the source
image and imposing more accurate models. However, few of
them concern the problem of dealing with noisy images.

Following the procedure of interpolation, image super-
resolution is perhaps the only way to reduce blurring effects
resulting from smoothing or interpolation. In recent years it
has become clear that there are credible methods [16-21] for
the reconstruction of spatial frequencies of the object that are
greater than the diffraction-limit spatial frequency in the im-
age. Specifically, processes that attempt to extend the spatial-
frequency spectra beyond the image passband are usually re-
ferred to as super-resolution algorithms.

This paper first addresses an approach to simultane-
ous image interpolation and smoothing by exploiting the
probability filter [22] coupled with a pyramidal decompo-
sition, thereby extending the conventional applications of
the probability filter originally designed for noise removal.
Then, the improved Poisson maximum a posteriori (MAP)
super-resolution [23] is performed to reconstruct the high
spatial-frequency spectrum of the interpolated image. Thus,
the hybrid scheme shown in Figure 1(b) is proposed for
enhancing the spatial and the spatial-frequency resolutions
of down-sampled images. To illustrate the performance of
the proposed scheme, this research has studied the resolu-
tion enhancement on gray-level, color, and noisy images, re-
spectively, and comparisons will be made among the super-
resolution coupled with different interpolators.

Following the above introduction, this paper is organized
as follows: Section 2 briefly reviews the B-spline interpo-
lation including bilinear and cubic spline interpolators in-
corporated in the hyper-resolution scheme for comparison.
Section 3 details the hyper-resolution scheme proposed here
for down-sampled images. Experimental results and evalua-
tions are shown in Section 4 and finally some conclusions are
drawn in Section 5.

2. B-SPLINE INTERPOLATION

Recently, image-resizing algorithms using high-order B-
splines have been published [24, 25]. The standard interpo-
lation procedure is to fit the original data with a continuous
model and then resample function on the grid appropriate
to the scaling desired [26]. The B-spline interpolation can be
modeled as follows:

s(x) = D e(k)B"(x — k), (1)

kez

where ¢(k) is the coefficient, f”(x) is the B-spline of degree
n. The B-splines are symmetrical, bell-shaped functions con-
structed from the (n + [)-fold convolution of a rectangular
pulse °(x), shown as below:
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Equation (2) shows that all B-splines are positive and have an
integral that is equal to one. Among these splines, the cubic
spline has been popular in applications due to their mini-
mum curvature property. The central spline of degree 3 is
given by
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Usually, lower-order interpolation algorithms are sim-
plest and fastest, but they tend to produce artifacts. The B-
spline of degree 0, the nearest neighborhood interpolation,
selects one of the upper, lower, left, and right four pixels. In
case of the B-spline of degree 1, the bilinear interpolation,
the weighted average value of the upper, lower, left, and right
four pixels is assigned. The B-spline of degree 3, the cubic
spline interpolation, produces better outcomes but requires
much more computation. Generally, among these interpo-
lation algorithms, the bilinear interpolation has been widely
used in digital still cameras. However, there is a limitation for
capturing high quality images since the bilinear interpola-
tion method tends to smooth images and result in noticeable
color artifacts along edges [27].

3. NOVEL HYPER-RESOLUTION SCHEME

A hyper-resolution scheme proposed here is a hybrid ap-
proach, including a novel probability-filtering-based inter-
polator and the improved Poisson MAP super-resolution
algorithm for enhancing the spatial resolution with noise
removal and the spatial-frequency resolution, respectively.
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FI1GURE 2: The pyramidal decomposition for interpolation. (a) Diagram of pyramidal decomposition, (b) the notation and relation of inter-

polated and original pixels, and (c) g;; decomposed into g; ; (-1,

3.1. Interpolation based on the probability filter

Originally, a probability filter [22] is designed for image
smoothing or integration with variable weights which are in-
terpreted as probabilities of respective pixel values in a local
neighborhood of the current estimated pixel. The algorithm
of this filter is explained in more detail as follows. f* (i, j),
the restored pixel at (i, j), is defined as

> Dplitkj+Dglitkj+0), (4

k=—nl=-n

f*(i)j) =

where p(i+k, j + 1), the probability function of a (2n + 1) by
(2n + 1) mask, is given as below:
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where g(i, j) and g(i + k, j + ) are the average of all pixels in
the mask centered at (i, j) and the gray level of the pixel at
g(i+k, j+1), respectively.

The difference function, (g(i+k, j+1) —g(i, j)), is used in
(5) rather than the gray level difference between the neigh-
bor pixel and the center pixel, thereby leading to the pro-
posed filter being more suitable for removing impulse noise
because it has a rather small probability even as the center
pixel is impulse noise. If T is infinite, the probability filter
is identical to the mean filter. From the discussion above, the
probability filter employs over a range of behavior between
mean-like and median-like filtering. Furthermore, no a pri-
ori knowledge is necessary for T); even in the case of the

71)>gi,j(71) 1)> gi,j(L

—1),and g;;(1,1).

image corrupted by unknown noise, T} can be straightfor-
wardly determined as (6).

For the purpose of image interpolation with noise re-
moval, this probability filter is modified as follows. Accord-
ing to the pyramidal decomposition shown in Figure 2, the
new interpolated pixel, g;; (k,[), yielded from the original
pixel, g; j, can be defined as below:
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and w, a weight number, is chosen to be 1.5 here and (k, [) =
(-1,-1), (-1,1), (1,-1), (1,1) shown as Figure 2.

As in the previous discussion, the modified definition,
(7) ~ (8), employs the characteristics of interpolating an im-
age with noise removal.



EURASIP Journal on Applied Signal Processing

Down-sampled
image k

1 lati
e E

Hyper-resolved
image

FIGURE 3: The mechanism of a hyper-resolution loop.

3.2. Improved Poisson MAP super-resolution algorithm

For brief description here, the Poisson MAP [16, 17] is given
and defined as follows:

ﬁﬂzﬁexp[(ﬁ%@h—l)*h}ﬁa ©

where ® represents a convolution, * a correlation, and / the
pomt spread function (PSF); g is the interpolated image and

f the final hyper-resolved image; fo is defined as g; subscript
n is the iteration number; and
- 1) * h}. (10)

8
C=e =
Xp[(fmh

Here, C can be regarded as the correction term during the
iterative restoration process. In terms of the operation of the
Poisson MAP, it is an iterative algorithm where a successive
estimate of the restored image is obtained by multiplication
of the current estimate by a quantity close to one. The quan-
tity close to one is a function of the interpolated image di-
vided by a convolution of the current estimate with the PSE
Following that, the Poisson MAP can be improved by itself
by operating upon the edge map with a reblurring technique;
that is, the g and fAn of the Poisson MAP are replaced by the

corresponding gradients of the g ® h and f:, along with the
integrated PSF (h ® h). Mathematically, it is shown that

A (g®h)
(f) eXpKi(fn) heh 1) *(h@h)].
(11)

(fus1) =

Thus, the final hyper-resolved image f can be obtained
by integrating (ﬁm)’. The whole process of this improved
Poisson MAP includes reblurring, differentiation, restora-
tion, integration, and then correction for a DC offset. More
details about this algorithm can be found in the author’s pre-
vious work [23].

3.3. Analysis of the hyper-resolution scheme

As discussed in the previous subsections, the filter originally
designed for image smoothing can be extended for image
interpolation. With the comparison between B-spline and
probability-filtering-based interpolation, it can be found that
bilinear or cubic spline interpolation performs on an im-
age as weighted mean filtering while the probability-filtering-
based interpolation acts as an adaptive filtering useful for
preserving image features in addition to image interpolation;

that is because the former creates interpolated pixels simply
by averaging their own neighborhood pixels and the latter
analyzes the characteristics of surrounding pixels prior to in-
terpolating pixels. This analysis of image features is based on
the probability of gray-level values and thus features such as
edges are of higher probabilities than flat regions around fea-
tures; furthermore, noisy images containing impulse noise
can be removed completely since a single high or low gray-
level pixel has a low probability. Therefore, image super-
resolution will perform on the interpolated image using the
probability-filtering method more effectively than using the
bilinear or cubic spline method.

4. EXPERIMENTAL RESULTS AND EVALUATIONS

To assess the performance of our proposed hyper-resolution
scheme, the resolution enhancement of gray-level, color, and
noisy images is considered. In illustrated examples, a gray-
level image of clown with the size of 200 x 320 pixels and a
color image of lotus with the size of 100100 pixels were rect-
angular decimated with a factor of 1/2%%, Therefore, the inter-
polation was done with a factor of 22 for each cycle; then, the
super-resolution procedure of the proposed hyper-resolution
scheme, shown in Figure 3, adopted 25 iterations and the PSF
with a standard deviation of 1 pixel because of the pyrami-
dal decomposition used here, conversely, four neighboring
pixels in the interpolated image mainly contributing to one
pixel in its own decimated image. Thus, the proposed hyper-
resolution scheme can magnify the size of an image by any
factor that is a power of two along each dimension where this
resizing scheme consists of two steps: the first step is to inter-
polate the down-sampled image using bilinear, cubic spline,
or the novel proposed probability-filtering-based interpola-
tion and the second step is to super-resolve the interpolated
image. The implementations of bilinear and cubic spline in-
terpolation are taken from Matlab 5.3. In the following, it
can be seen that hyper-resolved images derived from the con-
ventional interpolators still have blocky, jagged lines, and are
blurred whereas the proposed method appears to suppress
these artifacts, preserve the edges, and retain the image de-
tails better.

In experiments, the peak signal-to-noise ratio (PSNR)
was used to compare the image qualities quantitatively and
is defined as follows:

PSNR(dB)

=10lo [ 2552 ]
ol amn) 35S (06, p-HG )
(12)
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F1GUrE 4: Demonstration of hyper-resolution for a single down-sampled gray-level image. (a) Down-sampled image, (b) hyper-resolved im-
age incorporated with bilinear interpolation, (c) hyper-resolved image incorporated with cubic spline interpolation, and (d) hyper-resolved

image incorporated with probability-filtering-based interpolation.

where [M, N] is the image size, 255 is the maximum value
that a pixel can have for an 8-bit image. O(i, j) and H(j, j) are
an original image and a hyper-resolved image, respectively.

4.1. Resolution enhancement of gray-level images

To compare the hyper-resolution effect, the down-sampled
image was hyper-resolved repeatedly for resizing it to its ini-
tial dimension. As an example, consider Figure 4 where a sin-
gle down-sampled image, Figure 4(a), was hyper-resolved.
This image presents a great challenge to hyper-resolution in-
corporated with different interpolation algorithms since it
has many edges and unlike textures, bad hyper-resolution re-
sults are immediately evident. Figures 4(b), 4(c), and 4(d) are
hyper-resolved where bilinear, cubic spline, and probability-
filtering-based interpolation were applied, respectively. Note
that the edges in the magnified image are sharp yet lack
jaggedness, especially for Figure 4(d).

The PSNRs of the hyper-resolution scheme are 23.91 dB,
24.94dB, and 25.80dB using bilinear, cubic spline, and
probability-filtering-based interpolation, respectively. As can
be seen, the hyper-resolution incorporated with the proba-
bility-filtering-based interpolation generally provides a bet-
ter image quality.

The second case applied the proposed hyper-resolution
scheme to a single down-sampled image shown in Fig-
ure 5(a). It can be seen that a highly down-sampled im-
age shows serious blocking artifacts. To solve this prob-
lem, this down-sampled image was hyper-resolved using

our proposed scheme where hyper-resolution was performed
three times for comparison; these three hyper-resolved im-
ages are shown in Figures 5(b), 5(c), and 5(d), respectively.
Obviously, blocking artifacts are further reduced, especially
for the case of which interpolation with the factor 2° x 23,
shown in Figure 5(d) in which the pupils of the clown are
clearly identified.

4.2. Resolution enhancement of color images

The results presented here show good performance, although
printed here in gray-levels, using the simple approach to ap-
plying the hyper-resolution scheme to the red, green, and
blue planes independently and then combining the results
into a single color image.

Figure 6 illustrates the performance comparison of
hyper-resolution with the bilinear, cubic spline, and prob-
ability-filtering-based interpolation methods for a color im-
age. In the bilinear or cubic spline case, Figures 6(b) and 6(c),
the aliasing effects are much more apparent and the edges are
blurred where the jagged lines are quite pronounced.

The proposed scheme eliminates this problem as shown
in Figure 6(d), and performs quite well as it preserves quite
lots of image details with a higher contrast and sharper edges
than the other two hyper-resolved images.

The PSNRs of the hyper-resolution results for Figure 6
show that relatively different improvements were obtained
with the red, green, and blue colors for hyper-resolution
with different interpolators. The proposed hyper-resolution
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FIGURE 5: Demonstration of hyper-resolution for a single down-sampled gray-level image. (a) Down-sampled image, (b) hyper-resolved
image with a factor 2 X 2, (¢) hyper-resolved image with a factor 2? x 22, and (d) hyper-resolved image with a factor 2% x 2.
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FiGURrE 6: Demonstration of hyper-resolution for a single down-sampled color image. (a) Down-sampled image, (b) hyper-resolved image
incorporated with bilinear interpolation, (c) hyper-resolved image incorporated with cubic spline interpolation, and (d) hyper-resolved
image incorporated with probability-filtering-based interpolation.
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FiGURE 7: Demonstration of hyper-resolution for a single down-sampled color image. (a) Down-sampled image, (b) hyper-resolved image
with a factor 2 x 2, (c) hyper-resolved image with a factor 22 x 22, and (d) hyper-resolved image with a factor 2° x 2°.

provides generally better image quality, the PSNR of which
being equal to 19.28dB and outperforming 10.89 dB and
8.37dB over the hyper-resolution using bilinear and cubic
spline interpolation, respectively.

As the case of Figure 7, this down-sampled color im-
age with serious blocking artifacts, Figure 7(a), was hyper-
resolved three times using our proposed method; thus, three
hyper-resolved images are shown in Figures 7(b), 7(c), and
7(d), respectively. Apparently, the proposed algorithm gen-
erates hyper-resolved images with a higher visual quality, es-
pecially for the case of 2° x 23 hyper-resolution shown in
Figure 7(d).

4.3. Resolution enhancement of noisy images

Figure 8 shows an example of the image of a clown with
Gaussian white and impulse noise. Figure 8(a) is the noisy
image with the size of 50 x 80 pixels originally corrupted
by Gaussian white noise at a PSNR equal to 16 dB and im-
pulse noise at 2.5% density level; Figures 8(b) and 8(c) are the
hyper-resolved images where bilinear and cubic spline inter-
polators were used, respectively. It is easy to see that the noise
effect of such hyper-resolved images still exists, especially for

the region around the eyes. Figure 8(d) illustrates the effec-
tiveness of using the proposed hyper-resolution scheme with
the probability-filtering-based interpolation. Noise effect re-
mains in the image where bilinear or cubic spline interpola-
tion was used, but is reduced by using the proposed method.

5. CONCLUSIONS

In this paper, we have developed a hyper-resolution algo-
rithm for enhancing image resolutions based on the hybrid
scheme of the probability-filtering-based interpolation and
the improved Poisson MAP super-resolution algorithm.
This paper has studied three important applications
of the proposed hyper-resolution algorithm: resolution en-
hancement on gray-level, color, and noisy images. In these
applications, the proposed hyper-resolution scheme demon-
strates significant improvements over that using conven-
tional interpolation for comparison on visual quality of
the hyper-resolved images. Especially, it is more prefer-
able of using our proposed hyper-resolution scheme than
the scheme with the bilinear or cubic spline interpolator
for the quality improvement of noisy images due to the
probability-filtering-based interpolation with simultaneous
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FiGUre 8: Demonstration of hyper-resolution for a single down-sampled noisy gray-level image. (a) Down-sampled image, (b) hyper-
resolved image incorporated with bilinear interpolation, (c) hyper-resolved image incorporated with cubic spline interpolation, and (d)
hyper-resolved image incorporated with probability-filtering-based interpolation.

image interpolation and smoothing. It is anticipated that
such scheme can also provide very promising reconstruction
quality in demosaicing problems. Although intercorrelations
among the red, green, blue colors have not been exploited in
this paper, a hyper-resolution utilizing such intercorrelations
would significantly improve the performance. Therefore, fu-
ture work in this area will further extend the adaptive capa-
bility by incorporating image characteristics.
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