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Special system identification algorithms are required if there are significant amounts of data missing. Some such algorithms
have been developed previously and typically result in iterative procedures for the parameter estimation. Since missing data can
be viewed as irregular sampling (decimation) of the signals, it is obvious that there is a risk for aliasing. In system identification
aliasing manifests itself as potential multiple global optima of the identification loss function. The aim of this paper is to investigate
under what circumstances this may in fact occur. The focus of the paper is on periodic missing data patterns. It is shown that it
is, in fact, not the fraction of missing data that is important, but rather what time lags of the input and output correlation and
cross-correlation functions that can be estimated. For ARX models with all input data observed we verify that there is indeed only
one global optimum.
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1. INTRODUCTION

Surprisingly often data sets used for system identification are
incomplete. Some observations are missing, either accord-
ing to a periodical pattern or at random. Examples of ran-
domly missing data include sensor failures, outliers and tem-
porary plant shutdown. Periodically missing data appear, for
instance, in time sharing of sensors, radar scans, and mul-
tirate sampling. As identification experiments are expensive
and time consuming, methods that can cope with missing
data are attractive. They make it possible to use all data sets
that are available.

The missing data problem has been studied extensively
in statistics, but less so in engineering literature. A survey of
the research in statistics is given in the book by Little and
Rubin [1]. Estimation of ARMA models is studied in [2, 3, 4],
estimation of AR models in [5, 6, 7, 8]. In the engineering
literature we find [9, 10, 11, 12, 13, 14, 15, 16].

The specific problem studied in this paper is the existence
of multiple global optima of the system identification pro-
cedure. That multiple optima can occur is obvious realizing
that missing data can be viewed as sampling (or decimation),
albeit often irregular, of the signals. Hence, the sampling the-
orem indicates that aliasing may occur. It is, however, not

entirely obvious for what combinations of missing data pat-
tern and model order there may be more than one system
that optimally predicts the observed data.

The problem with multiple optima is important as we
do not want to estimate a model that predicts an incorrect
spectral behaviour. This paper presents some results for linear
time invariant systems with and without input and gives some
examples for autoregressive (AR) and autoregressive models
with an exogenous input (ARX).

2. MOTIVATING EXAMPLES

The estimate of AR model parameters is unique when all data
is observed and the model order is chosen correctly [17]. This
section presents two examples showing that there may indeed
be more than one solution when data is missing.

Example 1. Consider a first-order AR model. It is described
by the difference equation

yk + ayk−1 = ek, (1)

where e is white Gaussian noise of variance λ. Now assume
that only every second data point is observed. We will describe
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such a periodic pattern with the notation {10}, where 1 means
that the data point is observed and 0 means it is missing. A
difference equation in observed data only is

yk+1 − a2yk−1 = ek+1 − aek. (2)

This is in fact also a first-order AR model. As we only can
estimate a2, it is obviously impossible to tell if the data is
coming from the model with parameter −a or a.

Example 2. The second-order AR model

yk − 1.07yk−1 + 0.49yk−2 = ek (3)

has poles in 0.54 ± i0.45. Figure 1 is a contour plot of the
likelihood function versus locations of the pole in the upper
half plane. Four hundred data points are observed. We clearly
see two maxima for poles located in 0.55+i0.45 and−0.55+
i0.45.

The results in Examples 1 and 2 actually follow directly
from the sampling theorem, since the pattern {10} is simply
decimation. Hence the Nyquist frequency is reduced a fac-
tor two. In the z-domain this corresponds to complex poles
with an angle in [−π/2, π/2] to the positive real axis. Of
much more interest are irregular patterns like, for example,
{1010000}. When can we expect multiple optima of the like-
lihood function in such cases?

3. MAXIMUM LIKELIHOOD ESTIMATION

The optimal way of estimating model parameters (with or
without missing data) is the maximum likelihood method.
The aim is to find model parameters that maximize the prob-
ability that the data come from this model.

To derive the likelihood function we need the probability
density function for the observed data. For linear models
the probability density function can be found by putting the
model into state-space form and using the Kalman predictor,
as is shown in [2, 3]. For Gaussian noise the prediction errors
produced by the Kalman predictor are mutually independent
and Gaussian. The likelihood function is then given by

fθ(ζ) =
∏
k∈O

1√
2π detSk

× exp
{
− 1

2

(
ζk − ζ̂k

)T S−1
k
(
ζk − ζ̂k

)}
.

(4)

The set O denotes all the time instants where output data,
ζk, are observed and Sk is the covariance of the prediction
errors.

One way of computing the likelihood function when both
outputs and inputs are missing (if we do not want to treat the
missing inputs as parameters) is to introduce an input model
as in Section 3.1.

3.1. Linear stochastic models

Most linear finite state stochastic models can be written on
innovation form
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Figure 1: Contour plot of the likelihood function versus the pole
location in the upper half plane.

xk+1 = Axk + Buk + Fnk,
yk = Cxk +nk,

(5)

where at time k, yk is the output, uk is the input and nk is
white noise. Some examples of frequently used models where
this is possible include OE,ARX,ARMAX,and BJ. If we extend
the model with a time series input model, for example, AR or
ARMA, it is still possible to write the model on innovation
form with different matrices A, C, and F . Then, we get a
multivariate time series where the output, zk, and the noise
vector, nk, are

zk =
[
yk
uk

]
, nk =

[
vk
γk

]
. (6)

The model is an innovation form, without an input matrix B

xk+1 = Axk + Fnk, zk = Cxk +nk. (7)

The noise vector has variance

Λ =




λ for system (5),
λ 0

0 σ


 for system (7).

(8)

If only some outputs are measured, we can introduce the
matrixDk that picks out the outputs that actually are observed
at time k. For the system (5),Dk is

Dk =

1, if yk is observed,

empty, otherwise,
(9)

and for the system (7)

Dk =





1 0

0 1


 , if yk and uk are observed,

[
1 0

]
, if only yk is observed,

[
0 1

]
, if only uk is observed,

empty, otherwise.

(10)
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An empty matrix has dimension zero. Whenever such a ma-
trix appears in an equation it may be omitted. Also, if a matrix
is multiplied by an empty matrix the resulting one is empty.
This results in the time-varying state-space model

xk+1 = Axk + Buk + Fnk,
ζk = DkCxk +Dknk = C̄kxk +Dknk.

(11)

Of course, B is an empty matrix for the system (7). One
possible state-space form for an ARX model with an AR input
model is given in [14]. This is what is used in the examples at
the end of this paper.

3.2. The Kalman predictor

The Kalman predictor for the system (11) is given by (cf. [18,
pages 429–430])

x̂k+1 =
(
A−KkC̄k

)
x̂k + Buk +Kkζk,

ζ̂k = C̄kx̂k,
(12)

where Kk is given by

Kk =
(
APkC̄Tk + R12k

)(
C̄kPkC̄Tk + R2k

)−1,

Pk+1 = APkAT + R1 −Kk
(
C̄kPkAT + RT12k

)
.

(13)

The matrices R1, R12k , and R2k are

R1 = FΛFT , R12k = FΛDTk , R2k = DkΛDTk . (14)

Often we have no information about the initial state of the
Kalman filter. It is then usually chosen to be zero. The output
of the Kalman predictor ζ̂k may, in that case, be expressed as
(see [19, pages 392–393])

ζ̂k =




0, k = 0,
k−1∑
j=0

C̄kΦk,j+1
(
Kjζj + Buj

)
, k ≥ 1,

(15)

Φk,j =




k−1∏
i=j

(
A−KiC̄i

)
, k ≥ j + 1,

I, k = j.
(16)

As Kj is an empty matrix when the output is not observed, it
follows from (15) that ζ̂k is a function of observed data only.

Periodic Kalman predictor

If data is observed in an M-periodic pattern and the realiza-
tion is minimal, the Kalman predictor converges to a periodic
steady state predictor with period M [20]. Each position, p,
in the observation pattern corresponds to a constant Pp and a
constantKp . The steady state Kalman predictor consequently
has the following properties:

Pp+iM = Pp,
Kp+iM = Kp,

Φk+iM,j+iM = Φk,j ,
(17)

where i is an integer andp ∈ [0,M−1]. Methods to compute
the periodic steady state Kalman predictor are given in [20].
The case that all data is observed is a special case withM = 1.

4. SUFFICIENT STATISTIC

The main vehicle to the analysis of why two systems may be
equally likely to have produced the data observed will be the
notion of sufficient statistic. A statistic is said to be sufficient
if it contains all the information in y that is useful for esti-
mating θ. The probability density function of the prediction
errors of the Kalman predictor is multivariate Gaussian as is
seen in (4). This is an exponential family distribution as it
can be written in the form

fθ(y) = a(y)c(θ) exp

[ k∑
i=1

πi(θ)ti(y)
]
, (18)

where t = (t1, t2, . . . , tk) is the sufficient statistic [21]. In
the exponential family, any statistic that is sufficient is also
minimal.

The significance of the sufficient statistic concept is that
the maximum likelihood estimate can be computed equally
well from the sufficient statistic as from data directly. We are
now ready to present the main result of this paper.

Result 3. For systems (5) and (7), where data is observed in
a periodical pattern, one sufficient statistic are all lags of the
sample correlation and sample cross-correlation functions of
the input and output, that can be obtained from data.

Derivation. If we have measurements from k = 1 to k = N
and data is observed in a periodical fashion, the number of
data points in position p of the M-periodic observation pat-
tern is

Np = INT
(
N − p
M

)
, (19)

where INT(·) is the integer part of (·). Equation (4) may now
be written as

fθ(ζ) =
∏
p∈P

1(
2π detSp

)Np/2

× exp

{
− 1

2

∑
p∈P

Np−1∑
i=0

(
ζp+iM − ζ̂p+iM

)T

× S−1
p
(
ζp+iM − ζ̂p+iM

)}
,

(20)

where the set P denotes the observed positions in the M-
periodic pattern. To find a sufficient statistic we only have to
rearrange the terms of the exponent of equation (20).

If we, instead of the true Kalman predictor, use the peri-
odic Kalman predictor we do not get the true likelihood func-
tion but the difference is very small (caused by a transient).
The terms ζ̂k are linear functions of older data according to
equation (15). The coefficients in the sum in the exponent of
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equation (20) are periodic as the predictor is periodic. The
sum can thus be divided into smaller sums with a constant
coefficient in front of each sum. Doing so we see that one
sufficient statistic is sums of the type

coefficient
∑
ζk+τζTk , (21)

and for the system (5) we also get sums of the type

coefficient
∑
uk+τuk, coefficient

∑
ζk+τuk. (22)

This is sample correlations and sample cross-correlations of
the input and output signals.

Remarks. (1) Two cases where the sufficient statistic actu-
ally is not all lags of sample correlation and cross-correlation
functions is AR and ARX models when all data is observed
and AR(1) models where every Mth sample of the output is
observed. The reason for this is that the transition matrix,
Φk,k+M , is nilpotent in those cases.

(2) Two models are equally likely if the data they produce
fits the correlation and cross-correlation functions equally
well.

(3) In [22] it is shown that, irrespective of if data is miss-
ing in a periodic pattern or at random, a signal can be recon-
structed if the sampling frequency is high enough. Define the
fraction of the observed data, γ, as

γ = lim
N→∞

Nobs

N
. (23)

If we observe a fraction γ of the data, the Nyquist frequency
decreases a factor γ. Maximum likelihood estimation of the
model parameters can (at least asymptotically) be viewed as
sampling of the correlation functions. It is consequently the
fraction, γ, of observed lags of the correlation functions that
decide if there can be any aliasing effects. Hence, if the iden-
tification is restricted to searching for systems with poles in
[−γπ,γπ] to the positive real axis, the absence of alias sys-
tems is guaranteed. We could apply Marvasti’s nonuniform
sampling theorem to the missing correlation pattern. How-
ever, this seems to be a bit too conservative. Some combina-
tions of model orders and missing correlation patterns result
in a unique maximum of the likelihood function even though
Marvasti’s theorem says that there is a possibility that there
may be more than one correlation function that fit the ob-
served lags equally well. The reason is that the flexibility of
the correlation function is limited by the model order.

(4) It is the sampling of correlations and not the sampling
of data that is important. This gives a more generous bound
on when alias effects can occur. Take, for example, a signal
with the missing data pattern {11010}, we are observing three
out of five data points. The missing correlation pattern is,
however, 〈11111〉. So, even though we only have 60 percent
of the data we can calculate all sample correlations.

(5) Randomly missing data, if we assume that every sam-
ple has a positive likelihood to be observed, will not cause a
problem. Asymptotically we can consistently estimate all lags
of the correlation functions.
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Figure 2: Contour plot of the log-likelihood values, as a function of
a1 and a2, with observations according to the pattern {110}. Levels
from −546 to −164 with the increment 20.

5. EXAMPLES

In the next examples the second-order AR model

yk − 1.0725yk−1 + 0.49yk−2 = ek, (24)

with noise variance 0.3662 is used. The noise variance is cho-
sen to give ry(0) = 1. In all the examples four hundred data
points are observed. In the plots of the maximum likelihood
function λ is scaled to give an ry(0) = 1.

If we use the Yule-Walker equations to express the auto-
correlations in the model parameters, we get

ry(0) =
(
1+ a2

)
λ(

1+ a2
)(

1− a2
2

)− a2
1

(
1− a2

) ,

ry(1) = −a1λ(
1+ a2

)(
1− a2

2

)− a2
1

(
1− a2

) ,

ry(k) = −a1ry(k− 1)− a2ry(k− 2) for k ≥ 2.

(25)

5.1. Observation pattern {110}
We observe two thirds of the data points, but we can estimate
all lags of the autocorrelation function. As the parameter es-
timation problem can be looked upon as sampling of the au-
tocorrelation function the maximum likelihood function has
only one unique maximum. This is verified in Figure 2. The
triangle in the figure is the stability triangle. All points above
the curve in the triangle correspond to complex conjugated
poles and all points below correspond to two real poles.

5.2. Observation pattern {101000}
The observation pattern {101000} illustrates that there can
be more than one global maximum of the likelihood function.
We have the missing autocorrelation pattern 〈101010〉. It is
easy to see from (25) that the autocorrelations for even time
lags are the same irrespective of if a1 < 0 or if a1 > 0. We get
two AR models that match the sample autocorrelations just
as well.

A plot of the log-likelihood function is shown in Figure 3.
The estimated parameters and the values of the log-likelihood
function are shown in Table 1. There are two global maxima
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Table 1: Parameter estimates and log-likelihood when data is ob-
served according to the pattern {101000}.

a1 a2 λ Log-likelihood

−1.0129 0.4258 0.3880 −360.03

1.0129 0.4258 0.3880 −360.03
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Figure 3: Contour plot of the log-likelihood values, as a function
of a1 and a2, with observations according to the pattern {101000}.
Levels from −364 to −398 with the increment 4.

and one local. The local maximum has a value of −368.86.
Local maxima are undesired as most numerical algorithms
are only guaranteed to converge to a local, not a global, max-
imum.

5.3. Observation pattern {100}
The third example illustrates that the wrong model can be
more probable than the real one if the number of data points
is low. We have the observation pattern {100}. There are no
multiple solutions of (25) evaluated at every third time lag but
there are three models that match the data almost equally well
(Table 2 and Figure 4). That it is indeed the autocorrelations
that make the models almost equally probable is illustrated
in Figure 5.

5.4. Observation pattern {1010000}
Another example where the local maximum has almost
the same value as the global one is the observation pat-
tern {1010000}. The missing autocorrelation pattern is
〈1010010〉. The estimated parameters and the log-likelihood
values are shown in Table 3 and a plot of the log-likelihood
function is given in Figure 6.

5.5. Examples for models with input

In this section, we consider the ARX model

yk = −ayk−1 + buk−1 + vk (26)

with input AR model

uk = −cuk−1 + γk. (27)

The variance of the noise vk is λ and the variance of the noise

Table 2: Parameter estimates and log-likelihood when data is ob-
served at every third time sample.

a1 a2 λ Log-likelihood

−1.0774 0.4890 0.3449 −374.25

−0.0521 0.4879 0.7233 −374.17

1.0761 0.4491 0.3406 −374.53
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Figure 4: Contour plot of the log-likelihood values, as a function of
a1 and a2, with observations according to the pattern {100}. Levels
from −410 to −377 with the increment 3.

γk is σ . A state-space representation of the form (5) for the
system is

xk+1 =

−a b

0 −c


xk +


vk
γk


 ,


yk
uk


 =


−a b

0 −c


xk +


vk
γk


 .

(28)

5.6. Missing output pattern {10} and missing input
pattern {01}

Assume the observation pattern {10} for the outputs and
{01} for the inputs. At each time instant either an input or an
output is observed. As a result only even lags for the autocor-
relation of output and input can be obtained from data. For
the cross-correlation instead only odd lags can be obtained.
The correlation matrices for zk are

rz(0)=



λ
(
1−c2

)
(1−ac)+σb2(1+ac)(

1−c2
)
(1−ac)(1−a2

) − σbc(
1−c2

)
(1−ac)

− σbc(
1− c2

)
(1− ac)

σ
1− c2


,

rz(τ) =

 ry(τ) ryu(τ)
ryu(−τ) ru(τ)




= Aτrz(0)

=

−a b

0 −c



τ

rz(0), τ ≥ 0.

(29)
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Figure 5: The autocorrelations that can be estimated for the three
models with every third data point observed.

Table 3: Parameter estimates and log-likelihood when data is ob-
served according to the pattern {1010000}.

a1 a2 λ Log-likelihood

−1.0387 0.4435 0.3918 −380.98

0.4000 −0.1414 0.7784 −382.44

If we examine rz(τ) for the entries that can be estimated
we see that a and c always appear with an even exponent or
in a product of two odd exponents between them. Hence, it
is impossible to distinguish the pair (−a,−c) from the true
values (a, c). As an example the parameters

a = −0.5, b = 1, c = −0.7 (30)

are chosen. In Figure 7, the log-likelihood function of one
data realization (with 200 time instants) is plotted as a func-
tion of a and c (while b, λ, and σ assume their true values).
The two global maxima are clearly visible.

5.7. Missing output pattern {10} and missing
input pattern {10}

Here we consider the system (26) and (27) again. The out-
put and input are observed according to the missing data
pattern {10} only even lags of the autocorrelation functions
and cross-correlation functions from input and output can
be obtained. For those lags the parameters a, b, and c appear
in combinations that makes it impossible to distinguish the
triplet (−a,−b,−c) from the true values (a, b, c).

5.8. Missing output pattern {10} and no
missing inputs

Again we look at the system (26) and (27). The output is
observed according to the missing data pattern {10} but all
inputs are observed. In this case we will only get one max-
imum of the likelihood function as we can estimate all lags
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Figure 6: Contour plot of the log-likelihood values, as a function
of a1 and a2, with observations according to the pattern [1010000].
Levels from −412 to −382 with the increment 3.
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Figure 7: Contour plot of the log-likelihood values, as a function of
a and c.

of the correlation function of the input and all lags of the
cross-correlation function between the input and output and
solve a and b from the following equations:

ryu(1) = −aryu(0)+ bru(0),
ryu(2) = −aryu(1)+ bru(1).

(31)

This is possible as

det


−ryu(0) ru(0)
−ryu(1) ru(1)


 ≠ 0 when c2 ≠ 1. (32)

The parameter c has to be less than one in magnitude if the
input process is to be stationary and computing correlations
should be relevant. A contour plot of the log-likelihood func-
tion of one realization of the system (with 200 time instants)
is shown in Figure 8.

6. ARX MODELS WITH ONLY MISSING OUTPUTS

As we saw in Section 5.8 we only had one global optimum.
Is this always the case when all input data is observed? When
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Figure 8: Contour plot of the log-likelihood values, as a function of
a and b.

only outputs are missing we can estimate all time lags of
the autocorrelation of the input, all time lags of the cross-
correlation between the input and the output but only some
time lags of the autocorrelation of the output. We can, how-
ever, always form the system of equations




r̂yu(1)
...

r̂yu(na+nb)




=




−r̂yu(0) · · · r̂u(−nk−nb)
...

. . .
...

−r̂yu(na+nb − 1) · · · r̂u(na−nk+ 1)





a1

...

bnb


 .

(33)

These are the same type of equations as we get when we use
an instrumental variable method [23] and use old inputs as
instruments. We know that we will get a unique consistent
estimate under mild assumptions on the input. Basically, we
need persistent excitation and an open loop identification
experiment.

As we can get a unique consistent estimate from a subset of
the sufficient statistic we can, of course, do something better
using the entire statistic (less parameter variance). There can
be, thus, only one global optimum of the likelihood function.

7. CONCLUSIONS

In this paper, we have studied the existence of multiple global
optima of the likelihood function when identifying parame-
ters of AR and ARX models. It is shown that the parameter
estimation problem should be looked upon as a sampling of
the correlation and cross-correlation functions of the input
and output signals rather than a sampling of data. Hence, ran-
domly missing data should not cause any problem as asymp-
totically all sample correlations and sample cross-correlations
can be computed eventually.

It is established that two parameter sets yield identical
values of the likelihood function if they fit the obtainable
lags of the sample correlation and sample cross-correlation
functions equally well. Also, it is shown that ARX models with
all input data observed will not result in several optima.
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