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Space-time differential coding (STDC) is an effective technique for exploiting transmitter diversity while it does not require the
channel state information at the receiver. However, like conventional differential modulation schemes, it exhibits an error floor
in fading channels. In this paper, we develop an STDC decoding technique based on multiple-symbol detection and decision-
feedback, which makes use of the second-order statistic of the fading processes and has a very low computational complexity.
This decoding method can significantly lower the error floor of the conventional STDC decoding algorithm, especially in fast
fading channels. The application of the proposed multiple-symbol decision-feedback STDC decoding technique in orthogonal
frequency-division multiplexing (OFDM) system is also discussed.
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1. INTRODUCTION

Space-time coding (STC) methodologies, which integrate
the techniques of antenna array spatial diversity and chan-
nel coding, can provide significant capacity gains in wireless
channels. There have been many recent works addressing the
design and applications of STC, for example, [1, 2, 3, 4, 5].
Meanwhile, research on receiver design for STC systems is
also active [6]. Thus far, most research in this area has as-
sumed that the fading channel state information (CSI) is
available at the receiver for coherent detection. When no CSI
is available, the transmission of training symbols is then nec-
essary. This is reasonable when the channel changes slowly
compared with the symbol rate, since the transmitter can
send training symbols which enable the receiver to estimate
the channel. However, channel estimation introduces addi-
tional complexity cost. In addition, if the channel experi-
ences fast fading, channel estimation becomes more difficult
and may require too many training symbols. Therefore un-
der these situations, it is better to avoid channel estimation.
Recently, space-time differential coding (STDC) has been de-
veloped in [7, 8]. However, in these works the channel is as-
sumed to be quasi-static. When employed in fading chan-
nels, the simple differential space-time decoding method ex-
hibits an error floor, just like the conventional differential

demodulation schemes. In this paper, we develop a multiple-
symbol decision-feedback decoding technique for decoding
STDC in fading channels, which considerably reduces the er-
ror floor, especially in fast fading channels.

For systems with single transmit antenna, it is known
that multiple-symbol differential detection [9, 10, 11, 12]
can eliminate the error floor in fading channels at the ex-
pense of increased receiver complexity. In [13], a multiple-
symbol decision-feedback differential detection scheme was
proposed, which has a very low complexity. Although this
scheme cannot eliminate the error floor of the simple dif-
ferential detector, it can significantly reduce such a floor.
The multiple-symbol decision-feedback STDC decoding al-
gorithm developed in this paper is a generalization of this
technique to systems employing multiple transmit antennas
and space-time differential coding.

Orthogonal frequency-division multiplexing (OFDM) is
a multi-carrier digital modulation technique whose popu-
larity is rising. In OFDM [14, 15], the entire channel is di-
vided into many narrow sub-channels through which data
are transmitted in parallel, thereby increasing the symbol du-
ration and reducing intersymbol interference. OFDM trans-
forms a frequency-selective fading channel into a set of par-
allel flat-fading channels. Recent works [16, 17, 18] have
addressed channel estimation in OFDM systems employing
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multiple antennas and space-time coding. In this paper, we
will address the application of STDC in OFDM systems and
the corresponding multiple-symbol decision-feedback dif-
ferential receiver.

The rest of this paper is organized as follows. In Section 2,
we summarize the space-time differential code (STDC) and
its decoding algorithm in additive white Gaussian noise
(AWGN) channels. In Section 3, we derive the decision-
feedback multiple-symbol STDC decoding algorithm. In
Section 4, we discuss the application of STDC in OFDM
systems and the corresponding multiple-symbol decision-
feedback differential receiver. Section 5 contains the conclu-
sions.

2. SPACE-TIME DIFFERENTIAL BLOCK CODING

Space-time differential block coding was developed in [7, 8].
Consider a communication system with two transmit anten-
nas and one receive antenna. Let theMPSK information sym-
bols at time n be

an ∈ � �
{

1√
2
e(2πk/M), k = 0, 1, . . . ,M − 1

}
. (1)

Define the following matrices:

A0 �
[
a0 a1
−a∗1 a∗0

]
,

An �
[

a2n a2n+1
−a∗2n+1 a∗2n

]
, for n ≥ 1,

Gn � AnA
H
0 .

(2)

It is easy to see that An and Gn are both orthogonal matrices,
that is, AnA

H
n = AH

n An = GnG
H
n = GH

n Gn = I2. Hence given
Gn, An can be obtained by

An = GnA0. (3)

The space-time differential block code is recursively de-
fined as follows:

X0 = A0, (4)

Xn = GnXn−1, n = 1, 2, . . . , (5)

By a simple induction, it is easy to show that the matrix
Xn has the following form

Xn �
[

x2n x2n+1

−x∗2n+1 x∗2n

]
, (6)

where ‖x2n‖2 + ‖x2n+1‖2 = 1. Hence Xn is also an orthogonal
matrix, and by (5), we have

XnX
H
n−1 = Gn. (7)

At time slot 2n, the symbols on the first row of Xn, x2n,
and x2n+1 are transmitted simultaneously from antenna 1 and
antenna 2, respectively. At time slot 2n+1, the symbols on the

second row of Xn, −x∗2n+1, and x∗2n are transmitted simultane-
ously from the two antennas.We first consider the case where
the channel is static. Let α1 and α2 be the complex fading
gains between the two transmit antennas and the receive an-
tenna, respectively. The received signals at time slots 2n and
2n + 1 are then given, respectively, by

y2n = α1x2n + α2x2n+1 + v2n,

y2n+1 = −α1x∗2n+1 + α2x
∗
2n + v2n+1,

(8)

where v2n and v2n+1 are independent complex Gaussian noise
samples. Note that from (8), in the absence of noise, we can
write the following:[

y∗2n y∗2n+1
y2n+1 −y2n

]
︸ ︷︷ ︸

Yn

=

[
α∗1 α∗2
α2 −α1

]
︸ ︷︷ ︸

H

[
x∗2n −x2n+1
x∗2n+1 x2n

]
︸ ︷︷ ︸

XH
n

. (9)

Since

HHH =
(∣∣α1∣∣2 + ∣∣α2∣∣2)I2, (10)

then using (7) and (9), we have

YH
n Yn−1 =

(∣∣α1∣∣2 + ∣∣α2∣∣2)XnX
H
n−1

=
(∣∣α1∣∣2 + ∣∣α2∣∣2)Gn.

(11)

Based on the above discussion, we arrive at the following
differential space-time decoding algorithm.

Algorithm 1 (differential space-time decoding). Given the
initial information symbol matrix A0, let Â0 = A0. Form Y 0
according to (9) using y0 and y1. For n = 1, 2, . . . ,

• Form thematrixYn according to (9) using y2n and y2n+1.

• Obtain an estimate Ĝn of Gn which is closest to Y
H
n Yn−1.

• Perform the following mapping Ân = ĜnÂ0.

3. MULTIPLE-SYMBOL DECISION-FEEDBACK STDC
DECODING IN FADING CHANNELS

We now consider decoding of the space-time differential
block code in flat-fading channels. In such channels, the re-
ceived signals become

y2n = α(1)2n x2n + α(2)2n x2n+1 + v2n,

y2n+1 = −α(1)2n+1x
∗
2n+1 + α(2)2n+1x

∗
2n + v2n+1,

(12)

where {α(1)n }n and {α(2)n }n are the fading processes associated
with the channels between the two transmit antennas and
the receive antenna, which are modelled as mutually inde-
pendent complex Gaussian variables with Jakes’ correlation
structure [19]. That is, each of them has normalized auto-
correlation function

R(n) � E
{
αm+nα

∗
m

}
= EsJ0

(
2πBdnT

)
, (13)
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where Es is the average symbol energy, J0(·) is the zeroth-
order Bessel function of the first kind, T is the symbol in-
terval, and Bd is the maximum Doppler shift, which is pro-
portional to the vehicle speed and carrier frequency. In order
to simplify the receiver structure, we make the assumption
that the channels remain constant over two consecutive sym-
bol intervals, that is, α(1)2n = α(1)2n+1 and α(2)2n = α(2)2n+1. Then (12)
can be written as[

y2n

y2n+1

]
︸ ︷︷ ︸

y
n

=

[
x2n x2n+1

−x∗2n+1 x∗2n

]
︸ ︷︷ ︸

Xn

[
α(1)2n

α(2)2n

]
︸︷︷︸

αn

+

[
v2n

v2n+1

]
︸ ︷︷ ︸

vn

. (14)

Denote

yn =
[
yT
n

yT
n−1

· · · yT
n−N+1

]T
,

αn =
[
αTn αTn−1 · · · αTn−N+1

]T
,

vn =
[
vTn vTn−1 · · · vTn−N+1

]T
,

Xn = diag
{
Xn, Xn−1, . . . , Xn−N+1

}
,

Gn =
[
Gn Gn−1 · · · Gn−N+2

]
.

(15)

Then we have

yn = Xnαn + vn. (16)

The conditional log-likelihood function is given by

log p
(
yn | Gn

)
=−yHn Q−1

G yn − log det
(
QG
) − 2N logπ, (17)

where

QG � E
{
ynyHn
}

= XnE
{
αnα

H
n

}
XH
n + σ2I2N

= EsXn
(
ΣN ⊗ I2

)
XH
n + σ2I2N ,

(18)

where ⊗ denotes the Kronecker matrix product, and the nor-
malized N ×N autocorrelation matrix has elements given by
(assume that the fading remains constant over two consecu-
tive symbol intervals)

ΣN [i, j] = J0
(
4πBdT(i − j)

)
. (19)

Note that XnXH
n = XH

n Xn = I2N , hence we have

Q−1
G = E−1

s Xn

[(
ΣN +

σ2

Es
IN

)
⊗ I2

]−1
XH
n ,

det
(
QG
)
= det

(
EsΣN ⊗ I2 + σ2I2N

)
.

(20)

Denote T � (ΣN + (σ2/Es)IN )−1, then we have

[(
ΣN +

σ2

Es
IN

)
⊗ I2

]−1
= T ⊗ I2. (21)

The maximum likelihood decoding metric becomes

Ĝn = argmin
Gn

ρ
(
Gn
) � yHn Xn

(
T ⊗ I2

)
XH
n yn. (22)

Note that since T = [ti j] is symmetric, the above cost func-
tion ρ(Gn) can be written as

ρ
(
Gn
)
=

N−1∑
i=0

N−1∑
j=0

ti, j y
H

n−i
Xn−iX

H
n− j yn− j

=
N−1∑
i=0

ti,i y
H

n−i
Xn−iX

H
n−i yn−i

+
N−1∑
i=0

∑
j �=i

ti, j y
H

n−i
Xn−iX

H
n− j yn− j

=
N−1∑
i=0

ti,i
∥∥∥y

n−i

∥∥∥2

+ 2�



N−1∑
i=0

N−1∑
j=i+1

ti, j y
H

n−i


 j−1∏

l=i

Gn−l


y

n− j


,

(23)

where (23) follows from (5). Since the first term in (23) is
independent of Gn, the decision rule (22) becomes

Ĝn = argmin
Gn

�



N−1∑
i=0

N−1∑
j=i+1

ti, j y
H

n−i


 j−1∏

l=i

Gn−l


y

n− j


. (24)

Hence for detecting Gn, it is necessary to calculate M2(N−1)

metrics, whereM is the symbol constellation size. This corre-
sponds toM2(N−1)/(N − 1) metric calculations per code word
decision, that is, the computational complexity grows expo-
nentially with N . Although these metric calculations can be
considerably simplified by using an algorithm developed in
[12], a simpler and more efficient way to reduce complexity
is to replace the previous symbol matrices Gn−1, . . . , Gn−N+2

in (24) by decision-feedback matrices Ĝn−1, . . . , Ĝn−N+2. In
doing so, we obtain codeword-by-codeword decision instead
of block decision. By omitting all summands which depend
exclusively on decision-feedback symbols and thus do not in-
fluence the decision, (24) can be transformed into the follow-
ing decision-feedback decoding rule for Gn:

Ĝn = argmin
Gn

�

yH

n
Gn

N−1∑
j=1

t0, j


 j−1∏

l=1

Ĝn−l


y

n− j


. (25)

Finally, the decision-feedback space-time differential decod-
ing algorithm is summarized as follows.

Algorithm 2 (multiple-symbol decision-feedback space-time
differential decoding). Given the initial information symbol
matrix A0, let Â0 = A0.

• Compute the feedback metric coefficients from T =
(ΣN +(σ2/Es)IN )−1, based on the decision memory order
N , the fading statistic Σn, and the signal-to-noise ratio
Es/σ2.
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Figure 1: Structure of a decision-feedback space-time differential
decoder.
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Figure 2: BER performance of decision-feedback space-time dif-
ferential decoding in flat-fading channels with normalized Doppler
BdT = 0.003. (Channels vary every two symbols).

• Estimate the initial symbol matrices: for n = 1, 2, . . . ,
N − 1,

– Estimate Ĝn by simply quantizing YH
n Yn−1.

– Perform the following mapping Ân = ĜnÂ0.
• For n = N , N + 1, . . . ,

– Estimate Ĝn according to (25).
– Perform the following mapping Ân = ĜnÂ0.

The structure of a decision-feedback space-time differ-
ential decoder is shown in Figure 1, where t j = t0, j for j =
0, 1, . . . , N − 1.

3.1. Simulation examples

We consider a system with two transmit antennas and one
receive antenna. QPSK constellation is employed in all sim-
ulations. By assuming that the fading processes remain con-
stant over the duration of two symbol intervals, Figures 2, 3,
and 4 show the BER performance of the decision-feedback
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Figure 3: BER performance of decision-feedback space-time dif-
ferential decoding in flat-fading channels with normalized Doppler
BdT = 0.0075. (Channels vary every two symbols).
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Figure 4: BER performance of decision-feedback space-time dif-
ferential decoding in flat-fading channels with normalized Doppler
BdT = 0.01. (Channels vary every two symbols).

space-time differential decoder in flat-fading channels with
normalized Doppler BdT = 0.003, 0.0075, and 0.01, respec-
tively. The performance of the single-antenna system is also
shown. It is seen that space-time coding provides diversity
gains over single-antenna systems. Moreover, the multiple-
symbol decision-feedback decoding scheme reduces the er-
ror floor exhibited by the simple space-time differential
decoding method in fading channels. Although the above
multiple-symbol decoding scheme is derived based on the
assumption that the fading remains constant over two con-
secutive symbols, little performance degradation is incurred
when the channels actually vary from symbol to symbol. This
is illustrated in Figures 5, 6, and 7, where the simulation con-
ditions are the same as before except that the fading pro-
cesses now vary from symbol to symbol. It is seen that the
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Figure 5: BER performance of decision-feedback space-time dif-
ferential decoding in flat-fading channels with normalized Doppler
BdT = 0.003. (Channels vary every symbol).
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Figure 6: BER performance of decision-feedback space-time dif-
ferential decoding in flat-fading channels with normalized Doppler
BdT = 0.0075. (Channels vary every symbol).

performance degradation due to such a modelling mismatch
is negligible for practical Doppler frequencies.

4. APPLICATION TOOFDM SYSTEMSWITH
SPACE-TIME CODING

We next briefly discuss the application of decision-feedback
space-time differential decoding in OFDM systems. Figure 8
shows the STDC-OFDM system structure. We consider
a STDC-OFDM system with Q subcarriers, two transmit
antennas and one receive antenna, signaling through a
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Figure 7: BER performance of decision-feedback space-time dif-
ferential decoding in flat-fading channels with normalized Doppler
BdT = 0.01. (Channels vary every symbol).

frequency- and time-selective fading channel. As illustrated
in Figure 8, the information bits first go through a serial to
parallel converter, then are encoded by a STDC encoder us-
ing the encoding algorithm introduced in Section 2. For each
subcarrier m, 0 ≤ m < Q, let {Xm[n]}n be the output of
a space-time differential encoder. Then {Xm[n]}Q−1

m=0 consti-
tutes the OFDM symbol at time n. This OFDM symbol goes
through an IDFT block to perform the inverse Fourier trans-
form. Denote{

xm[2n]
}Q−1
m=0 = IDFT

[{
Xm[2n]

}Q−1
m=0

]
,

{
xm[2n + 1]

}Q−1
m=0 = IDFT

[{
Xm[2n + 1]

}Q−1
m=0

]
.

(26)

After adding proper cyclic prefix, during time slot 2n, the sig-
nals {xm[2n]}Q−1

m=0 are transmitted through antenna 1 serially,

and {xm[2n + 1]}Q−1
m=0 are transmitted through antenna 2 se-

rially; during time slot 2n + 1, the signals {−xm[2n + 1]∗}Q−1
m=0

and {xm[2n]∗}Q−1
m=0 are transmitted serially through antenna 1

and antenna 2, respectively.
Now consider the channel response between the ith

transmit antenna and the receive antenna. Following [20],
the time-domain channel impulse response can be modelled
as a tapped-delay line, given by

h(i)(τ;n) =
L−1∑
l=0

α(i)l [n]δ(τ − lT), i = 1, 2, (27)

where δ(·) is the Kronecker delta function; L = 
τm∆ f +1� de-
notes the maximum number of resolvable taps, with τm be-
ing the maximum multipath spread and ∆ f being the tone

spacing of the OFDM systems; α(i)l [n] is the complex am-
plitude of the lth tap, whose delay is lT . Each of them is
independent with each other and has the same normalized
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Figure 8: STDC-OFDM system structure.

correlation function and different average powers σ2l , l =
0, 1, . . . , L−1. Assume Jakes’ fading channel model, Rα(i)

l
(n) =

σ2l J0(2πBdnT). For OFDM systems with proper cyclic exten-
sion and sample timing, with tolerable leakage, the channel
frequency response between the ith transmit antenna and the
receive antenna at the nth time slot and at themth subcarrier
can be expressed as

H(i)
m [n] =

L−1∑
l=0

α(i)l [n]e− j2πml/Q,

i = 1, 2; m = 0, 1, . . . , Q − 1.

(28)

At the receiver, the received symbols first go through the
serial to parallel converter. The received time-domain sig-
nals during two consecutive time slots are given, respectively,
by

ym[2n] =
L−1∑
l=0

α(1)l [2n]xm−l[2n]

+
L−1∑
l=0

α(2)l [2n]xm−l[2n + 1] + vm[2n],

ym[2n + 1] = −
L−1∑
l=0

αl[2n + 1]xm−l[2n + 1]∗

+
L−1∑
l=0

α(2)l [2n + 1]xm−l[2n]∗

+ vm[2n + 1], m = 0, 1, . . . , Q − 1.

(29)

Assuming proper cyclic prefix is employed at each OFDM
symbol. Then by applying DFT to the time-domain re-
ceived signals (29), we obtain the frequency-domain received

signals

Ym[2n] = Xm[2n]H
(1)
m [2n]

+ Xm[2n + 1]H(2)
m [2n] + Vm[2n],

Ym[2n + 1] = −Xm[2n + 1]∗H(1)
m [2n + 1]

+ Xm[2n]∗H
(2)
m [2n + 1] + Vm[2n + 1],

(30)

where {
Ym[2n]

}Q−1
m=0 = DFT

[{
ym[2n]

}Q−1
m=0

]
,

{
Ym[2n + 1]

}Q−1
m=0 = DFT

[{
ym[2n + 1]

}Q−1
m=0

]
,

(31)

and where H(1)
m [n] and H(2)

m [n] are the complex channel fre-
quency responses between the two transmit antennas and the
receive antenna at time slot n and themth subcarrier;Vm[2n]
is the complex white Gaussian noise.

In order to use the multiple-symbol decision-feedback
space-time differential decoding method, we need to ana-
lyze the auto-correlation of the channel frequency responses.
Since the channel frequency responses are the DFT of chan-
nel impulse response, they are also complex Gaussian ran-
dom variables. From (28), the auto-correlation function of
H(i)

m is

RH(i)
m
(n) = E

{
H(i)

m
[
(n + j)T

]
H(i)

m [ jT]∗
}

= E




L−1∑
l=0

α(i)l
[
(n + j)T

]
e− j2πml/Q

·
L−1∑
q=0

α(i)q [ jT]∗e j2πmq/Q




= E




L−1∑
l=0

α(i)l
[
(n + j)T

]
α(i)l [ jT]∗




=
L−1∑
l=0

E
{
α(i)l
[
(n + j)T

]
α(i)l [ jT]∗

}

=
L−1∑
l=0

Rα(i)
l
(n)

= J0
(
2πBdnT

) · L−1∑
l=0

σ2l , m = 0, 1, . . . , Q − 1.

(32)

It is seen from (32) that the channel frequency responses
have the same normalized autocorrelation function as the
time-domain impulse responses. Hence, by assuming the
channels remain static during two OFDM symbols, that is,
H(1)

m [2n] = H(1)
m [2n + 1] and H(2)

m [2n] = H(2)
m [2n + 1],

the multiple-symbol decision-feedback space-time differen-
tial decoding method discussed in Section 3 can be applied
in parallel at each subcarrier m to decode the information
symbols.

Note that the cross-correlation of the channel frequency
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Figure 9: BER performance of decision-feedback space-time differ-
ential decoding in an OFDM system with BdT = 0.003. (Channels
vary every OFDM symbol).

response is given by

RH(i)
k
H(i)

p
(n) = E

{
H(i)

k

[
(n + j)T

]
H(i)

p [ jT]∗
}

= E




L−1∑
l=0

α(i)l
[
(n + j)T

]
e− j2πkl/Q

·
L−1∑
q=0

α(i)q [ jT]∗e j2πpq/Q




= E




L−1∑
l=0

α(i)l
[
(n+ j)T

]
α(i)l [ jT]∗e− j2πl(k−p)/Q




=
L−1∑
l=0

E
{
α(i)l
[
(n+ j)T

]
α(i)l [ jT]∗e− j2πl(k−p)/Q

}

=
L−1∑
l=0

Rα(i)
l
(n)e− j2πl(k−p)/Q

= J0
(
2πBdnT

) · L−1∑
l=0

σ2l · e− j2πl(k−p)/Q,

k, p = 0, 1, . . . , Q − 1.
(33)

It is seen from (33) that the channel frequency responses
at different carriers are no longer independent. Nevertheless
for simplicity, the decision-feedback multiple-symbol STDC
receiver decodes the symbols independently at each carrier,
thereby ignoring the channel correlations.

4.1. Simulation examples

We consider a system with two transmit antennas and one
receive antenna. The number of subcarriers in the OFDM
system is Q = 128. A 3-tap frequency selective channel
with equal power between each transmit antenna and the
receive antenna is assumed. The other parameters are the
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Figure 10: BER performance of decision-feedback space-time dif-
ferential decoding in an OFDM system with BdT = 0.0075. (Chan-
nels vary every OFDM symbol).
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Figure 11: BER performance of decision-feedback space-time dif-
ferential decoding in an OFDM system with BdT = 0.01. (Channels
vary every OFDM symbol).

same as before. In the simulations, the fading processes
vary from one OFDM symbol to another. Figures 9, 10,
and 11 show the BER performance of the decision-feedback
space-time decoding method in OFDM systems with differ-
ent Doppler frequencies. Again it is seen that the decision-
feedback multiple-symbol STDC receiver reduces the error
floor significantly in fast fading channels.

5. CONCLUSION

In this paper, we have developed amultiple-symbol decision-
feedback decoding algorithm for space-time differential code
(STDC) in fading channels. This algorithm makes use of
only the second-order statistic of the fading channels and
has a very low computational complexity. It can considerably
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reduce the error floor of the conventional STDC decod-
ing method, especially in fast fading channels. Although
the algorithm is developed under the assumption that the
fading channels remain static over one STDC codeword,
that is, two symbol intervals, the performance loss is neg-
ligible when the channels actually vary within a code-
word. Finally, we have also discussed the application of the
proposed multiple-symbol decision-feedback STDC decod-
ing algorithm in OFDM systems with frequency-selective
fading.
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