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Linear filtering theory has been largely motivated by the characteristics of Gaussian signals. In the same manner, the proposed
Myriad Filtering methods are motivated by the need for a flexible filter class with high statistical efficiency in non-Gaussian
impulsive environments that can appear in practice. Myriad filters have a solid theoretical basis, are inherently more powerful than
median filters, and are very general, subsuming traditional linear FIR filters. The foundation of the proposed filtering algorithms
lies in the definition of the myriad as a tunable estimator of location derived from the theory of robust statistics. We prove
several fundamental properties of this estimator and show its optimality in practical impulsive models such as the α-stable and
generalized-t. We then extend the myriad estimation framework to allow the use of weights. In the same way as linear FIR filters
become a powerful generalization of the mean filter, filters based on running myriads reach all of their potential when a weighting
scheme is utilized. We derive the “normal” equations for the optimal myriad filter, and introduce a suboptimal methodology for
filter tuning and design. The strong potential of myriad filtering and estimation in impulsive environments is illustrated with
several examples.
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1. INTRODUCTION

A large number of filtering algorithms used in practical ap-
plications are limited to the cases of Gaussian noise and/or
linear operation, presenting serious performance degrada-
tion in the presence of impulsive contamination. The need
for a flexible theory of robust nonlinear filtering that can be
efficiently applied in real impulsive environments has been re-
peatedly acknowledged in the signal processing community.
Significant research efforts, especially in the field of image
processing, have concentrated on finding suitable alternatives
to the linear filter that are robust or resistant to the presence of
impulsive noise. Among these, the approach that has received
considerable attention is that of median filters. Today, due
to their sound underlying theory, they are being increasingly
used in image processing commercial products. An impor-
tant shortcoming that has hampered their use in other fields
is that their output is always constrained, by definition, to
one of the samples in the input window. Although this “se-
lection” characteristic is very desirable in image processing

applications [1], it gives efficiency losses that are unaccept-
able for many other practical applications. It is well known,
for example, that the median loses as much as 40% efficiency
over the sample mean when used as a location estimator in
Gaussian environments [2].

It can be argued that the inefficiency of median-based
methods in practical problems arises from their unsuitability
to noise processes that can be found in real life. While most
noise processes that appear in practice obey density func-
tions that are bell-shaped, the Laplacian model, for which the
median is optimal, has a “peaky” density1 that makes it, in
general, rather artificial.2

1This is a consequence of a general result proved in [1], according to
which, selection-type estimators of location cannot be optimal for bell-
shaped distributions.

2It is interesting to note that Laplace introduced his model artificially as
a probability distribution for which the median is optimal [3]. Later, and
because of its simplicity, the Laplacian model became known as an example
of heavy-tailed distribution.
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A different approach to robustness that has been very
successful in the field of robust statistics, (and along which we
will develop the work in this paper), is the use of general-
ized maximum likelihood estimators or M-estimators [2, 4].
Given a set of samples, x1, x2, . . . , xN , an M-estimator of lo-
cation is defined as the parameter β̂ that minimizes a sum of
the form

∑N
i=1 ρ(xi − β), where ρ is the cost function associ-

ated with β̂. The behavior of the M-estimator is completely
characterized by the shape of ρ. When ρ(x) = x2, for exam-
ple, the associated M-estimator is the least squares estimator,
which corresponds to the sample mean. For ρ(x) = |x|, on
the other hand, the M-estimator is equivalent to the sample
median. In a more general manner, if ρ(x) = − logf(x),
where f is a density function, β̂ corresponds to the maxi-
mum likelihood estimator associated with f . The possibility
of easily manipulating the cost function ρ to control the be-
havior of the estimator, has been the key for the success of
M-estimation methods in different areas of statistics and en-
gineering [2, 4, 5].

Several nonlinear filters based on running M-estimators
of location have been introduced in the literature [6, 7]. Al-
though these so-called M-filters have been proven useful as
signal smoothers in impulsive noise environments, they have
not yet been well understood nor sufficiently developed to
constitute a powerful alternative for the robust filtering prob-
lem. We believe that the reason for this apparent failure is not
the inadequacy of M-estimation methods but the lack of an
approach suited to the specific problems of filtering applica-
tions. Despite its great popularity, the theory of robust statis-
tics has been built for problems fundamentally different from
those seen in signal processing. For example, the sample size
(filter’s window size) in signal processing applications is usu-
ally much smaller than that of classical statistics problems.
Also, real-time operation is a usual requirement that brings
a new dimension to the computational problems. While low
computational complexity is not a big plus in statistics, it is an
almost necessary requirement for real-time signal processing
applications.

The nature of the noise environment can also present
fundamental dissimilarities. In robust statistics it is often as-
sumed that the underlying “impulsive” distributions obey an
“ε-contamination” law with density f(x) = (1 − ε)f0(x) +
εh(x), where f0, the nominal density, is usually Gaussian,
ε is a small positive constant, and h is an arbitrary heavy-
tailed density which explains the presence of gross errors
in the data [4]. Intuitively, one out of 1/ε samples is al-
lowed to be contaminated by uncertain gross errors. While
the ε-contamination model is very suitable for explaining the
presence of typos or data-gathering errors (as it is usual in
statistics), many decidedly impulsive phenomena in commu-
nications and signal processing are characterized by a clearly
different structure. This is the case for the important class of
processes that arise in practice as the superposition of many
small independent and impulsive effects. According to a gen-
eralized form of the central limit theorem, processes of this
nature are well modeled by a class of heavy-tailed distribu-
tions with infinite variance known asα-stable [8, 9, 10]. In the
same way as the central limit theorem has called for the use of

the Gaussian model in many practical applications, the gen-
eralization of the central limit theorem is a strong theoretical
result compelling the use of α-stable models in real-world
problems involving impulsive signals.

In this paper, we introduce a novel class of M-filters moti-
vated by the need for a flexible filtering framework with high
statistical efficiency in distribution families which, like the
α-stable, can appear in engineering practice. The foundation
of these Myriad Filters, as we propose to call them, lies in the
definition of the sample myriad as an M-estimator derived
from tunable cost functions of the form

ρ(x) = log
[
k2 + x2], (1)

where k is the tunable parameter. A rationale for the choice
of such cost functions, along with a quick introduction to
α-stable distributions is presented in Section 2.

It is important to note that the use of the above cost
functions in robust estimation problems is not new. As we
will see later, they can be easily generated from maximum
likelihood considerations on well-known heavy-tailed distri-
butions such as the Cauchy and the Student’s t. Since the
introduction of the Cauchy maximum likelihood estimator
by Fisher in 1922 [11], estimators related to (1) have been
used repeatedly and under very different contexts as effi-
cient alternatives to cope with the presence of impulsive noise
[12, 13, 14, 15, 16, 17]. However, none of the previously pro-
posed techniques has exploited the potential of tuning k in
order to control the behavior of the estimator. The availability
of k as a tunable parameter is in fact the most powerful fea-
ture of the myriad. We show in Section 3 that, depending onk,
the sample myriad can present drastically different behaviors,
ranging from highly resistant mode-type estimators to the fa-
miliar (Gaussian-efficient) sample average. This rich variety
of operation modes is the key concept explaining important
optimality properties of the myriad in the class of symmet-
ric α-stable distributions. We discuss and demonstrate these
properties in Section 4.

In addition to the differences in noise structure that mo-
tivate the introduction of the cost functions in (1), the use
of filter weights strive for another fundamental difference be-
tween filtering and location estimation problems. To visualize
the strong potential that filter weights can add to a filtering
framework, it suffices to see the enormous gap in versatility
and performance separating the mean filter from its weighted
version, the class of linear FIR filters. In Section 5 we intro-
duce the weighted M-filter, an intuitively appealing weighted
estimator derived from the concepts of M-filtering and max-
imum likelihood. When the cost function in (1) is used, the
weighted M-filter gives rise to a powerful structure that in-
herits the flexibility and statistical efficiency of the sample
myriad, namely the weighted myriad. The introduction of
weights opens the optimal filter problem, that is, the problem
of finding the best set of weights for accomplishing a given
task. This problem, similar in flavor to the Wiener filter prob-
lem of conventional linear theory, is addressed in Section 6,
where several possible paths to myriad filter design are intro-
duced and illustrated. We begin our discussion with a glimpse
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at the models that motivate the choice of the cost functions
in (1).

2. THE SAMPLE MYRIAD

2.1. A glimpse atα-stable distributions

A wide variety of signals found in engineering practice arise
as the superposition of many small and independent effects.
Typical examples include atmospheric radio noise, under-
water acoustic noise, and multi-user interference in mobile
communication systems. The following generalized form of
the central limit theorem explains the goodness of the α-
stable model for signals of this type. Informally, if a random
variable X can be the limit of a normalized sum of (possibly
shift corrected) independent and identically distributed (i.i.d.)
random variables, then X is α-stable.

The limit here is taken as the number of elements in the
sum tends to ∞. More formal statements of this theorem
can be found in most advanced probability theory textbooks,
such as [8].

Instead of a theorem, many authors consider the above as
the most fundamental definition of anα-stable random vari-
able. We can note that, thanks to the central limit theorem, the
Gaussian distribution is an obvious member of the α-stable
family. The complete class of symmetric α-stable distribu-
tions was first analytically characterized by Lévy in 1925 [18].
He found that symmetric α-stable random variables follow a
characteristic function of the form

φ(ω) = e−γ|ω|α . (2)

The parameter γ, usually called the dispersion, is a positive
constant related to the scale of the distribution (note that
γ1/α is a scale parameter of the distribution). The parameter
α is usually called the characteristic exponent or index. In
order for (2) to define a characteristic function, the values
of α must be restricted to the interval (0,2]. Conceptually
speaking, α determines the impulsiveness or tail heaviness
of the distribution (smaller values of α indicate increased
levels of impulsiveness). The limit case, α = 2, corresponds
to the zero-mean Gaussian distribution with variance 2γ. All
other values of α correspond to heavy-tailed distributions
with infinite variance and algebraic tail behavior of the form3

Pr(|X| > x) ∼ cx−α, as x −→ ∞, (3)

for some positive constant c. The case α = 1 corresponds to
the “zero-centered” Cauchy distribution, which has density

f(x) = γ
π

1
γ2 + x2

. (4)

3The symbol ∼ denotes asymptotic similarity. Formally, X has algebraic
tails if there exist positive constants α and c such that limx→∞ xα Pr(|X| >
x) = c. In the terminology of heavy-tailed processes, α is usually called the
tail index or tail constant of the process.

When α ≠ 1,2, no closed expressions exist for the density
functions, making it necessary to resort to series expansions
or integral transforms to describe them [9].

Symmetric α-stable densities maintain many of the
features of the Gaussian density. They are smooth, uni-
modal, symmetric with respect to the mode, and bell-shaped.
Figure 1 illustrates the impulsive behavior of symmetric α-
stable processes as the characteristic exponent α is varied.
Each one of the plots shows an independent and identically
distributed (i.i.d.) “zero-centered” symmetric α-stable sig-
nal with unitary geometric power.4 In order to give a better
feeling of the impulsive structure of the data, the signals are
plotted twice under two different scales. As it can be appre-
ciated, the Gaussian signal (α = 2) does not show impulsive
behavior. For values of α close to 2 (α = 1.7 in the figure), the
structure of the signal is still similar to the Gaussian, although
some impulsiveness can now be observed. As the value of α
is decreased, the impulsive behavior increases progressively.

Alpha-stable models have been successful in a variety of
technical fields including hydrology, economics, physics, and
engineering. Recently, they have been the subject of increased
attention in communications and signal processing [10, 19,
20, 21, 22].

Although several filtering solutions in the presence of
α-stable noise have been proposed, most of these have been
concentrated on bringing impulse-resistance to the filter de-
sign process, while keeping the filter structure linear [10, 23].
This approach is not useful in many practical applications,
where impulse-resistance of the filter operation is the princi-
pal objective—an objective intrinsically impossible to meet
by means of linear structures. In the following we introduce
a nonlinear filtering and estimation structure motivated by
the properties of α-stable distributions.

2.2. The sample myriad: nonlinear estimation
and filtering in theα-stable framework

In developing efficient estimation algorithms forα-stable dis-
tributions, there is usually a trade-off between the optimality
of the methods and the computational complexity associ-
ated with the lack of closed-form expressions for the density
functions. In order to develop efficient and computation-
ally tractable algorithms that are suited to real-time applica-
tions, we will introduce the sample myriad as a class of loca-
tion M-estimators derived from optimality conditions in the
Cauchy distribution. There are two reasons to do this. First,
the Cauchy density function is the only heavy-tailed symmet-
ric α-stable density for which a closed-form expression is
available. Second, and more important, we will prove that the
resulting class of estimators presents significant optimality
properties in the α-stable family.

Given a symmetric density function f(x − β) with sym-
metry center β, the most desirable optimality properties of
an estimator of β are perhaps encountered in the maximum
likelihood (ML) estimator. It is known that, under mild regu-

4The geometric power is an indicator of signal strength suited to the class
of processes with infinite variance [19].
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Figure 1: Impulsive behavior of i.i.d. α-stable signals as the tail constant α is varied. Signals are plotted twice under two different scales.

larity conditions on f , the ML estimator presents minimum
asymptotic variance. In the framework of M-estimation of
location, a density function f generates its maximum likeli-
hood estimator through the cost functionρ(x) = − logf(x).
Given the Cauchy density function with dispersion k,

f(x) = k
π

1
k2 + x2

, (5)

its associated cost function has thus a logarithmic structure
of the form

ρ(x) = log
[
k2 + x2]. (6)

For reasons that will become apparent later, we will refer to the
M-estimator associated with this cost function as the sample
myriad. Its formal definition is stated next.5

Definition 1 (sample myriad). Given a set of samples x1,
x2, . . . , xN , and a real parameter k > 0, the sample myriad of
order k is defined as6

β̂k = myriad
{
k;x1, . . . , xN

}

= arg min
β

N∑
i=1

log
[
k2 + (xi − β)2

]
.

(7)

5As it is usual for filters derived from location estimators, we will call
“myriad filter” any running window filter outputting the sample myriad of
the elements in the window.

6For any real function G, we denote arg minβ G(β) as the value of β for
whichG(β) is minimum. It is worth noting that, according to this definition,
it is possible to find sample sets for which the myriad is not unique. To
protect Definition 1 from lack of formalism, we will accept any answer to
equation (7) as a valid calculation of the myriad. The “degenerate” event of
getting more than one myriad is not of critical importance, as its associated
probability is either negligible or zero for most cases of interest.

In some situations, the following equivalent expression can
be more computationally convenient:

β̂k = arg min
β

N∏
i=1

[
k2 + (

xi − β
)2]. (8)

Note that, unlike the sample mean or median, the defini-
tion of the sample myriad involves the free-tunable parameter
k. This parameter will play a fundamental role in the theory
of myriad filters, and it is the topic of study in the following
section. For reasons that will become apparent there, we will
refer to k as the linearity parameter of the myriad.

It is important to emphasize that Definition 1 does not
make any assumption about the distribution of the samples
or the value of the linearity parameter. As we will show in the
following two sections, the possibility of freely tuning k will
provide the sample myriad with important optimality prop-
erties over a wide variety of non-Cauchy models, including
the Gaussian.

Intuitively, since the sample myriad is optimal for such a
heavy-tailed distribution like the Cauchy, we should expect
a high resistance of the estimator to the presence of impul-
sive noise. This idea of deriving resistant methods from the
Cauchy distribution is not new. It has been proven many
times under different circumstances that methods derived
from the Cauchy distribution inherit, in general, improved
performance in the presence of heavy-tailed noise. Successful
examples include applications in communications [12, 22],
image processing [16], and geology [15, 24]. Different forms
of the sample myriad have also been studied in the past in the
context of robust estimation and filtering [11, 14, 15, 17, 25].
From these, it is worth highlighting [17], where the potential
of the myriad filter as a signal smoother inα-stable noise was
early recognized. We want to emphasize that, even though the
Cauchy distribution and the Myriad itself have been studied
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and applied extensively, no previous work has exploited the
potential of tuning the parameter k, nor has shown the op-
timal behavior of the myriad in the α-stable family as k is
varied.

3. THE LINEARITY PARAMETER k: UNVEILING
THE POWER OF THE MYRIAD

3.1. The linear and mode properties

The behavior of the myriad estimator introduced in
Definition 1 is markedly dependent on the value of its linear-
ity parameter k. The following property explains the behavior
of the myriad as k is made large.

Property 1 (linear property). Given a set of samples, x1,
x2, . . . , xN , the sample myriad β̂k converges to the sample
average as k→∞. This is,

lim
k→∞

β̂k = lim
k→∞

myriad
{
k;x1, . . . , xN

} = 1
N

N∑
i=1

xi. (9)

Proof. First note that7 β̂k ≤ x(N) by checking that for any i,
and for β > x(N), k2 + (xi − β)2 > k2 + (xi − x(N))2. In the
same way, β̂k ≥ x(1). Hence,

β̂k = arg min
x(1)≤β≤x(N)

N∏
i=1

[
k2 + (xi − β)2

]
(10)

= arg min
x(1)≤β≤x(N)

×

k2N + k2N−2

N∑
i=1

(
xi − β

)2 +O(k2N−4)

 , (11)

where O denotes the usual asymptotic order as k → ∞. Since
adding or multiplying by constants does not affect the arg min
operator, we can transform (11) in

β̂k = arg min
x(1)≤β≤x(N)



N∑
i=1

(
xi − β

)2 + O
(
k2N−4

)
k2N−2


 . (12)

Letting k → ∞, the term O(k2N−4)/k2N−2 becomes negligi-
ble, and

β̂k −→ arg min
x(1)≤β≤x(N)



N∑
i=1

(xi − β)2

 = 1

N

N∑
i=1

xi. (13)

Plainly, an infinite value of k converts the myriad into
the sample average. This behavior explains our choice of lin-
earity for the name of the parameter: the larger the value
of k, the closer the behavior of the myriad to a linear es-
timator. As the myriad moves away from the linear region
(large values of k) to lower linearity values, the estimator be-
comes more resistant to the presence of impulsive noise. In

7Here, x(i) denotes the ith-order statistic of the sample.

the limit, when k tends to zero, the analysis of the myriad
leads to the discovery of a novel location estimator with par-
ticularly good performance in the presence of very impulsive
noise. As we will see below, this estimator treats every ob-
servation as a possible outlier, assigning more credibility to
the most repeated values in the sample. This “mode-type”
characteristic has led us to name this estimator the mode-
myriad.

Definition 2 (sample mode-myriad). Given a set of samples
x1, x2, . . . , xN , the mode-myriad estimator, β̂0, is defined as

β̂0 = lim
k→0

β̂k, (14)

where β̂k = myriad{k;x1, x2, . . . , xN}.

The following property explains the behavior of the
mode-myriad as a kind of generalized sample mode, and
provides a simple method for determining the mode-myriad
without recurring to Definition 2.

Property 2 (mode property). The mode-myriad β̂0 is always
equal to one of the most repeated values in the sample. Fur-
thermore,

β̂0 = arg min
xj∈M

N∏
i=1,xi≠xj

|xi − xj|, (15)

where M is the set of most repeated values.

Proof. Since k is a positive constant, the definition of
the sample myriad in (8) can be reformulated as β̂k =
arg minβ Hk(β), where

Hk(β) =
N∏
i=1

[
1+ (xi − β)

2

k2

]
. (16)

When k is very small, it is easy to check that

Hk(β) = O
(

1
k2

)N−r(β)
, (17)

where r(β) is the number of times the value β is repeated in
the sample, and O denotes the asymptotic order as k → 0. In
the limit, the exponentN−r(β)must be minimized in order
for Hk(β) to be minimum. Therefore, the mode-myriad β̂0

will lie on a maximum of r(β), or in other words, β̂0 will
be one of the most repeated values in the sample. Now, let
r = maxj r(xj). Then, for xj ∈ M, expanding the product
in (16) gives

Hk(xj) =




∏
i,xi≠xj

(xi − xj)2
k2


+O

(
1
k2

)N−r−1

. (18)

Since the first term in (18) isO(1/k2)N−r , the second term is
negligible for small values of k, and β̂0 can be calculated as
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β̂0 = arg min
xj∈M

Hk
(
xj
)

= arg min
xj∈M

∏
i,xi≠xj

(
xi − xj

)2

k2

= arg min
xj∈M

∏
i,xi≠xj

∣∣xi − xj∣∣.
(19)

An immediate consequence of the mode property is the
fact that running-window filters based on the mode-myriad
are selection-type, in the sense that their output is always,
by definition, one of the samples in the input window. This
“selection” property, shared also by the median, makes mode-
myriad filtering a suitable framework for image processing,
where the application of selection-type filters has been shown
convenient [1, 26, 27].

3.2. Understanding k: how much is large
and how much is small?

The linear and mode properties indicate the behavior of the
myriad estimator for large and small values of k. From a prac-
tical point of view, it is important to determine if a given value
of k is large (or small) enough for the linear (or mode) prop-
erty to hold approximately. With this in mind, it is instructive
to look at the myriad as the maximum likelihood location
estimator generated by a Cauchy distribution with disper-
sion k (geometrically, k is equivalent to half the interquartile
range). Given a set of samples, the ML method locates the
generating distribution in a position where the probability of
the specific sample set to occur is maximum. When k is large,
the generating distribution is highly dispersed, and its density
function looks flat (see the density function corresponding to
k2 in Figure 2). If k is large enough, all the samples can be
accommodated inside the interquartile range of the distribu-
tion, and the ML estimator visualizes them as “well-behaved”
(no outliers). In this case, a desirable estimator would be the
sample average, in complete agreement with the linear prop-
erty. From this consideration, it should be clear that a fair
approximation to the linear property can be obtained if k
is large enough so that all the samples can be seen as “well-
behaved” under the generating Cauchy distribution.8 From
our experience, we have found that values of k on the order
of the data range, k ∼ x(N) − x(1), make often the myriad an
acceptable approximation to the sample average.

On the other side, when k is small, the generating Cauchy
distribution is highly localized, and its density function looks
similar to a positive impulse. The effect of such a localized dis-
tribution is conceptually equivalent to observing the samples
through a magnifying lens. In this case, most of the data look
like possible outliers, and the ML estimator has trouble lo-
cating a large number of observations inside the interquartile
range of the density (see the density function correspond-
ing to k1 in Figure 2). Putting in doubt most of the data
at hand, a desirable estimator would tend to maximize the

8Of course, the degree to which a sample can or cannot be considered
“well-behaved” is as arbitrary as the concept of “fair approximation,” and the
conceptual sharpening of this criterion is left to the personal judgment of
each user.

k2 = 10k1

β̂k1 2k1

2k2

β̂k2

Figure 2: The role of the linearity parameter when the myriad is
looked as a maximum likelihood estimator. When k is large, the
generating density function is spread and the data are visualized as
“well-behaved” (the optimal estimator is the sample average). For
small values of k, the generating density becomes highly localized,
and the data are visualized as very impulsive (the optimal estimator
is a cluster locator).

number of samples inside the interquartile range, inducing
to position the density function in the vicinity of a data clus-
ter. In the limit case, when k → 0, the density function gets
infinitely localized, and the only visible clusters will be made
of repeated value sets. In this case, one of the most crowded
clusters (i.e., one of the most repeated values in the sample)
will be located by the estimator, in accordance with the mode
property. From this consideration, it should be clear that a
fair approximation to the mode property can be obtained if k
is made significantly smaller than the distances between sam-
ple elements. From our experience, we have found that k on
the order of

k ∼ min
i≠j

|xi − xj|, (20)

is often enough for the myriad to be considered approxi-
mately a mode-myriad.

3.3. Tuning k: controlling the myriad behavior

The myriad estimator offers a rich class of modes of operation
that can be easily controlled by tuning the linearity parame-
ter k. When the noise is Gaussian, for example, large values
of the linearity can provide the optimal performance asso-
ciated with the sample mean, whereas for highly impulsive
noise statistics, the resistance of mode-type estimators can
be achieved by using myriads with low linearity. The trade-
off between efficiency at the Gaussian model and resistance
to impulsive noise can be managed by designing appropriate
values for k (see Figure 3).
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Figure 3: Functionality of the myriad ask is varied. Tuning the linearity parameterk adapts the behavior of the myriad from impulse-resistant
mode-type estimators (small k) to the Gaussian-efficient sample mean (large k).
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Figure 4: Values of the myriad as a function of k for the follow-
ing data sets: (solid) original data set = 0,1,3,6,7,8,9; (dash-dot)
original set plus an additional observation at 20; (dotted) additional
observation at 100; (dashed) additional observations at 800, −500,
and 700.

To illustrate the above, it is instructive to look at the be-
havior of the sample myriad shown in Figure 4. The solid line
shows the values of the myriad as a function of k for the data
set {0,1,3,6,7,8,9}. It can be observed that, as k increases,
the myriad tends asymptotically to the sample average. On
the other hand, as k is decreased, the myriad favors the value
7 which indicates the location of the cluster formed by the
samples 6,7,8,9. This is a typical behavior of the myriad for
small k: it tends to favor values where samples are more likely
to occur or cluster. We coined the term myriad as a result of
this behavior.

The dotted line shows how the sample myriad is affected
by an additional observation of value 100. For large values
of k, the myriad is very sensitive to this new observation. On
the contrary, for small k, the variability of the data is assumed
to be small, and the new observation is considered an outlier,
not influencing significantly the value of the myriad.

More interestingly, if the additional observations are the
very large data 800,−500, 700, (dashed curve), the myriad is
practically unchanged for moderate values of k (k < 10). This
behavior exhibits a very desirable outlier rejection property,
not found, for example, in median-type estimators.

3.4. Scale-invariant operation

Unlike the sample mean or median, the operation of the sam-
ple myriad is not scale invariant, that is, for fixed values of the

linearity parameter, its behavior can vary depending on the
units of the data. This is formalized in the following propo-
sition, whose proof is straightforward.

Proposition 1. Let β̂k(X) denote the myriad of order k of the
data in the vector X. Then, for c > 0,

β̂k(cX) = cβ̂k/c(X). (21)

According to (21), a change of scale in the data will be
preserved in the myriad only if k experiences the same change
of scale. Thus, the scale dependence of the myriad can be
easily overcome if k carries the units of the data, or in other
words, if k is a scale parameter of the data.

Remark 1. There is a common misconception about the role
played by scale parameters like k in M-estimation applica-
tions. In order to solve the scale dependence problem, robust
statisticians usually recommend to replace k by some resis-
tant estimator of scale such as the MAD9 or a maximum
likelihood estimator [2, 4]. This approach is arbitrary and of-
ten leads to inefficient tuning values of the parameter k. As it
will be illustrated in the following section, a good design of
the tuning parameter should take into account not only the
scale, but the whole structure of the underlying distribution,
especially its impulsiveness.

4. OPTIMALITY OF THE SAMPLE MYRIAD
IN PRACTICAL NOISE MODELS

4.1. Optimality in theα-stable model

The following result states the optimality of the mode-
myriad as a location estimator for very impulsive α-stable
distributions.

Proposition 2. Let Tα,γ(x1, x2, . . . , xN) denote the maximum
likelihood location estimator derived from a symmetricα-stable
distribution with characteristic exponent α and dispersion γ.
Then,

lim
α→0

Tα,γ
(
x1, x2, . . . , xN

) = myriad
{
0;x1, x2, . . . , xN

}
.

(22)

Proof. To avoid the notational burden, we assume γ = 1 (the
generalization of the proof for arbitrary values of γ is straight-
forward). An integral expression for the zero-centered, unit
dispersion, symmetric α-stable density when α < 1 is given

9The median absolute deviation is defined as MAD = median{xi −
median{xi}}.
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[9] by

fα(x) = α
(1−α)π

1
|x|1/(1−α)

×
∫ π/2

0
υ(θ)e−υ(θ)|x|−α/(1−α)dθ,

(23)

where 0 < υ(θ) < 1 is a bounded real function that depends
on α [9, 10]. The value of fα(0) can be calculated as the
limit when x → 0 in the expression above. A convenient
rearrangement of (23) gives us

fα(x) = Cα
|x| + ξα(x)

, (24)

where Cα is a constant given by

Cα = α
(1−α)π

∫ π/2
0

υ(θ)e−υ(θ)dθ, (25)

and ξα(x) is a small function given by

ξα(x) = |x|
[
|x|α/(1−α)

∫π/2
0 υ(θ)e−υ(θ)dθ∫π/2

0 υ(θ)e−υ(θ)|x|−α/(1−α)dθ
− 1

]
. (26)

The significance of ξα relies on the fact that, for any finite
interval, it converges uniformly to 0 as α→ 0. Now, based on
(24), the ML estimator is given by

Tα = arg min
β

∏
i

[|xi − β| + ξα(xi − β)]. (27)

Note that the constant Cα has been dropped out since it is ir-
relevant for the minimization problem. Developing the prod-
ucts in (27), we get Tα = arg minβ Hα(β), where

Hα(β) =
∏
i
|xi − β| +

∑
i


ξα(xi − β)

∏
j,j≠i

|xj − β|



+
∑
i,j

{
ξα(xi − β)ξα(xj − β)

∏
k,k≠(i,j)

|xk − β|
}
+· · · .

(28)

Let xmin and xmax denote, respectively, the minimum
and maximum values in the sample set. The unimodality
of fα guarantees that Hα(β) > Hα(xmin) for β < xmin, and
Hα(β) > Hα(xmax) for β > xmax. This restricts the location
of Tα to be bracketed in the closed interval [xmin, xmax]. Re-
stricted to that interval, all but the first term in (28) can be
made arbitrarily small by making α → 0. This tells us that,
as α → 0, Tα tends to have a “selection” behavior, in the
sense that it converges to one of the sample values. The spe-
cific point of convergence can be identified by analyzing the
behavior of the cost function Hα(β) in the vicinity of each
sample value. To do so, let ri denote the number of times the
value of xi is repeated in the sample. Then, for β close to xi,
the first ri terms in (28) can be made arbitrarily small, no
matter what the value of α is. Thus, as α→ 0, the magnitude
ofHα(β) in the vicinity of xi is mainly driven by the (ri+1)th

term in (28), which can be continuously approximated by

lim
β→xi

∑
i1,...,iri

ξα(xi1 − β) · · ·ξα
(
xiri − β

) ∏
j,j≠(i1,...,iri )

|xj − β|

= [ξα(0)]ri
∏

j,xj≠xi

|xj − xi|.

(29)

Hence, the point of convergence is the value xi with the
minimum associated cost (29), for small values of α. Since
ξα(0)→ 0 as α→ 0, it is obvious that ri must be maximized,
or in other words, Tα must converge to one of the most re-
peated values in the sample. Taking this fact into account, the
minimization of (29) leads to the simplified result

lim
α→0

Tα = arg min
xj∈M

∏
i,xi≠xj

|xi − xj|, (30)

where M is the set of most repeated values.

In words, the ML estimator of location derived from an
α-stable distribution with small α, behaves like the sam-
ple mode-myriad. Proposition 2 completes what we call the
α-stable triplet of optimality points satisfied by the myriad.
On one extreme (α = 2), when the distributions are very well
behaved, the myriad reaches optimal efficiency by making
k = ∞. In the middle (α = 1), the myriad reaches optimality
by making k = γ, the dispersion parameter of the Cauchy
distribution. On the other extreme (α → 0), when the dis-
tributions are extremely impulsive, the myriad reaches opti-
mality again, this time by making k = 0. The α-stable triplet
demonstrates the central role played by myriad estimation in
the α-stable framework.

As α is increased from 0 to 2, it is reasonable to expect,
somehow, a progressive increase of the optimal k, from k = 0
to k = ∞. The following proposition indicates the behavior
of the optimal k for a general value of α. Its proof is a direct
consequence of Proposition 1 and the fact that γ1/α is a scale
parameter of the α-stable distribution.

Proposition 3. Let α and γ denote the characteristic exponent
and dispersion parameter of a symmetric α-stable distribution
as defined in (2). Let ko(α,γ) denote the optimal tuning value
of k in the sense that β̂ko minimizes a given performance crite-
rion (usually the variance) among the class of sample myriads
with nonnegative linearity parameter. Then,

ko(α,γ) = ko(α,1)γ1/α. (31)

Proposition 3 indicates a “separability” of ko in terms of
α and γ, reducing the optimal tuning problem to that of
determining the function k(α) = ko(α,1). This function
is of fundamental importance for the proper operation of
the myriad in the α-stable framework, and we will refer to
it as the α-k curve. Its form is obviously conditioned to the
performance criterion chosen, and it may even depend on the
sample size. In general, as discussed above, we should expect
the α-k curve to be monotonically increasing, with k(0) =
0 (very impulsive point) and k(2) = ∞ (Gaussian point).



12 EURASIP Journal on Applied Signal Processing

Very
impulsive

point

Cauchy
point

Gaussian
point

α

O
pt

im
al

lin
ea

ri
ty

pa
ra

m
et

er

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.5 1 1.5 2

Figure 5: Empiricalα-k curve forα-stable distributions. The curve
values at α = 0,1, and 2 constitute the optimality points of the
α-stable triplet.

If the performance criterion is the asymptotic variance, for
example, then k(1) = 1, corresponding to the Cauchy point
of the α-stable triplet. The exact computation of the α-k
curve for α-stable distributions10 is a challenging problem
that we leave for further research. A simple empirical form
that we have found to give consistently efficient results in a
variety of conditions is

k(α) =
√

α
2−αγ

1/α, (32)

which is plotted in Figure 5. The α-k curve is a valuable
tool for estimation and filtering problems that must adapt
to the impulsiveness conditions of the environment. α-k
curves in the α-stable framework can be used, for example,
to develop myriad-based adaptive detectors for channels with
time-varying impulsiveness [28, 29].

4.2. Optimality in the generalized-t model

The family of generalized-t distributions was introduced by
Hall in 1966 as an empirical model for atmospheric radio
noise [13]. Generalized-t density functions can be conve-
niently parameterized as

10The concept of α-k curve can also be extended to distribution families
other than the α-stable, as it is discussed in Section 4.2.

fx(x) = c
(ασ2 + x2)(1+α)/2

, (33)

where σ > 0,α > 0, and c is a normalizing constant given by

c = Γ((1+α)/2)√
π Γ(α/2)

αα/2σα. (34)

It is easy to check that the distribution defined by (33) is
algebraic-tailed, with tail constant α and scale parameter
σ . Although α may take values larger than 2, its meaning
is conceptually equivalent to the characteristic exponent of
the α-stable framework. At one extreme, when α → ∞, the
generalized-t distribution is equivalent to a zero-mean Gaus-
sian distribution with variance σ2. As it is the case with
α-stable distributions, decreased values of α correspond to
increased levels of impulsiveness. For values of α ≤ 2, the
impulsiveness becomes high enough to make the variance in-
finite, and when α = 1, the model corresponds to the Cauchy
distribution. At the other extreme, when α→ 0, the distribu-
tion exhibits the highest levels of impulsiveness.

The generalized-t model has been shown to provide ex-
cellent fits to different types of atmospheric noise found in
practice. Thanks to its simplicity and parsimony, it has been
used by Middleton as a mathematically tractable approxima-
tion to his widely accepted models of electromagnetic radio
noise [30]. It is worth noting that long before the introduc-
tion of the model by Hall, the generalized-t distributions have
been known in statistics as a family of heavy-tailed distribu-
tions categorized under the type VII of Pearson’s distribu-
tional system [31].

It is easy to see that the maximum likelihood estimator of
the location derived from the t density in (33) is precisely the
sample myriad with linearity parameter

k = √ασ. (35)

The optimality of the myriad for all the distributions in the
generalized-t family indicates, as in the α-stable case, its ad-
equateness along a wide variety of noise environments, from
the very impulsive (α → 0) to the well-behaved Gaussian
(α = ∞). Expression (35) gives the optimal tuning law as a
function of α andσ (note the close similarity with expression
(31) for α-stable distributions). Making σ = 1, we obtain
the α-k curve for generalized-t distributions, k(α) = √

α.
Like the α-k curve of α-stable distributions, this curve is
also monotonically increasing, and contains the optimality
points of the α-stable triplet, namely the Gaussian point
(k(∞) = ∞), the Cauchy point (k(1) = 1), and the very
impulsive point (k(0) = 0).

The generalized-t model provides a simple framework to
assess the performance of the sample myriad as the impul-
siveness of the distributions is changed. It can be proven that
the normalized asymptotic variance11 of the optimal sample

11Let VT (N) be the variance of the estimator T when the sample size
is N. Then, the normalized asymptotic variance V is defined as V =
limN→∞NVT (N).
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Figure 6: Normalized asymptotic variance of the sample mean, sam-
ple median, and optimal sample myriad in generalized-t noise. The
myriad outperforms the mean and median for any level of impul-
siveness.

myriad at the generalized-t model is (for a derivation, see, for
example, [29]):

Vmyr = α+ 3
α+ 1

σ2. (36)

A plot of Vmyr versus α is shown in Figure 6 for σ = 1. The
asymptotic variances of the sample mean (Vmean) and sample
median (Vmed) are also included for comparison [29]. The
superiority of the sample myriad over both mean and median
is evident from the figure.

5. INTRODUCING WEIGHTS TO THE MYRIAD
ESTIMATOR: THE WEIGHTED MYRIAD

5.1. M-filters, maximum likelihood, and weights

A filtering framework cannot be considered complete until
an appropriate form of weighted operation is defined. Filter
weights or “coefficients” are extremely important for most
applications in which signal correlations are to be exploited.
To visualize the potential gains that a weighting framework
can add to a filter structure, it suffices to see the enormous
gap in versatility and performance separating the mean filter
from its weighted version, the class of linear FIR filters. In
this section, we introduce a powerful weighting framework
for the class of M-filters, directly derived from the concept of
maximum likelihood.

Consider the samplesx1, x2, . . . , xN , and a set of nonneg-
ative weights W1,W2, . . . ,WN . Given the cost function ρ, the
goal is to define a “weighted” operator

β̂W = β̂W1,W2,...,WN (x1, x2, . . . , xN), (37)

satisfying the following “desirable” weighting conditions:12

(1) when W1 = W2 = · · · = WN = 1, β̂W reduces to the
standard M-estimator associated with ρ; (2) making Wi = 0
is equivalent to discarding the sample xi; (3) makingWi = ∞
while keeping the other weights finite, forces β̂W to be equal
to xi; and (4) β̂W is at least piecewise continuous on each of
the Wi.

Conditions (2) and (3) suggest the interpretation ofWi as
a reliability measure associated with the samplexi. Intuitively,
the weighted filter output gets closer to xi as the value of Wi
increases in relation to the other weights. Hence, although
the intended application of the weighted filter might not be
location estimation,13 its behavior is intrinsically related to
that of a location estimator in which the samples are assigned
different levels of reliability.

This leads to a natural weighting framework in the context
of maximum likelihood estimation: instead of considering
the samples identically distributed, assume that they are gen-
erated from the same distribution, but allowing the scale asso-
ciated with each sample to be different. In this way, an obser-
vation assigned to a small scaleσi, can be related to a highly lo-
calized (very reliable) density function, (1/σi)f [(xi−β)/σi],
where f is the generating “unweighted” pdf. At the other ex-
treme, a large value of σi indicates a dispersed density func-
tion, which reflects the low reliability of the sample. Given a
set of scales, σ1, σ2, . . . , σN , we can thus define the weighted
maximum likelihood estimator as the value β̂ that maximizes
a “weighted” likelihood function of the form

L(β) =
N∏
i=1

1
σi
f
[
xi − β
σi

]
. (38)

Making Wi = 1/σi, and letting ρ(x) = − logf(x) as in the
“unweighted” M-estimation problem, expression (38) leads
in a natural way to the following definition.

Definition 3 (weighted M-estimator). Given a cost function
ρ, and a set of samples x1, x2, . . . , xN , we define the weighted
M-estimator of location as

β̂w = arg min
β

N∑
i=1

ρ
(
Wi(xi − β)

)
, (39)

whereW1, . . . ,WN ≥ 0, represent the weights or “coefficients”
of the estimator. A running-window filter based on a weighted
M-estimator of location will be called, accordingly, a weighted
M-filter.

Definition 3 is a powerful generalization of the M-
filtering framework. When ρ is continuous, even, and mono-
tonic increasing on [0,∞), it can be easily proven that β̂W

satisfies the weighting conditions (1) through (4). When

12Note that these conditions are naturally satisfied by the weighting frame-
works of both median and (normalized) linear FIR filters.

13In fact, most applications of interest would be both deterministic and
statistical in nature; an important example is a low-pass, frequency selective
filter, with impulse resistance.
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ρ(x) = x2, for example, β̂W defines the weighted mean filter,

β̂W =
∑N
i=1W

2
i xi/

∑N
i=1W

2
i , which can be seen as a “normal-

ized” linear FIR filter with nonnegative coefficients. When
ρ(x) = |x|, on the other hand, β̂W reduces to the familiar
weighted median [26].

Remark 2. The nonnegativity of the weights in Definition 3
hampers the filter capability to mimic “bandpass” and “high-
pass”operations such as those seen in FIR filters with negative
weights. This problem has been widely acknowledged, for ex-
ample, as one of the main limitations of weighted median
filters, limiting their applications to problems of the “low-
pass” type [26]. Extensions of Definition 3 to allow weights
of any sign can be found in [32].

5.2. The weighted myriad

The weighted myriad is straightforwardly defined by using
the cost function (6) in Definition 3.

Definition 4 (weighted myriad). Let w = [w1,w2, . . . ,wN]
be a vector of nonnegative weights. Given k > 0, the weighted
myriad of order k for the data x1, x2, . . . , xN , is defined as

β̂k,w = myriad
{
k;w1 ◦ x1, . . . ,wN ◦ xN

}

= arg min
β

N∑
i=1

log
[
k2 +wi(xi − β)2

]
,

(40)

where wi ◦ xi represents the weighting operation in (40). In
some situations, the following equivalent expression can be
computationally more convenient

β̂k,w = arg min
β

N∏
i=1

[
k2 +wi(xi − β)2

]
. (41)

As in the unweighted case, we will call k the linearity
parameter of the filter. Notice that we have preferred to use
wi = Wi2 (instead of Wi) as the primitive definition of the
filter weights. The convenience of this parameterization is
evident in the following generalization of the linear prop-
erty, whose proof is a straightforward generalization of the
unweighted case.

Property 3 (linear property). Let the weightsw1, . . . ,wN > 0,
be assigned to the samples x1, . . . , xN , then

lim
k→∞

β̂k,w =
∑N
i=1wixi∑N
i=1wi

. (42)

Equation (42) provides a fundamental link between myr-
iad and linear FIR filters. Informally, a linear FIR filter with
positive weightswi, can be seen as the serial concatenation of
an amplifier of gain

∑N
i=1wi, and a myriad filter with k = ∞

and the same weight values.
A generalization of the mode property also holds for the

weighted myriad.

Property 4 (mode property). Let the weightsw1, . . . ,wN > 0
be assigned, respectively, to the samples x1, . . . , xN . Then,

β̂0,w = lim
k→0

β̂k,w(x1, . . . , xN)

= arg min
xj∈M

(
1
wj

)r/2 N∏
i=1,xi≠xj

|xi − xj|,
(43)

where M is the set of most repeated values in the sample,
and r is the number of repetitions associated with a member
of M.

Proof. Following the steps of the proof for the unweighted
version, it is straightforward that

β̂0,w = arg min
xj∈M

N∏
i=1,xi≠xj

wi(xi − xj)2. (44)

Dividing by
∏N
i=1wi, and applying the square root to the

expression to be minimized, we get the desired result.

Weighted myriad filters inherit the optimal performance
of the sample myriad in both α-stable and generalized-t en-
vironments. In addition to the linear and mode properties,
the following are important basic properties of the weighted
myriad.

Property 5 (no undershoot/overshoot). The output of
a weighted myriad filter is always bracketed by the inequalities

x(1) ≤ β̂k,w(x1, x2, . . . , xN) ≤ x(N), (45)

where x(1) and x(N) denote the minimum and maximum
samples in the input window.

Proof. Note that for β < x(1),

k2 +wi(xi − x(1))2 < k2 +wi(xi − β)2 (46)

and hence

N∏
i=1

[
k2 +wi(xi − x(1))2

]
<

N∏
i=1

[
k2 +wi(xi − β)2

]
. (47)

This implies that any β < x(1) is “beat” by x(1) for the min-
imization of the weighted myriad objective function. There-
fore, the weighted myriad cannot be less than x(1). A similar
argument on x(N), leads to the conclusion that the weighted
myriad cannot be larger than x(N).

Property 6 (shift and sign invariance). Let zi = xi+b. Then,
for any k and w,

(i) β̂k,w(z1, . . . , zN) = β̂k,w(x1, . . . , xN)+ b;
(ii) β̂k,w(−z1, . . . ,−zN) = −β̂k,w(z1, . . . , zN).

The proof is trivial from the definition of the weighted myriad
in (40).

Property 7 (unbiasedness). LetX1, X2, . . . , XN be all indepen-
dent and symmetrically distributed around their symmetry
center c. Then, β̂k,w = β̂k,w(X1, X2, . . . , XN) is also symmet-
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Figure 7: (a) The unweighted sample myriad, β̂k, indicates the po-
sition of a moving bar such that the product of distances from point
A to the sample points x1, x2, . . . , xN is minimum. (b) If the weight
w4 > 1 is introduced, the product of distances is more sensitive
to the variations of the segment x4A4, very likely resulting in a
weighted myriad β̂k,w closer to x4.

rically distributed around c. In particular, if Eβ̂k,w exists, then
Eβ̂k,w = c.

Proof. If Xi is symmetric around c, then 2c−Xi has the same
distribution as Xi. Thus, β̂k,w(X1, X2, . . . , XN) has the same
distribution as β̂k,w(2c − X1,2c − X2, . . . ,2c − XN), which,
according to Property 6, is equal to 2c−β̂k,w(X1, X2, . . . , XN).
It follows that β̂k,w is symmetric around c.

5.3. Geometrical interpretation

The operation of the sample myriad as defined in (41) can be
interpreted in a more intuitive manner. We allow a vertical
bar to run horizontally through the real line as depicted in
Figure 7a. Then, the sample myriad, β̂k, indicates the position
of the bar for which the product of distances from the point
A to the sample points x1, x2, . . . , xN is minimum. If weights
are introduced, each sample point xi is assigned a different
point Ai in the bar, as illustrated in Figure 7b.

The geometrical interpretation of the myriad is intuitively
insightful. When k approaches 0, it gives a conceptually sim-
ple pictorial demonstration of the mode-myriad formula in
(15). It can also lead to alternative algorithms for calculating
the sample myriad, as stated in the following rather interest-
ing proposition. The proof is not difficult, and we leave it as
an exercise to the interested reader.

Proposition 4. Let θi denote the (signed) angle between the
real line and the segment xiAi as depicted in Figure 7b. Then,
the geometric position of the sample myriad satisfies

N∑
i=1

sin(2θi) = 0. (48)

6. MYRIAD FILTER DESIGN AND OPTIMIZATION

6.1. Optimal weighted M-filters: the M-filter
“normal” equations

A problem of fundamental importance in statistical signal
processing is the design of the coefficients of a filter in or-
der to meet certain optimality requirements [33]. In this
section, we develop a set of implicit equations that char-
acterize the optimal weighted M-filter for a general cost
function ρ. Let X(n) be an observed process which is as-
sumed to be statistically related to some desired processD(n)
of interest. X(n) is typically a transformed or corrupted
version of D(n). Furthermore, we assume that these pro-
cesses are jointly stationary. A window of width N slides
across the input process pointwise estimating the desired se-
quence. The vector containing the N samples in the window
at time n is X(n) = [X(n−N1), . . . , X(n), . . . , X(n+N2)] =
[X1(n),X2(n), . . . , XN(n)], withN = N1+N2+1. The run-
ning weighted filter output estimates the desired signal as

D̂W(n) = arg min
β

N∑
i=1

ρ
(
Wi(Xi(n)− β)

)
. (49)

The problem is to find the weight values W1,W2, . . . ,WN ≥
0 which will minimize the estimation error. The following
proposition characterizes these optimal weights by means of
a set of implicit equations.

Proposition 5 (normal equations). Let W = [W1, . . . ,WN] be
the weight vector of a weighted M-filter associated with the cost
function ρ as in Definition 3. Let L define the error measure to
be used as the design criterion in the sense that the optimal filter
must minimize the loss function

J(W) = E
{
L(D − D̂w)

}
. (50)

Then, the optimal filter weights satisfy a set ofN “normal equa-
tions” of the form14

E
{
L′(D − D̂w)

∂D̂w

∂Wi

}
= 0, for i = 1, . . . , N, (51)

where

∂D̂w

∂Wi
= ρ′(zi)+ ziρ′′(zi)∑N

i=1W
2
j ρ′′(zj)

,

zi = Wi(Xi − D̂w).

(52)

14The prime symbol, (′), is used to denote the derivative of the superscripted
function.
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Proof. Expression (51) holds straightforwardly after forcing
∂J(W)/∂W = 0 as a condition for J(W) to be a minimum.
Now, according to its definition,

D̂w = arg min
β

N∑
i=1

ρ
(
Wj(Xj − β)

)
. (53)

Taking the derivative with respect to β and making it equal
to zero, we obtain the following relation for D̂w:

N∑
i=1

Wjρ′
(
Wj(Xj − D̂w)

) = 0. (54)

Differentiating with respect to Wi we get

∂
∂Wi

[
Wiρ′

(
Wi(Xi − D̂w)

)]

+
N∑

j=1,j≠i

∂
∂Wi

[
Wjρ′

(
Wj(Xj − D̂w)

)] = 0,
(55)

which leads to

ρ′
(
Wi(Xi − D̂w)

)
+Wiρ′′

(
Wi(Xi − D̂w)

)[
(Xi − D̂w)−Wi

∂D̂w

∂Wi

]

−
N∑

j=1,j≠i
W2
j ρ

′′(Wj(Xj − D̂w)
)∂D̂w

∂Wi
= 0.

(56)

Rearranging terms and replacingWi(Xi − D̂w) by zi for con-
venience of notation, we get

ρ′(zi)Wiρ′′(zi)(Xi − D̂w)

= −Wiρ′′(zi)
[
−Wi

∂D̂w

∂Wi

]
+

N∑
j=1,j≠i

W2
j ρ

′′(zj)
∂D̂w

∂Wi
.

(57)

Finally, solving for ∂D̂w/∂Wi, we obtain

∂D̂w

∂Wi
= ρ′(zi)+ ziρ′′(zi)∑N

j=1W
2
j ρ′′(zj)

, (58)

which concludes the proof.

It is worth noting that expression (51) is the M-filtering
equivalent of the principle of orthogonality of Wiener filter
theory [33]. Thus, Proposition 5 by itself, can lead to direct
solutions of the optimal weights when the cost function ρ is
simple. In effect, when ρ(x) = x2, that is, when the filter is
linear, expression (51) becomes

E


2(d− d̂w)


 2zi + 2zi∑N

i=1 2W2
j




 = 0, (59)

or equivalently,

E
{
(d− d̂w)(xi − d̂w)

}
= 0, (60)

which is one of the forms of the principle of orthogonal-
ity. In general, a direct solution to equation (51) might be
troublesome, especially when the cost function ρ is noncon-
vex (which is the case for the myriad). In such cases, other
alternatives such as nonlinear least squares or adaptive LMS
algorithms can be developed [34]. In the following section we
introduce a suboptimal and very simple technique for myriad
filter design derived from the linear property.

6.2. Myriadization: bringing impulse resistance
to linear filters

The linear property indicates that for very large values of k,
the weighted myriad filter reduces to a constrained linear FIR
filter. The meaning of k suggests that we can provide a linear
filter with resistance to impulsive noise by simply reducing
the linearity parameter from k = ∞ to a finite value. This
would transform the linear filter into a myriad filter with the
same weights. In the same way as the term linearization is
commonly used to denote the transformation of an operator
into a linear one, we will refer to the above transformation as
myriadization.

Myriadization is a simple but powerful technique that
brings impulse resistance to constrained linear filters. It pro-
vides also a simple methodology to design suboptimal myriad
filters in impulsive environments. Basically, we can design a
constrained linear filter for Gaussian or noiseless environ-
ments using linear filter design techniques, and then provide
the filter with impulse resistance capabilities by means of
myriadization. The value to which k is to be reduced can be
designed according to the impulsiveness of the environment,
for example, by means of an α-k curve.

Remark 3. It must be taken into account that a linear fil-
ter has to be in “constrained form” before myriadization
can be applied. This means that the filter coefficients wi
must be nonnegative and satisfy the normalization condi-
tion

∑N
i=1wi = 1. A filter for which

∑N
i=1wi ≠ 1, must be

first “decomposed” into the cascade of its normalized version
with an amplifier of gain

∑N
i=1wi.

We illustrate the potential of myriadization in the follow-
ing two examples.

Example 1. Figure 8a depicts a unit-amplitude linearly swept-
frequency cosine signal spanning instantaneous frequencies
ranging from 0 to 400 Hz. The chirp was generated with
MatLab’s chirp function having a sampling interval of
0.0005 seconds. Figure 8b shows the chirp inmersed in addi-
tive Cauchy noise (γ = 1). The plot is truncated to the same
scale as the other signals in the figure. A low-pass linear FIR
filter with 30 coefficients processes the chirp with the goal of
retaining its low-frequency components. The FIR low-pass
filter weights were designed with MatLab’s fir1 function
with a normalized frequency cutoff of 0.05. Under ideal,
no-noise conditions, the output of the linear filter would be
that of Figure 8c. However, the impulsive nature of the noise
introduces severe distortions to the actual output, as depicted
in Figure 8d. Myriadizing the linear filter by reducing k
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8: Myriadizing a linear low-pass filter in an impulsive environment: (a) chirp signal, (b) chirp in additive impulsive noise, (c) ideal
(no-noise) myriad filter output with k = ∞, (e) k = 0.5, and (g) k = 0.2; (d) Myriad filter output in the presence of noise with k = ∞,
(f) k = 0.5, and (h) k = 0.2. An interactive Java demo in which the user can play with different noise processes and linearity parameters is
available at http://www.ece.udel.edu/signals/robust/myriad/myriaddemo/index.html.

to a finite value of 0.5, significantly improves the filter
performance (see Figures 8e, 8f). Further reduction of k to
0.2 drives the myriad closer to a selection mode where some
distortion on the filter output under ideal conditions can be
seen (see Figure 8g). The output under the noisy conditions
is not improved by further reducing k to 0.2, or lower, as the
filter in this case is driven to a “selection” operation mode.

Example 2. We tested the myriadization concept on the phase
synchronization problem of the first-order Phase-Locked
Loop (PLL) depicted in Figure 9. Systems of this type are
widely used for recovering carrier phase in coherent demod-
ulators [35]. The PLL has a linear FIR low-pass filter with
13 normalized coefficients intended to let pass only the low
frequencies generated by the multiplier. The output of the

Incoming
signal and

noise Phase detector
(product)

Low-pass
filter

Phase
error

Controlled
oscillator

Figure 9: Block diagram of the Phase-Locked Loop analyzed in the
paper.

low-pass filter represents the phase error between the incom-
ing carrier and the recovered tone provided by the controlled

http://www.ece.udel.edu/signals/robust/myriad/myriaddemo/index.html
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Figure 10: Phase error plot for the PLL with (a) a linear FIR filter; (b) an optimal weighted median filter; and (c) a myriadized version of the
linear filter. The superiority of the myriadized filter is clear.

oscillator. Hence, we can say that the system is working
properly (i.e., achieving synchronism), whenever the output
of the low-pass filter is close to zero. The incoming signal is a
sinusoid of high frequency and unitary amplitude, immersed
in additive white Gaussian noise of variance 10−3, yielding
a signal-to-noise ratio (SNR) of 30 dB. The parameters of
the system, including (linear) filter weights and oscillator
gain, were manually adjusted so that the error signal had
minimum variance. The details and source code of the
simulation can be downloaded, in Simulink and MATLAB
formats, from [32]. Three different scenarios, corresponding
to three different low-pass filter structures were simulated.
The incoming and noise signals were identical for the three
systems. At three arbitrary time points (t ≈ 400,820,1040),
short bursts of high power Gaussian noise were added to
the noise signal. The length of the bursts was relatively short
(between 4 and 10 sampling times) compared to the length
of the filter impulse response (12 sampling times). The SNR
during burst periods was very low (about −10 dB), making
the noise look heavy impulsive. Figure 10 shows the phase
error in time when the standard linear filter was used. It is
evident from the figure that this system is very likely to lose
synchronism after a heavy burst. Figure 10b shows the phase
error of a second scenario in which a weighted median filter
has been designed to imitate the low-pass characteristics of
the original linear filter [26, 36]. Although the short noise
bursts do not affect the estimate of the phase, the variance of
the estimate is very large. This “noise amplification” behavior
can be explained from the inefficiency introduced by the
“selection” property of the median, that is, the fact that the
filter output is always constrained to be one of its inputs.
Finally, Figure 10c shows the phase after the low-pass filter
has been myriadized using a parameter k equal to half the
carrier amplitude. Although the phase error is increased
during the bursts, the performance of the myriadized PLL is
not degraded, and the system does not lose synchronism.

7. CONCLUSIONS

Weighted myriad filtering is a flexible filtering framework
that derives important robustness properties from the im-

pulsive characteristics of symmetric α-stable distributions.
In the same way as linear and median filters are related
to Gaussian and Laplacian distributions, respectively, myr-
iad filter theory is based on the definition of the sample
myriad as the maximum likelihood location estimator of
the Cauchy distribution—the only non-Gaussian symmet-
ric α-stable distribution for which a closed-form density is
available. When weights are introduced in the definition, the
weighted myriad filter appears as a rich and flexible class of
filters that can range, by simply varying a tuning parame-
ter, from highly robust mode-like filter forms to simple and
Gaussian-efficient linear FIR filters. Interactive illustrations
of the power of the weighted myriad framework are also
available on the Internet at http://www.ee.udel.edu/signals/
robust/myriad/myriaddemo/index.html. Many interesting
and important issues remain open. More research must be
done on weighted myriad filter optimization and design, al-
gorithm development for myriad calculation, and the exten-
sion of the weighted myriad to allow bandpass-type (negative
weights) and vector operations.
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