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This paper presents a general result for the simulation of correlated heterogeneous targets, which are present in images corrupted
by speckle noise. This technique is based on the use of a correlation mask and Gaussian random variables, in order to obtain
spatially dependent Gamma deviates. These Gamma random variables, in turn, allow the obtainment of correlated K deviates
with specified correlation structure. The theoretical properties of the procedure are presented, along with the corresponding
algorithm.
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1. INTRODUCTION ANDDEFINITIONS

One of the most challenging activities in data analysis is the
assessment of the performance of processing algorithms and
analysis procedures. Once the metrics for the evaluation are
proposed, there are two main approaches: the one based on
their analytical derivation and,when this is unfeasible, the one
based onMonteCarlo experiences.AMonteCarlo experience
relies on the specification of realistic and controllable models,
and on the obtainment of large amounts of outcomes of these
models. These outcomes are used to measure the quality of
the technique under assessment.

This paper deals with the simulation of images corrupted
by speckle noise. Speckle noise appears in images obtained
with coherent illumination, for example, B-scan ultrasound,
sonar and synthetic aperture radar (SAR) imagery. This noise
deviates from the classical model which hypothesizes that the
corruption is aGaussian noise, independent of the signal, that
adds to the true value. The speckle noise enters the data in
a multiplicative fashion, and in the amplitude and intensity
formats it does not obey the Gaussian law. Speckle noise is

known to make image analysis difficult, since its “salt-and-
pepper effect” tends to corrupt the information or ground
truth.

Techniques are continuously being proposed to alleviate
the influence of this noise, since it makes both the visual and
automatic interpretations hard to perform. The quantitative
assessment of these techniques is essential for users and re-
searchers and, since its analytical derivation is, in most of the
cases, too cumbersome, stochastic methods are welcome.

In particular, SAR imagery is a very important modality
of remote sensing. This technology employs an active sensor,
that illuminates the target with microwave radiation in order
to form an image. In the SAR community the multiplicative
model has beenwidely adopted for themodelling of these im-
ages [1, 2]. This model assumes that the value in every pixel,
in the intensity format, is the observation of a stochastic pro-
cess Z defined as the product of two (mutually independent)
stochastic processes:σ and Y , where σ represents the ground
truth and Y models the speckle noise

Z = σ · Y . (1)
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Amplitude format is the square root of the intensity signal.
Only intensity data will be treated here.

It is possible to assume that the speckle noise is a white
noise process, that is, formed by independent variables, and
that they all obey an exponential distribution with unitary
mean. Since this noise is very intense and makes difficult the
direct use of the images, it is customary to process the im-
ages in order to be able to work with multilook data. These
data are obtained by taking the mean over n (ideally inde-
pendent) samples of the same image, where from one obser-
vation (look) to the next the only possible variation is due to
the noise. These samples are obtained in the processing stage
and, thus, there is no time elapsed among them.

Calling Yr the intensity speckle in each look, and assum-
ing that they all obey a standard exponential distribution, it is
well known that the mean Y = n−1

∑n
r=1 Yr obeys a Gamma

distribution, denoted Y ∼ Γ(n,n) and characterized by the
density

gY (y) = nn

Γ(n)
yn−1 exp (−ny), y,n > 0. (2)

This is a commonly accepted characterization of the multi-
look speckle noise in intensity format. In order to derive the
law that governs the observed data, it is necessary to postulate
distributions for the ground truth σ .

A widely used model for the ground truth of heteroge-
neous and homogeneous targets is the Γ(α,β) distribution,
characterized by the density

gσ(σ) = βα

Γ(α)
σα−1 exp (−βσ), σ ,α,β > 0, (3)

where α is referred to as the shape parameter and β as the
scale parameter. This distribution, besides showing good, fits
to a wide range of targets, can be derived from the physical
modelling of the way matter and radiation interact in the
image formation. This interference phenomenon is present
in every image that uses coherent illumination.

The model for the observed dataZ, that is, for the product
of the mutually independent processesσ and Y , has marginal
intensity K distribution. For a detailed discussion of this
model and its extension, the reader is referred to [1, 2]. The
correlation introduced in the model of σ will induce a certain
correlation structure in the process Z. This spatial correlation
is needed in order to increase the adequacy of the model
to real situations. As can be seen in Figure 1, SAR images
often exhibit texture that can be modelled through statistical
dependence among observations in neighboring sites.

A weakly stationary model will be used for the σ field,
with a nontrivial correlation structure. This departure from
thewhite noisemodel requires a precise anduniquedefinition
of the family of distributions to be simulated, since the joint
density is no longer the product of the marginal densities, as
is with Gaussian random variables.

In order to be consistent with the multiplicative model,
it is imperative to impose that the marginal distributions
obey Gamma laws, but there is not a unique definition of
what a vector of correlated Gamma random variables is. The

Figure 1: Primary Amazon forest over undulated relief, as seen by
the JERS sensor.

definition provided in [3, 4] will be adopted here, since it al-
lows the treatment of uncorrelated Gamma random variables
as a particular case of correlated ones.

Definition 1. The randomvector X obeys a correlatedGamma
law if each of its components Xi marginally obeys a Gamma
law.

Definition 2. The stochastic process X has a correlated
Gamma law if each finite subset of X has a correlated Gamma
law.

This paper presents a review of the main available tech-
niques for the simulation of correlated Gamma random vari-
ables, along with some examples and the discussion of their
advantages and drawbacks (Section 2). One of the most at-
tractive methods is the one based on the sum of squared
Gaussian random variables, and a more general proof than
those previously available of the theoretical foundations of
this method is presented (Section 2.4). This new proof leads
to a result that generalizes previous applications of this tech-
nique and, then, a very general technique is proposed along
with an algorithm for its implementation (Section 3). Addi-
tional proofs are collected in an appendix.

2. GENERATIONOF CORRELATED GAMMADEVIATES

Differently from the Gaussian case, where the correlation
matrix and the marginal distributions completely specify
the joint distribution, these two ingredients do not induce
a unique joint distribution for correlated Gamma random
variables.

The applications that we bear in mind, namely, model
validation and the evaluation of estimators under the pres-
ence of dependence [5], only require the specification of the
marginal distributions and the correlation structure. The re-
maining components, that is, higher order moments, are in-
duced by the way the process is constructed.
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Given a set of shape parameters α1, . . . , αn, a set of scale
parameters β1, . . . , βn, and correlations ρi,j , with 1 ≤ i,
j ≤ n, it is desired to obtain observations from the random
vector X = (X1, . . . , Xn)T such that marginal distributions
are Gamma (i.e., Xi ∼ Γ(αi, βi)) and that the correlation
structure is as specified (i.e., Corr(Xi,Xj) = ρi,j).

An immediate difficulty that arises with this requirement
is that not every set of correlations {ρi,j}1≤i, j≤n is consistent
with an arbitrary set of scale parameters {αi}1≤i≤n, since the
latter set imposes restrictions on the former. Another limita-
tion is that, even with consistent scale parameters and corre-
lations at hand, there might not be a suitable algorithm for
the obtainment of the deviates. This is the reason why all the
available procedures for the generation of correlated Gamma
variables are effective in restricted domains. There are sim-
ple algorithms that allow the simulation of both positively-
and negatively-correlated low-dimensional Gamma random
vectors. When more than two or three random variables are
sought, the restrictions are severe. In Section 2.1, the main
simulation procedures available for the generation of corre-
lated Gamma random deviates will be presented.

2.1. Low-dimensional vectors

A number of methods for the simulation of pairs and triplets
of correlated Gamma variates has been proposed in the litera-
ture. They all require a generator of outcomes of independent
Gamma random variables (many alternatives are available
in [6]). Some of these methods are

• the one outlined in [7], which allows the generation
of a two-dimensional random vector (X1, X2) with
marginal Gamma distributions with any shape and
scale parameters (namely α1, α2 and β1, β2), but im-
poses the following restriction on the correlation be-
tween the components: 0 ≤ ρ <min{α1, α2}/√α1α2;

• methods based on the Laplace-Stieltjes transform
[8, 9], that offer more control over the higher-order
moments of the distribution, but are harder to use in
nontrivial situations;

• the Beta-Gamma transformation, that allows the sim-
ulation of negatively-correlated Gamma random vari-
ables [10, 11] and can be generalized to higher-order
vectors, but that becomes easily intractable.

2.2. Multidimensional vectors and generalized
moving averages

Bivariate or trivariate random vectors cannot represent im-
ages well, where hundreds or even millions of observations
have to be modelled. This section reviews the main avail-
able methods for the generation of high-dimensional cor-
related Gamma vectors, and the generalized method is pre-
sented.

It is already known that if a moving average filter of size
L is applied to a vector of uncorrelated Gamma random vari-
ables, then the result is a vector of correlated Gamma random
variables with triangular shaped autocorrelation function,
where the shape parameter is multiplied by L. More gen-
erally, every filter with finite impulse response and binary

coefficients will preserve the Gamma marginal distribution
and will introduce some correlation structure.

Using this property, Ronning [4] and Blacknell [12] pro-
posed methods for the simulation of correlated Gamma devi-
ates. The drawback of these methods is that, it is hard to find
the filters that have to be applied, and that they only allow
the generation of very simple correlation structures. They are
presented in the following sections.

2.2.1 Incidence matrix method

This technique was introduced by Ronning [4] as a general-
ization of methods for bivariate generation, where only non-
negative correlation is obtained.

Consider γ(1) and γ(2) vectors of positive constants and
dimensions N2 and M , respectively, with M ≥ N2. Assume
that ξ(1) = (ξ(1)1 · · ·ξ(1)N2 ) and ξ(2) = (ξ(2)1 · · ·ξ(2)M ) are in-

dependent random vectors such that ξ(1)i ∼ Γ(γ(1)i ,1) and

ξ(2)j ∼ Γ(γ(2)j ,1) for every 1 ≤ j ≤ M , and 1 ≤ i ≤ N2. Then

the covariance matrices of ξ(1) and ξ(2) are, respectively,

Γ1 = Diag
(
γ(1)1 , . . . , γ(1)N2

)
,

Γ2 = Diag
(
γ(2)1 , . . . , γ(2)M

)
.

(4)

Consider T an incidence matrix, that is, T is an N2 ×M
matrix such that Ti,j ∈ {0,1}. Defining the vector η = ξ(1)+
Tξ(2) it is possible to prove that

(1) the covariance matrix of η is Σ = Γ1 + TΓ2TT ;
(2) if α = (α1, . . . , αN2) is the diagonal of the covariance

matrix of η, then α = γ(1) + Tγ(2);
(3) denoting every element of Σ by σi,j , then

σi,i = γ(1)i +
M∑
k=1

Ti,kγ
(2)
k Ti,k,

σi,j =
M∑
k=1

Ti,kγ
(2)
k Tj,k;

(5)

(4) every component ηi has Γ(αi,1) distribution for every
1 ≤ i ≤ N2.

In thismanner, the vectorη has a correlatedGammadistribu-
tion with means α = (α1, . . . , αN2) and covariance matrix Σ.

In order to introduce different scale parameters, con-
sider the positive numbers β1, . . . , βN2 and the matrix B =
Diag (1/β1, . . . ,1/βN2). If Ψ = Bη, it is immediate that the
marginal distributions are ψk ∼ Γ(αk, βk). It is also possible
to see that the correlation between ψk and ψj is the same as
the correlation between ηk and ηj .

With these results, in order to generate Gamma correlated
deviates with a certain correlation structure, it is necessary to
derive the incidence matrix T as well as Γ (1) and Γ (2) in order
to have ηwith the desired correlation matrix Σ. An algorithm
for this is as follows:

(1) Define M = N2(N2 − 1)/2, Σ is the correlation ma-
trix and B is the diagonal matrix with the desired scale
parameters.
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(2) Choose γ(2) a vector of constants and T an incidence
matrix such that σi,j =

∑M
k=1 Ti,kγ

(2)
k Tj,k for i ≠ j.

(3) Generate random deviates from ξ(2)1 , . . . , ξ(2)M , that is,
independent samples from Γ(γ(2)i ,1) distributions.

(4) Define γ(1)i = σi,i −
∑M
k=1 Ti,kγ

(2)
k Ti,k, for every 1 ≤

i ≤ N2.
(5) Obtain samples of ξ(1)1 , . . . , ξ(1)N2 , that is, independent

deviates from Γ(γ(1)i ,1) random variables.
(6) Return Ψ = B(ξ(1) + Tξ(2)).
This method cannot yield negatively-correlated Gamma

random variables, and the shape parameters are imposed by
the desired correlations. Moreover, it is often numerically
instable.

2.2.2 Moving average filter method

This technique, due to Blacknell [12], is based on the use
of moving average filters over independent Gamma random
variables. The analysis of the filter is performed using the
moment generating function of the result.

If X ∼ Γ(α,β), then its moment generating function is
MX(s) = E(exp(Xs)) = (1− s/β)α.

Consider X = (X1, . . . , XN)T part of a weakly station-
ary process; if for every s = (s1, . . . , sN), with |s| < δ, it
holds that MX(s) = E(

∏N
j=1 exp (Xjsj)) < ∞, then MX is

called moment generating function of X. Note thatMXi(si) =
MX((0, . . . , si, . . . ,0)T ) for every si, therefore if marginal
Gamma distributions are sought for each Xi with shape and
scale parameters α and β, the following conditions must be
verified:

MX

(
(s,0, . . . ,0)T

)
= MX

(
(0, s, . . . ,0)T

)
= MX

(
(0, . . . , s)T

) = (1− s
β

)α
.

(6)

We also have that E(XiXj) = (∂/∂j)[(∂/∂i)MX(0)] and,
therefore, if the correlation ρj is desired at lag j, then it must
be imposed that,

ρj(X) = (∂/∂i)
[
(∂/(∂i+ j))MX(0)

]− E
(
X1
)2

Var
(
X1
) . (7)

The method proposed by Blacknell consists of obtain-
ing X as

∑R
r=1HT

r Yr , with R ≥ 1 finite, Hr being N × N
matrices and Y1, . . . ,YR independent random vectors, each
one formed by independent identically distributed random
variables obeying Gamma distributions such thatMX has the
required properties.

Now notice that if Y is anN-dimensional random vector,
H is an invertible matrix and X = HTY, then X has its mo-
ment generating function given by MX(s) = MY(Hs). Also
if Y1, . . . ,YR are independent random vectors, H1, . . . ,HR
are N × N matrices, and X = ∑R

r=1HT
r Yr , then MX(s) =∏R

r=1MYr (Hr s).
Given L such that 1 ≤ L ≤ N, define VL = {? =

(?1, . . . , ?N) : ?1 = 1, ?i ∈ {0,1}, ∑N
i=1 ?i = L}; then for

each ? ∈ VL, the circulant N ×N matrix H?,L is defined as

H?,L = 1
L


?1 ?2 · · · ?N
?N ?1 · · · ?N−1
...

... · · ·
...

?2 ?3 · · · ?1

 . (8)

These matrices have the property that rows and columns have
L nonzero values.

Consider Y = (Y1, . . . , YN)T a vector of uncorrelated
Yi ∼ Γ(aα/L,β/L) distributed random variables, then for
every t such that |t| < β/L, MY(t) =

∏N
i=1(1 − Lti/β)−aα/L.

Therefore, if X = H?,LY, one has that

MX

((
s1, . . . , sN

)T) = MY
(
H?,Ls

)
=

N∏
i=1

1− 1
β
L

 N∑
j=1

hi,jsj

−aα/L. (9)

Therefore, for each 1 ≤ k ≤ N, it holds that MX((0, . . . ,
sk, . . . ,0)T ) = (1 − sk/β)−αa because there are only L rows
where hi,k ≠ 0 and, thus, X obeys the correlated Gamma dis-
tribution with Xi ∼ Γ(aα,β). The coefficients of correlation
can be evaluated using (7), or from the moment generating
function at the desired lag j0:

MX
(
sk0 , sk0+j0

)= N∏
i=1

(
1− L

(
hik0sk0+hi(k0+j0)sk0+j0

)
β

)−aα/L
,

(10)

and comparing this function with the bivariate case, since

MX1,X2

(
s1, s2

)=[(1− s1
β

)(
1− s2

β

)]−α(1−ρ)(
1−

(
s1+s2

)
β

)−αρ
.

(11)

From this, it is immediate the identification of the coeffi-
cient ρ.

In both cases the obtainment of ρj as a function of a
and L is complicated, and only available in particular cases.
It is also noteworthy that it is not possible to establish a spe-
cific correlation with a single free parameter, so additional
parameters are required.

Finally, the algorithm for the generation of the vector X
with correlated Gamma distribution can be posed as

(1) Define ρ1, . . . , ρR the desired correlation coefficients
for the firstR lags,α and β are the shape and scale parameters
for the final marginal distributions, and N is the dimension
of the final vector.

(2) Define L1, . . . , Lm integers with 1 ≤ Li ≤ N and for
each of them let ?i ∈ VLi be such that they generate filters
H?1 , . . . ,H?m . These filters induce non-null autocorrelation
functions only in the first R lags.

(3) Calculate a1, . . . , am such that
1
ρ1
...
ρR

 = a1


1

ρ1
(
H?1Y1

)
...

ρR
(
H?1Y1

)

+· · ·+am


1
ρ1
(
H?mYm

)
...

ρR
(
H?mYm

)

 , (12)
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where Y1, . . . ,Ym are N-dimensional independent vectors,
with marginal distributions Yi,j ∼ Γ(aiα/L,β/L), for every
1 ≤ i ≤ R and every 1 ≤ j ≤ N.

(4) Return X =∑m
i=1H?i,LiYi.

Note that, since MX(s) = ∏m
r=1

∏N
i=1(1 − (L/β) ×∑N

j=1 hr,i,jsj)−arα/L, then it holds that MX((0, . . . ,
sk, . . . ,0)T ) = (1 − sk/β)−α and, therefore, X has marginal
Gamma distributions with the desired parameters α and β.

This algorithm is relatively simple, thoughmore andmore
expensive from the computational point of view as the num-
ber of non-null correlated random variables increases. This
limits its usefulness to “small” cases, where the biggest non-
null correlation lags are of order 2 or 3 at the most.

2.3. Transformation method

An alternative approach to the problem of generating out-
comes from correlated Gamma vectors is a method based in
three steps

(1) generating independent outcomes from a convenient
distribution;

(2) introducing correlation in these data;
(3) transforming the correlated observations into the de-

sired marginal properties [2].

The transformation that guarantees the validity of this proce-
dure is obtained from the cumulative distribution functions
of the data obtained in step (2) and from the desired set of
distributions. Recall that if U is a continuous random vari-
able with cumulative distribution function FU , then FU(U)
obeys a U(0,1) law and, reciprocally, if V obeys a U(0,1)
distribution, then F−1U (V) is FU distributed. In order to use
this method, it is necessary to know the correlation that the
random variables will have after the transformation.

In principle, there are no restrictions on the possible order
parameters values that can be obtained by this method, but
numerical issues must be taken into account. Another impor-
tant point is that not every desired final correlation structure
is mapped onto a feasible intermediate correlation structure.

Consider any α > 0 and let G be the cumulative distribu-
tion function of a Γ(α,α) distributed random variable

G(y) = (α)α

Γ(α)

∫ y
0
xα−1e−αx dx. (13)

Now let Φ be the cumulative distribution function of a stan-
dard Gaussian random variable (denote this distribution
N (0,1)). SinceU ∼N (0,1), then the variableG−1(Φ(U)) =
X ∼ Γ(α,α).

Consider now the N2-dimensional random vector
(U1, . . . , UN2) withN (0,Σ) distribution, where

Σ =


1 ρ1,2 · · · ρ1,N2

ρ1,2 1 · · · ρ2,N2

...
. . . · · ·

...
ρ1,N2 ρ2,N2 · · · 1

 (14)

with 0 ≤ |ρi,j| < 1, for every 1 ≤ i ≤ N2−1 and every i+1 ≤
j ≤ N2. Define for every 1 ≤ k ≤ N2 the random variable
Xk = G−1(Φ(Uk)); then X = (X1, . . . , XN2)T has a correlated
Gamma distribution with ρk,? = ρ(Xk,X?) = α(E(XkX?)−
1). Now

E
(
XkX?

) = ∫∞
−∞

∫∞
−∞

G−1
(
Φ
(
uk
))
G−1

(
Φ
(
u?
))

×φ2
(
uk,u?

)
duk du?,

(15)

where

φ2
(
uk,u?

)= 1

2π
√(

1−ρ2k,?
) exp

−u2
k−2ρk,?uku?+u2

?

2
(
1−ρ2k,?

)
.

(16)
The problem now consists of specifying the correla-

tion matrix Σ that yields the desired correlation structure
E(XkX?). Since the function G−1 is only available using nu-
merical methods, it is an approximation that may impose
restrictions to the use of this simulation method.

2.4. The sum of squared normals

It is known that the sum of the squares of n inde-
pendent identically standard Gaussian random variables
obeys a Gamma distribution with shape parameter n/2.
This is the basis for the method presented in this sec-
tion. This procedure, described for the bivariate case in
[13], is easily generalized to any finite number of Gamma
random variables. It has the disadvantage of only al-
lowing shape parameters taking values n/2 with n in-
teger, and of restricting the correlation between com-
ponents to being the square root of the final desired
correlation. In Section 2.5 this scheme will be ex-
tended to allow the use of convolution of Gaussian vec-
tors in a more general manner than the one presented
in [2], where it is used for the simulation of SAR
images.

Proposition 3. Consider the independent random vectors
ξ
1
, . . . , ξα, each of dimension N2, obeying the N (0,Σ) dis-

tribution, such that Σ is of the form

Σ = 1
2
Σ1, (17)

with Σ1 given in (14), 0 ≤ ρi,j < 1 for every 1 ≤ i ≤
N2 − 1 and i + 1 ≤ j ≤ N2. Consider η = ∑α

j=1 ξ
2
j , then

η = (η1, . . . , ηN2)T has correlated Gamma distribution with
ηi ∼ Γ(α/2,1) and with ρ2i,j as the correlation between ηi and
ηj , for every 1 ≤ i ≤ N2 − 1 and i + 1 ≤ j ≤ N2. Also if
β−11 , . . . , β−1N2 are positive integers and if B is the diagonal ma-
trix formed by these constants, then X′ = Bη has correlated
Gamma distribution with marginals Γ(α/2, βk) with correla-
tion between X′i and X′j given by ρ2i,j , for every 1 ≤ i ≤ N2 − 1
and i+ 1 ≤ j ≤ N2.

The proof of this proposition is given in Appendix A.
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2.5. Proposal: multivariate reduction

The lastmethodhas a restriction on the possible values for the
shape parameter, but it has the advantage of being easy to im-
plement. The aforementioned restriction may be of no prac-
tical importance for the applications that we bear in mind.
That method relies on the obtainment of correlated Gamma
random variables, with correlations that are the square root
of the desired value.

The use of convolution filters for the generation of such
correlated Gamma deviates is proposed in this work, using
independent normal random variables as input. A particular
case of this method was presented in [14]. The procedure can
be outlined as

(1) Generate independent normal observations.
(2) Choose the correlation as the square of a suitable

function E, defined on Z2.
(3) Calculate the mask θ that the convolution filter will

use, such that θ ∗ θ = E.
(4) Apply the convolution filter to the independent nor-

mal deviates, obtaining outcomes from the processes with
correlation E in each component.

(5) Return the sum of the squares of each normal deviate.
This procedure is valid for the family of functions E

such that
(1) Periodicity: E : Z2 → R is a periodic function with

fundamental period RN = {(s1, s2) : 0 ≤ s1, s2 ≤ N − 1}.
(2) Separability: there is a unidimensional periodic func-

tion E1 such that E(s1, s2) = E1(s1)E1(s2).
(3) There is a real characteristic function c such that

E1(s) =


c(s), 0 ≤ s ≤ N

2
,

c(N − s),
N
2
+ 1 ≤ s ≤ N − 1.

(18)

In this manner, this proposition extends previous results
since it allows the use of characteristic functions for the corre-
lation structure of the process. In order to have a real charac-
teristic function c(t) = ∫

eitx dF(x), the corresponding dis-
tribution F has to be symmetric around the origin. Distribu-
tions with complex characteristic functions can be translated
or reflected over the origin in order to obtain real valued char-
acteristic functions. Another interesting property is that if c is
a characteristic function, then so is |c|2. For a comprehensive
account of characteristic functions and their properties, the
reader is referred to [15, 16].

Proposition 4. There is a periodic function θ : Z2 → R with
fundamental period RN that satisfies

θ ∗ θ
(
s1, s2

) = N−1∑
t1=0

N−1∑
t2=0

θ
(
t1, t2

)
θ
(
s1 − t1, s2 − t2

)
= E

(
s1, s2

)
,

(19)

and such that

θ
(
s1, s2

) =

θ
(
N − s1, s2

)
if
(
s1, s2

) ∈ R2,
θ
(
s1, N − s2

)
if
(
s1, s2

) ∈ R3,
θ
(
N − s1, N − s2

)
if
(
s1, s2

) ∈ R4,
(20)

where R1 = {s : 0 ≤ s1, s2 ≤ N/2}, R2 = {s : N/2+ 1 ≤ s1 ≤
N − 1, 0 ≤ s2 ≤ N/2}, R3 = {s : 0 ≤ s1 ≤ N/2, N/2 + 1 ≤
s2 ≤ N − 1}, and R4 = {s : N/2+ 1 ≤ s1, s2 ≤ N − 1}.

Theproof of this proposition canbe found inAppendix B.

Definition 5. Consider ζk, 1 ≤ k ≤ 2α, are independent
Gaussian white noise periodic stochastic processes with fun-
damental period RN . Define ξk, 1 ≤ k ≤ 2α, as peri-
odic processes with fundamental period RN , as ξk(s1, s2) =
(θ ∗ ζk)(s1, s2).

Proposition 6. The processes ξk as previously defined satisfy
the following properties:

(1) ξk(s1, s2) ∼ N(0, (θ ∗ θ)(0,0)/2), that is, ξk are
stochastic processes with Gaussian marginals with zero mean
and variances 1/2.

(2) E(ξk(0,0)ξk(s1, s2))=(θ∗θ)(s1, s2)/2=E(s1, s2)/2.
(3) ρ(ξk(0,0), ξk(s1, s2)) = E(s1, s2).

The proof of this proposition can be seen in Appendix C.

Definition 7. Define the periodic stochastic process η with
fundamental period RN as η(s1, s2) =

∑2α
k=1 ξ2k(s1, s2) for ev-

ery (s1, s2) ∈ RN , and assume β > 0. The periodic stochastic
process σ is defined as σ(s1, s2) = (1/β)η(s1, s2) for every
(s1, s2) ∈ RN .

Proposition 8. The following properties hold:
(1) The process η is a weakly stationary stochastic pro-

cess with correlated Gamma distribution such that η(s1, s2) ∼
Γ(α,1).

(2) The process σ is a weakly stationary stochastic process
with correlated Gamma distribution such that

(a) σ(s1, s2) ∼ Γ(α,β), then E(σ(s1, s2)) = α/β and
Var(σ(s1, s2)) = α/β2.

(b) The coefficient of correlation at lag(s1, s2) is
ρ(σ(s1,s2), σ(0,0)) = E2(s1, s2).

The proof of this proposition is presented inAppendix D.

2.6. Summary

Table 1 presents the main properties of the presented
methods for the generation of correlated multidimensional
Gamma random variables. It is important to note here that
no computational comparison amongst methods was per-
formed, since the ones already available in the literature are
less general or much more difficult to implement than our
proposal, or both.

3. SIMULATING HETEROGENEOUS IMAGES

The general method presented in previous sections was im-
plemented using the following algorithm:

(1) Generate the Gaussian white noises ζk, with variance
1/2 for every 1 ≤ k ≤ 2α.

(2) Define a convenient function E1, obeying the afore-
mentioned conditions.

(3) Compute ψ2(s1, s2) =
√F(E1)(s1) · F(E1)(s2), the

frequency domain mask.
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Table 1: Main features and limitations of multivariate simulation
of correlated Gamma random variables.

Method Features Limitations

Incidence
matrix

Generalises
bivariate
generation

Nonnegative correlation,
generation shape param-
eters induced by correla-
tion structure, numerical
instabilities

Moving average Simple Long length correlation
structures are hard to
implement

Transformation Very general Numerical instabilities

Sum of normals Simple Restricted to simple sit-
uations, nonnegative cor-
relation, restricted scale
parameters

Multivariate
reduction

Very general Nonnegative correlation

(4) Calculate ξk = F−1(ψ2 · F(ζk)), for every 1 ≤ k ≤
2α.

(5) Obtain σ = β−1
∑2α
k=1 ξ2k .

(6) Generate independent random variables identically
distributed as Γ(n,n),wheren is the desired equivalent num-
ber of looks, Y .

(7) Return Z = σ · Y .
In this algorithm F(U) and F−1(U) represent the direct

and inverse Fourier transforms, respectively, of the input U ,
usually computed using routines based on the fast Fourier
transform algorithm. It is noteworthy that the bigger the pa-
rameter α, the slower will be the execution of this proce-
dure.

The return simulated with this procedure obeys an inten-
sityK distribution, characterized by the density

fZ(z) = 2βn
Γ(α)Γ(n)

(βnx)(α+n)/2−1Kα−n
(
2
√
βnx

)
, (21)

where z,α,β,n > 0 and Kv is the modified Bessel function
of the third kind and order ν. This is the distribution of a
random variable obtained as the product of two independent
randomvariables that obey Γ(n,n) and Γ(α,β)distributions.
This distribution has been consecrated in the SAR literature
as an excellent model for heterogeneous and homogeneous
targets.More details about this andother distributions arising
from the multiplicative model can be seen in [1]. Examples
of this density are shown in Figures 4 and 7 for the n = 3 and
n = 1 cases, respectively.

The use of this technique will be illustrated with three
particular (useful and widely employed) characteristic func-
tions: normal, sinc, and exponential functions. Though all the
examples shown belong to the family of parametric correla-
tion structures, the method here presented allows simulating
nonparametric situations, provided the restrictions on the
function E are respected.

Figure 2: Simulated σ fields obeying Γ(α,1) distributions with
normal correlation,α varying in the rows and correlation lag varying
in the columns.

The adequacy of the simulation procedures was checked
comparing desired correlation structures with the observed
ones, for a variety of parameters, and the results are compat-
ible with the theory. Detailed results on estimation proce-
dures for the spatial dependence of SAR data will be reported
elsewhere; it is an active research area where the simulation
procedure here presented will be used. It is noteworthy that
the simulated fields show a striking resemblance with those
from real targets (cf. [1, 2, 17]).

3.1. Normal case

Consider the generation of random fields with a correlation
structure given by the Gaussian function

E1(s) = exp

(
− s2(

2?2
)), 0 ≤ s ≤ N

2
. (22)

Figure 2 shows sixteen simulated Γ(α,1) fields of size
128 × 128 each with varying shape parameter α (rows with
α ∈ {0.5,1,1.5,2}) and correlation length ? (columns with
? ∈ {1,2,4,8}). Figure 3 shows the images that should be re-
turned by a three-looks system, corresponding to the truth
images shown in Figure 2. The marginal densities corre-
sponding to these return images ((21) with β = 1 and n = 3)
are shown in Figure 4.

3.2. Sinc case

Consider the generation of random fields with a cor-
relation structure given by the sinc function E1(s) =
sin(?s/2)/(?s/2).

Figure 5 shows sixteen simulated Γ(α,1) fields of size
128× 128 each, with varying shape parameter α (rows with
α ∈ {0.5,1,1.5,2}) and correlation length ? (columns with
? ∈ {8,4,2,1}). Figure 6 shows the images that should be
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Figure 3: The observed data, with three looks and the normally
correlated ground truth.
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Figure 4: Marginal densities of the simulated three-looks Z pro-
cesses: K(α,1,3), with α ∈ {0.5,1,1.5,2} (solid, dash, dots, dot-
dash).

returned by a one-look system, corresponding to the truth
images shown in Figure 5. The marginal densities corre-
sponding to these return images ((21) with β = n = 1) are
shown in Figure 7.

3.3. Exponential case

Consider the generation of random fields with a correla-
tion structure given by the exponential function E1(s) =
exp(−|s|/?), ? > 0.

Figure 8 shows sixteen simulated Γ(α,1) fields of size
128× 128 each, with varying shape parameter α (rows with
α ∈ {0.5,1,1.5,2}) and correlation length ? (columns with
? ∈ {1,2,4,8}). Figure 9 shows the images that should be
returned by a one-look system, corresponding to the truth
images shown in Figure 8. The marginal densities of the re-
turn are those presented in Figure 7.

Figure 5: Simulated σ fields obeying Γ(α,1) distributions and sinc
correlation,α varying in the rows and correlation lag varying in the
columns.

Figure 6: The observed data, with one look and sinc correlated
ground truth.

4. CONCLUSIONS

Methods for the generation of correlated Gamma fields have
been presented and discussed, aiming at the simulation of
correlatedK fields for the simulation of images corrupted by
speckle noise. Moving averages has the advantage of allowing
any shape parameter and a wide variety of autocorrelation
functions but, in practice, it is too cumbersome to be imple-
mented but in very simple situations. Methods based on ran-
dom variables transformations are also very general and have
the least restrictions of all the techniques considered, but they
rely on numerical approximationswhich are seldom effective.
The sum of squares of Gaussian random variables limits the
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Figure 7: Marginal densities of the simulated one-look Z processes:
K(α,1,1), with α ∈ {0.5,1,1.5,2} (solid, dash, dots, dot-dash).

Figure 8: Simulated σ fields obeying Γ(α,1) distributions and ex-
ponential correlation, α varying in the rows and correlation lag
varying in columns.

shape parameters to halves of integers, but if this restriction
is of little or no significance, it is the recommended method.

A family of autocorrelation functions was proposed in
this article, and a simulation methodology was presented for
it. Members of this family have been previously used for the
modelling of forest data [18], assuming that the spatial cor-
relation decays exponentially at distance ?. Simulations were
presented for several parameter values and three particular
cases.

APPENDIX A: PROOF OF PROPOSITION 3

Proof. Some useful and well-known results are
(1) If ξ ∼N (0,1/2), then ξ2 ∼ Γ(1/2,1).
(2) Consider the independent identically distributed ran-

dom variables ξ1, . . . , ξα obeying the N(0,1/2) law, then
ξ21 + · · · + ξ2α ∼ Γ(α/2,1).

Figure 9: The observed data, with one look and exponentially cor-
related ground truth.

(3) Consider ξ = (ξ1, . . . , ξN2)t an N2-dimensional
vector with N (0,Σ) distribution, where Σ is as given
in (17). Let ξj = (ξ1,j , . . . , ξN2,j)t , with 1 ≤ j ≤ α, be

N2-dimensional independent random vectors, each having
an N (0,Σ) distribution, with Σ of the form given in (17).
Define η = ∑α

j=1 ξ
2
j = (

∑α
j=1 ξ21,j , . . . ,

∑α
j=1 ξ2N2,j)

t and let

ηi =
∑α
j=1 ξ2i,j , with 1 ≤ i ≤ N2. Then ηi ∼ Γ(α/2,1), with

E(ηj) = α/2 and Var(ηj) = α/2. In other words, η has a
correlated Gamma distribution.

In order to compute the correlation between ηi and ηj ,
we verify first that if (U,V) is an N ((0,0),Σ) distributed
vector with covariance matrix of the form

Σ =
 σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

 , (A.1)

then E(U2V2) = σ2
1σ

2
2 (1 + 2ρ2). Using this, since

Cov(ηi, ηj) = E(ηiηj) − E(ηi)E(ηj), and E(ηj) = E(ηi) =
α/2, we must compute E(ηiηj). Using the fact that the vec-
tors ξj are independent, the previous result and the fact that

E(ξ2i,k) = 1/2, we have

E
(
ηiηj

)=E
 α∑
h=1

ξ2i,h
α∑
k=1

ξ2j,k

= α∑
h=1

α∑
k=1

E
(
ξ2i,hξ

2
j,k

)

=
α∑

h=1
E
(
ξ2i,hξ

2
j,h

)
+

α∑
h=1

∑
k≠h

E
(
ξ2i,k

)
E
(
ξ2j,k

)
= αE

(
ξ2i,iξ

2
j,i

)
+α(α− 1)E

(
ξ21,1

)2
= α

4

(
1+ 2ρ2i,j

)
+α(α− 1)

1
4

= α
4

(
α+ 2ρ2i,j

)
.

(A.2)

Then Cov(ηi, ηj) = (1/4)α2 + (α/2)ρ2i,j − (α2/4) =
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(α/2)ρ2i,j , so

ρ
(
ηi, ηj

) = Cov
(
ηi, ηj

)√
Var

(
ηi
)
Var

(
ηj
) = (α/2)ρ2i,j

α/2
= ρ2i,j . (A.3)

Summarizing, consider η = (η1, . . . , ηN2)t is an N2-
dimensional vector with ηj ∼ Γ(α/2,1) and with ρ(ηi, ηj) =
ρ2i,j . If B = Diag(β−11 , . . . , β−1N2)withβi > 0 andX′ = Bη, then

ηi ∼ Γ(α/2, βi) and Cov(X′i , X
′
j) = Cov(ηi, ηj) = ρ2i,j .

APPENDIX B: PROOF OF PROPOSITION 4

Proof. We prove that there exists θ1 : Z → R with period
R = {0, . . . , N − 1} such that

(1) θ1∗θ1(s1) =
∑N−1
j=0 θ1(j)θ1(s1−j) = E1(s1) for every

s1 ∈ Z,
(2) θ1(s1) = θ1(N − s1), if (N/2)+ 1 ≤ s1 ≤ N − 1.

If such θ1 exists, it suffices to define the function θ in
separable form, that is, θ(s1, s2) = θ1(s1)θ1(s2) in order to
hold the proposition.

Using Lemma 9, the Fourier transform of E1

Ê1
(
s1
) = 1

N

N−1∑
k=0

E1(k)ω∗
s1k,N (B.1)

is a real positive function, then we can define the periodic

function ψ as ψ =
√
Ê1. This function satisfies that ψ(k) =

ψ(N − k), since

Ê1(N − k) = 1
N

N−1∑
?=0

E1(?)ω∗
(N−k)?,N

= 1
N

N−1∑
?=0

E1(N − ?)ω∗
(N−k)?,N

= Ê1(k).

(B.2)

In order to obtain this result, the properties of the unit roots
and the definition of E1 are used.Consider nowθ1, the inverse
Fourier transform of ψ is given by

θ1
(
s1
) = ψ̃

(
s1
) = N−1∑

k=0
ψ(k)ωks1,N . (B.3)

Then, by the properties of the periodic Fourier transform and
the definition of θ1, ,θ1 ∗ θ1 = θ̂1θ̂1 = ˆ̃ψ· ˆ̃ψ= ψ ·ψ = Ê1,
and by the unicity of the transform one has that θ1∗θ1 = E1
verifying, thus, the first condition.

The second condition stems from the fact that the inverse
Fourier transform always satisfies that ψ̃(N−k) = ψ̃(k)∗ for
every 0 ≤ k ≤ N − 1, and that

ψ̃(k)∗ =
N−1∑
?=0

ψ(l)ω∗
k?,N

=
N−1∑
?=0

ψ(N − l)ω(N−?)k,N = ψ̃(k).
(B.4)

From these, one has that θ1(s1) = θ1(N − s1) if N/2 + 1 ≤
s1 ≤ N − 1.

Lemma 9. The Fourier transform of E1, given by Ê1(s1) =
(1/N)

∑N−1
k=0 E1(k)ω∗

s1k,N , is a real positive function.

Proof. We will check that Ê1 is a real positive function. Re-
member that E1(j) = c(j), for every 0 ≤ j ≤ N/2 and
E1(N − j) = c(N − j) in every 1 ≤ j ≤ N/2 − 1, with c
a real characteristic function. Since c is a positive definite
function, then

M =


E1(0) E1(1) · · · E1(N − 1)

E1(N − 1) E1(0) · · · E1(N − 2)
...

...
. . .

...
E1(1) E1(2) · · · E1(0)

 (B.5)

is a circulant positive definite matrix. Therefore (see [19]), its
eigenvalues are positive real numbers. These eigenvalues are,
for every 0 ≤ j ≤ N − 1, given by λj =

∑N−1
k=0 E1(k)ω∗

jk,N =
NÊ1(j) > 0 and, therefore, Ê1 is a real positive function.

APPENDIX C: PROOF OF PROPOSITION 6

Proof. Since the periodic convolution is a finite linear com-
bination, the processes ξk obey Gaussian distributions since
the processes ζk are independent white noise Gaussian pro-
cesses. In order to verify the second item, the same reason is
used along with the definition of θ,

E
(
ξk(0,0)ξk

(
s1, s2

))
= E

∑
t,n

ζk
(
t1, t2

)
θ
(
s1−t1, s2−t2

)
ζk
(
n1, n2

)
θ
(−n1,−n2

)
=
∑
t,n

θ
(−n1,−n2

)
θ
(
s1−t1, s2−t2

)
E
(
ζk
(
t1, t2

)
ζk
(
n1, n2

))
=
∑
n
θ
(−n1,−n2

)
θ
(
s1−n1, s2−n2

)
E
(
ζk
(
n1, n2

)
ζk
(
n1, n2

))
= 1
2

∑
n
θ
(
n1, n2

)
θ
(
s1 −n1, s2 −n2

)
= 1
2
(θ ∗ θ)

(
s1, s2

) = 1
2
E
(
s1, s2

)
.

(C.1)

Also note that ρ(ξ(0,0), ξ(s1, s2)) = E(s1, s2).

APPENDIX D: PROOF OF PROPOSITION 8

Proof. Note that the processes ξ1, . . . , ξ2α are independent
weakly stationary Gaussian processes, each with

(1) ξk(s1, s2) ∼N (0,1/2),∀ (s1, s2) ∈ RN ,
(2) E(ξk(s1, s2)ξk(t1, t2)) = (1/2)E(s1 − t1, s2 − t2).

Applying Proposition 3 to ξk in RN , we obtain the cor-
related Gaussian process η with η(s1, s2) ∼ Γ(α,1). Anal-
ogously, σ is a periodic process with correlated Gamma
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distribution and σ ∼ Γ(α,β), with coefficients of correla-
tion given by

ρ
(
σs1,s2 , σ(0,0)

) = ρ
(
η
(
s1, s2

)
, η(0,0)

)
= ρ2

(
ξ
(
s1, s2

)
, ξ(0,0)

)
= E2

(
s1, s2

)
.

(D.1)
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