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We consider multiple-input multiple-output (MIMO) wireless communication systems that employ multiple transmit and receive
antennas to increase the data rate and achieve diversity in fading multipath channels. We begin by focusing on an uncoded system
and define optimal and suboptimal receiver structures for this system in Rayleigh fading with and without intersymbol interfer-
ence. Next, we consider coded MIMO systems. We view the coded system as a serially concatenated convolutional code (SCCC)
in which the code and the multipath channel take on the roles of constituent codes. This enables us to analyze the performance
using the same performance analysis tools as developed previously for SCCCs. Finally, we present an iterative (“turbo”) MAP-
based equalization and decoding scheme and evaluate its performance when applied to a system with N transmit antennas and
M receive antennas. We show that by performing recursive precoding prior to transmission, significant interleaving gains can be
realized compared to systems without precoding.
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1. INTRODUCTION

Recently, multiple-input multiple-output (MIMO) wireless
systems have attracted considerable attention in the com-
munications community. Such systems employ multiple an-
tennas, or antenna arrays, at both the transmitter and the
receiver to enable spatial multiplexing of data and, thus, in-
creased data rates. Traditionally, multiple antennas have been
used at the receiver to provide spatial diversity and mitigate
the effects of signal fading due to multipath propagation in
the channel. However, recent developments in information
theory have shown that by using multiple transmit and re-
ceive antennas, signal fading can in fact be turned into an
advantage. With multiple antennas at both the transmitter
and the receiver, spatially distributed channels can be sup-
ported simultaneously in the same frequency band, and by
transmitting data in parallel through these channels the data
rate can be increased. When deployed in a rich scattering
environment, such systems are capable of greatly increas-
ing the spectral efficiency over traditional single channel sys-
tems. Foschini and Gans [1] showed that the capacity of the
flat MIMO Rayleigh fading channel associated with a system

with N transmit antennas and M ≥ N receive antennas is
given as

C = log2
(
det
[
IM + ρHH′]) bit/s/Hz, (1)

where IM is theM×M identity matrix, ρ is the signal-to-noise
ratio (SNR), andH is theM×N matrix whose elements {hnm}
represent the channel gains between pairs of transmit and re-
ceive antennas. The achievable data rate depends on the rank
ofH. For large SNR and large N andM, the capacity tends to
the value r log2 ρ, where r = rank(H). When the elements of
H are independent and identically distributed, the rank r =
N . Hence, in this ideal scenario of independent fading, the
data rate grows linearly with the number of transmit anten-
nas, which is the key observationmade by Foschini andGans.
Ideally, theM receive antennas can provideMth-order diver-
sity reception for each of the N transmitted signals in ad-
dition to whatever implicit diversity the channel has to offer.
Since there is no orthogonal structure imposed on the signals
by the transmitter, the received signals contain interchannel
interference. The receiver must therefore be able to separate
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the N signals and at the same time take advantage of the in-
herent signal diversity. The rule of thumb is that in order
to ensure independent fading, the antennas have to be sepa-
rated by at least half a wavelength at the receiver and as much
as several wavelengths at an elevated transmitting base sta-
tion. However, for fairly typical indoor and outdoor nonline-
of-sight scattering scenarios, experiments have shown that
antenna spacing has only limited impact on the capacity
[2, 3, 4].

There are many similarities between today’s multiple-
antenna systems and other MIMO systems studied in the
past. Nichols et al. [5] described adaptive detection algo-
rithms for dual-input, dual-output systems such as dually-
polarizedmicrowave radio. These systems are often degraded
by interchannel interference due to channel distortion ef-
fects. However, rather than ignoring these mutual interfer-
ences, the receiver can be designed to take advantage of them,
and thus, improve performance. In [6], Salz considered the
N-input, N-output linear transmission channel and devel-
oped minimum mean squared error (MMSE) transmit and
receive filters. Duel-Hallen considered MIMO equalizers in
the case of completely known, fixed channels in [7]. The in-
formation theory advances reported by Foschini and Gans in
[1] and Raleigh and Cioffi in [8] marked the beginning of
a renewed interest in MIMO systems, with focus on the sig-
nificantly increased data rate capabilities of multiple-antenna
systems.

The theoretical capacity discussed above can be ap-
proached by using powerful signal processing and coding
techniques designed to take advantage of the particular char-
acteristics of MIMO channels. In [9], Foschini suggested a
receiver architecture referred to as BLAST (Bell Labs Layered
Space-Time), in which M receive antennas are used to de-
couple and detectN parallel data streams. The receiver archi-
tecture exploits the distinct spatial signatures of the different
data streams that arise from rich multipath propagation to
separate theN channels. Laboratory experiments carried out
with a simplified version of BLAST, known as V-BLAST, have
demonstrated spectral efficiencies as high as 40 bit/s/Hz in an
indoor slow-fading environment with negligible delay spread
[10]. Several authors have since elaborated on the BLAST
approach, studying the impact of providing channel infor-
mation to the transmitter, the receiver, or both. BLAST-type
architectures with reduced computational complexity were
studied in [10, 11, 12], and optimal BLAST processing for
systems operating under the influence of spatially colored
multiple-access interference was considered in [13].

Coded MIMO systems have also been studied, in partic-
ular by Tarokh et al., who proposed the so-called space-time
codes [14, 15] to further improve the performance. MIMO
systems that employ parallel concatenated codes, also known
as turbo codes, were first proposed by Stefanov and Du-
man in [16]. In their paper, an arbitrary turbo code was
chosen and shown to yield certain gains over the space-
time codes developed by Tarokh et al. Other authors have
proposed iterative detection and decoding techniques in-
spired by the success of the turbo equalization concept de-
veloped by Douillard et al. in [17]. In particular, Bauch

and Naguib proposed iterative equalization and decoding
of space-time codes in multipath channels with intersym-
bol interference (ISI) in [18]. Followup papers on complex-
ity reduction using channel-shortening filters were presented
by Bauch and Al-Dahir in [19, 20]. In [21], Ariyavisitakul
combined iterative detection and decoding with a BLAST-
type detector in an effort to limit the effects of error prop-
agation associated with the original BLAST structure. Bäro
et al. proposed a similar solution that employs soft inter-
ference cancellation in [22]. Tonello discussed iterative de-
coding of space-time bit-interleaved coded modulation in
[23].

In this paper, we also consider coded MIMO systems
and discuss several equalization and decoding schemes which
are appropriate for such systems. In the first half of the pa-
per, we focus on equalizers for uncoded MIMO systems and
evaluate their performance analytically as well as through
simulations. In the second half of the paper, we analyze
coded MIMO systems and propose an iterative equaliza-
tion and decoding scheme. The paper is organized as fol-
lows. We begin in Section 2 by presenting discrete-time sys-
tem and channel models for MIMO systems in multipath
and flat Rayleigh fading. The optimal MIMO detector is
presented in Section 3, while linear and decision feedback
detectors are considered in Section 4. These are MIMO ver-
sions of the conventional single-input, single-output maxi-
mum likelihood sequence estimator (MLSE) and linear and
decision feedback equalizers, respectively. We also present a
decision-directed detector for the special case of flat fading.
In Section 5, we focus on the application of error-correcting
codes inMIMO systems.We view the codedMIMO system as
a serially concatenated code in which the code and the chan-
nel take on the roles of constituent “codes.” This enables us to
apply many of the same performance analysis tools that have
been developed previously for serially concatenated codes. In
Section 6, we consider an iterative equalization and decod-
ing scheme based on the maximum a posteriori probabil-
ity (MAP) criterion. Differential precoding is introduced to
make the multipath channel appear recursive, thus enabling
the receiver to benefit from interleaving gain in a similar way
as is possible with serially concatenated codes. The perfor-
mance of the iterative receiver is evaluated through simu-
lations and the simulation results are compared to the an-
alytical results developed in Section 5. Finally, in Section 7,
a summary of the main results as well as some concluding
remarks are given.

2. SYSTEMAND CHANNELMODELS

The general configuration for a multiple-antenna commu-
nication system is shown in Figure 1. For simplicity, we as-
sume that a binary modulation such as binary PSK or bi-
nary PAM is used. The data is encoded and interleaved by a
pseudo-random interleaver of length K . A block of N coded
data symbols is converted from serial to parallel and fed to
N identical modulators, where each modulator is connected
to a separate antenna. The transmitted signals are received
by M receive antennas whose signals are fed to separate but
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Figure 1: Model of MIMO digital communication system with multiple transmit and receive antennas.

identical demodulators. In the following, we will refer to such
a system as an (N,M) system. The signal transmitted on the
nth transmit antenna can be represented as

sn(t) =
∑
k

dn(k)g(t − kT), (2)

where g(t) is the pulse shape (impulse response) of the mod-
ulation filter, {dn(k)} is the sequence of coded data symbols,
and T is the symbol duration.

We assume that the channels between each transmit and
receive antenna are completely known, independent time-
varying multipath channels. We also assume that the differ-
ences in propagation times of the signals from the N trans-
mit antennas to the M receive antennas are small relative
to the symbol duration T , so that for practical purposes,
the signals from the N transmit antennas to any receiving
antenna are synchronous. The channel between each trans-
mit and receive antenna, including transmitter and receiver
filters, is modeled as a linear, discrete-time filter having a
finite-duration impulse response. The tap coefficients of the
equivalent discrete-time filter between the nth transmit an-
tenna and the mth receive antenna are denoted as f (l)nm(k),
l = 0, 1, . . . , Lnm, n = 1, 2, . . . , N , m = 1, 2, . . . ,M. Hence,
the received signals can be represented as

vm(k)=
N∑
n=1

Lnm∑
l=0

f (l)nm(k)dn(k − l) + ηm(k), m=1, 2, . . . ,M,

(3)

where dn is the coded symbol transmitted on the nth an-
tenna, Lnm + 1 represents the span of the ISI on that particu-
lar discrete-time channel, and ηm(k) is a sample function of
a zero-mean, temporally and spatially white Gaussian noise

process. For convenience, (3) may be written in matrix form
as

v(k) =
L∑
l=0

F(k, l)d(k − l) + η(k), (4)

where

v(k) = [v1(k)v2(k) · · · vM(k)]T ,
d(k) = [d1(k)d2(k) · · · dN (k)]T ,
η(k) = [η1(k)η2(k) · · · ηM(k)]T ,

(5)

and {F(k, l)} is a set of channel matrices representing the
equivalent discrete-time channels between the N transmit
antennas and the M receive antennas. The maximal span
of the ISI is given by L = max{Lnm}. Figure 2 illustrates
the model of the equivalent discrete-time system with white
noise.

In the general case of multipath fading, the tap coef-
ficients are assumed to be complex-valued, mutually sta-
tistically independent Gaussian random variables with zero
mean and variance

σ2n,m,l = E
[∣∣ f (l)nm(k)

∣∣2], n = 1, 2, . . . , N,

m = 1, 2, . . . ,M, l = 0, 1, . . . , Lnm.
(6)

In the special case of frequency-nonselective, or flat, fad-
ing, the parameter L = 0 since the channel is memoryless,
and (3) reduces to

vm(k) =
N∑
n=1

fnm(k)dn(k) + ηm(k), m = 1, 2, . . . ,M, (7)
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Figure 2: Discrete-time vector model for a time-invariant (N,M)
system.

which may be conveniently represented in matrix form as

v(k) = F(k)d(k) + η(k). (8)

In the general MIMO model depicted in Figure 1, we as-
sume coded data symbols. However, in Sections 3 and 4, we
will focus on equalization and detection schemes and will
therefore consider an uncoded system. In Section 5, we re-
turn to coded MIMO systems and investigate receiver struc-
tures which combine the tasks of equalization, detection, and
decoding.

3. THEMLSE FORMIMO CHANNELS

The optimal receiver for an (N,M) MIMO multipath
channel is based on joint maximum likelihood detec-
tion of the vector sequence {d(k)}, where d(k) =
[d1(k)d2(k) · · · dN (k)]T is the vector of data symbols trans-
mitted simultaneously from antennas 1 through N . This re-
ceiver is known as the maximum likelihood sequence estima-
tor (MLSE), and is a generalization of the well-established
single-input, single-output MLSE [24]. In this section, we
first describe the structure of the MIMOMLSE and then an-
alyze its asymptotic performance on Rayleigh fading multi-
path channels.

3.1. TheMIMOMLSE

The MLSE criterion is equivalent to estimating the state se-
quence of a discrete-time, finite-state machine. In this case,
the state machine is the equivalent discrete-time multipath
channel with channel coefficients { f (l)nm(k)}. These coeffi-
cients are treated as known constants in the detection of the
information sequence. The state at any time instant is given
by the Lmost recent vector inputs, that is,

Sk =
(
d(k − 1),d(k − 2), . . . ,d(k − L)

)
, (9)

where d(k) = 0 for k ≤ 0. Assuming a binary modulation
scheme, the state machine has 2LN states. Hence, the channel
is described by a 2LN -state trellis and the vector Viterbi algo-
rithm introduced by van Etten [25]may be used to determine
the most probable path through the trellis.

With these signals as input, the MLSE decides in favor of

the vector sequence {d(k)} that maximizes the joint condi-
tional probability density function

p
(
vW |dW

)
=

W∏
k=1

p
(
v(k)|d(k),d(k − 1), . . . ,d(k − L)

)
,

(10)

where W � L is the length of the transmitted sequence
and the components {vm(k)} of the vector v(k) are complex-
valued Gaussian random variables with mean

v̄m(k) =
N∑
n=1

Lnm∑
l=0

f (l)nm(k)dn(k − l) (11)

and variance

σ2 = E
[∣∣ηm(k)∣∣2] = N0. (12)

The variance is independent of m. Thus, the MLSE decides
on the sequence that maximizes the joint probability density
function

p
(
vW |dW

)
=
(

1
2πσ2

)MW

× exp

(
− 1
2σ2

W∑
k=1

M∑
m=1

∣∣vm(k) − v̄m(k)
∣∣2)

(13)

over all 2NW possible sequences. Maximizing p(vW |dW ) over
dW is equivalent to minimizing the distance metric

J
(
dW
)
=

W∑
k=1

M∑
m=1

∣∣vm(k) − v̄m(k)
∣∣2. (14)

Consequently, at each stage of the Viterbi algorithm the fol-
lowing incremental distance metric must be computed:

µk
(
d(k)
)
=

M∑
m=1

∣∣∣∣∣vm(k) −
N∑
n=1

Lnm∑
l=0

f (l)nm(k)dn(k − l)

∣∣∣∣∣
2

. (15)

In the case of flat fading, that is, where L = 0, the distance
metric reduces to

µk
(
d(k)
)
=

M∑
m=1

∣∣∣∣∣vm(k) −
N∑
n=1

fnm(k)dn(k)

∣∣∣∣∣
2

. (16)

In this case, the channel is memoryless, and, assuming that
the channel coefficients are statistically independent over
successive symbol intervals, sequence detection is no longer
necessary. Instead, the receiver performs maximum likeli-
hood detection on a symbol-by-symbol basis, as suggested
by Nichols et al. [5].

3.2. Performance of theMLSE

An (N,M) system such as the one we consider here can
be thought of as N parallel single transmitter systems with
Mth-order spatial diversity, each one experiencing multipath
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fading. The error probability of one such component single
transmitter system was derived by Proakis in [26]. In this
section, we build upon those results as well as the results
derived by van Etten for (N,N) systems in time-invariant
multipath channels [25] to obtain the asymptotic bit error
probability for our (N,M) system. For simplicity, we assume
that BPSK modulation is employed. We also assume perfect
knowledge of the channel coefficients at all times.

The expression for the upper bound on the probability of
a bit error is identical to that derived by Forney [24] for the
single-input, single-output MLSE on a time-invariant multi-
path channel, namely,

Pb(γ) ≤
∑
ε∈E

K(ε)Q
(√

2γ
)
. (17)

The SNR parameter γ is given by γ = d2(ε)/N0, where d2(ε)
is the Euclidean weight of an error event ε, E is the set of all
error events starting at a given point in time, and K(ε) is a
constant which is independent of d2(ε). The standard error
function Q is given by

Q(x) =
1√
2π

∫∞

x
e−t

2/2dt, x ≥ 0. (18)

An error event is defined as an estimated state sequence

Ŝk, Ŝk+1, . . . , Ŝk+ν, (19)

where the first and last state estimates are correct, that is, Ŝk =
Sk and Ŝk+ν = Sk+ν , but the intermediate state estimates are
incorrect. Associated with the estimated state sequence is a
normalized symbol error sequence {e(i)} defined by

e(i) =
1
2

[
d(i) − d̂(i)

]
, i = k, k + 1, . . . , k + ν − L − 1, (20)

where e(i) = [e1(i)e2(i) · · · eN (i)]T , as well as a sig-
nal error sequence {ε( j)} where the vector ε( j) =
[ε1( j)ε2( j) · · · εM( j)]T is given by

ε( j) =
L∑
l=0

F( j, l)e( j − l), j = k, k + 1, . . . , k + ν − 1. (21)

The Euclidean weight of the error event can be expressed as

d2(ε) =
k+ν−1∑
j=k

‖ε( j)‖2

=
M∑
m=1


 N∑

n=1

N∑
n′=1

f ′(n,m)An,n′ f
(
n′, m

),

(22)

where An,n′ is an (L + 1) × (L + 1) positive definite matrix
which depends on the symbol errors associated with the par-
ticular error event ε, and f(n,m) is a vector which contains
the coefficients of the channel between transmit antenna n
and receive antennam, and is given by

f(n,m) =
[
f (0)nm (k) f (1)nm (k) · · · f (L)nm (k)

]T
. (23)

Due to the exponential behavior of the Q function, the
bit error probability on a time-invariant channel as given by
(17) is dominated by the term corresponding to the mini-
mum value of d2(ε), which we denote by d2min(ε). This mini-
mumweight is associated with the length-1 error event which
consists of only one error vector e(k) (i.e., e( j) = 0, j 	= k).
Moreover, in this error vector, only one of theN components
differs from zero. Thus, the minimum weight d2min(ε) takes
the form

d2min(ε) =
M∑
m=1

f ′(n,m)Af(n,m) =
M∑
m=1

d2m(ε), (24)

where A = An,n is given by (see [27])

A =



βn(0) βn(1) · · · βn(L)
βn(1) βn(0) · · · βn(L − 1)
...

...
. . .

...
βn(L) βn(L − 1) · · · βn(0)


 ,

βn(l) =
k+ν−1−l∑

j=k

en( j)en( j + l), l = 0, 1, . . . , L.

(25)

For the length-1 error event A = I, since βn(l) takes on the
following values:

βn(l) =

{
1, l = 0,

0, l 	= 0.
(26)

For the Rayleigh fading channel, the vectors {f(n,m)} are
zero-mean, complex-valued, mutually statistically indepen-
dent Gaussian vectors whose covariance matrices are diago-
nal matrices given by

Rm = E
[
f(n,m)f ′(n,m)

]
, m = 1, 2, . . . ,M. (27)

Consequently, the Euclidean weight d2min(ε) is a random vari-
able represented by the sum of quadratic forms d2m(ε) given
in (24).

To obtain the bit error probability in Rayleigh fading, we
must average the conditional error probability Pb(γ) over the
statistics of the SNR parameter γ. The characteristic function
of γ may generally be written as (see [28])

ψγ( jω) =
M∏
m=1

L∏
l=0

1
1 − jωξm,l/N0

, (28)

where {ξm,l} are the (L + 1)M eigenvalues of the matrices
ARm, m = 1, 2, . . . ,M. We are particularly interested in the
special case where the channel coefficients { f (l)nm(k)} have
equal variance σ2f , that is, where

Rm = σ2f I, m = 1, 2, . . . ,M. (29)

We define γ̄m,l as the average SNR per channel coefficient,

γ̄m,l =
ξm,l

N0
=
σ2f λl

N0
= γ̄cλl, (30)
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where {λl} are the eigenvalues ofA and γ̄c = σ2f /N0. The char-

acteristic function then becomes

ψγ( jω) =
L∏
l=0

(
1

1 − jωγ̄cλl

)M

. (31)

In the case where A = I, the eigenvalues are all equal to unity,
that is, λl = 1 for all l. In this case (31) becomes

ψγ( jω) =

(
1

1 − jωγ̄c

)(L+1)M

. (32)

The probability density function of γ is obtained by inverse-
Fourier transforming the characteristic function, which
yields

p(γ) =
1

(D − 1)!γ̄Dc
γD−1e−γ/γ̄c , γ ≥ 0, (33)

where D = (L + 1)M. We can compute a lower bound on the
bit error probability by truncating the upper bound in (17)
to include only the single error event which corresponds to
the minimum Euclidean weight d2min. By averaging this con-
ditional lower bound over the probability density function in
(33), we obtain

Pb1 =
∫∞

0
Q
(√

2γ
)
p(γ)dγ

=

[
1
2
(1 − µ)

]D D−1∑
k=0

(
D − 1 + k

k

)[
1
2
(1 + µ)

]k
,

(34)

where µ =
√
γ̄c/(1 + γ̄c). For high SNR (γ � 1), Pb1 is ap-

proximated by

Pb1 ≈
(
2D − 1
D

)(
1
4γ̄c

)D

. (35)

We note that this result is identical to the average probability
of error for a maximal ratio combiner with diversity of order
D in flat fading. Hence, our system benefits from an implicit
diversity of order L+1 due to channel dispersion in addition
to the explicitMth-order spatial diversity. Equation (34) also
gives the lower bound on the error probability for an (N,M)
system in flat fading (where L = 0). In this case, only spatial
diversity gain is available.

Figure 3 shows the lower bound on the bit error proba-
bility as a function of the average received SNR per bit, γ̄b, for
D = 2, 4, 6. The average SNR per bit is related to the average
SNR per channel coefficient γ̄c by the formula γ̄b = Dγ̄c. Also
shown is the simulated bit error rate (BER) for three differ-
ent MIMO systems [29]. The first system is a (2, 2) system
operating in a Rayleigh fading channel with no time disper-
sion (L = 0). The effective order of diversity is D = M = 2.
The second system is also a (2, 2) BPSK system, but operat-
ing in a two-path (L = 1) Rayleigh fading channel, where
the variance of the channel coefficients is σ2f = 1/D. In this
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Figure 3: Performance of ML detectors in dispersive and nondis-
persive Rayleigh fading.

case, the effective order of diversity is D = (L + 1)M = 4, and
the simulation results agree very well with the lower bound.
Finally, the third system is a (2, 3) system operating in the
same two-path Rayleigh fading channel as the previous sys-
tem. Again, the simulation results are in agreement with the
lower bound, which predicts an effective order of diversity
D = (L + 1)M = 6.

Based on the analysis and simulation results presented
above, we can conclude that the MIMO MLSE is capable of
exploiting the full diversity potential offered by the channel,
including explicit antenna diversity as well as implicit diver-
sity due to channel dispersion.

4. SUBOPTIMALMIMODETECTORS

In systems with many transmit antennas and significant ISI,
that is, where the parameters N and L are large, the com-
putational complexity of the MIMO maximum likelihood
sequence estimator might be problematic, since the com-
plexity grows exponentially with NL. We are therefore in-
terested in evaluating receiver structures of lower complex-
ity which can offer good, yet suboptimal performance. The
MLSE may be replaced by a multiple-input multiple-output
combiner-equalizer structure such as a MIMO linear equal-
izer or aMIMO decision feedback equalizer. These equalizers
are completely analogous to single channel equalizers, which
are well known from the general literature [27]. Optimal (in
the minimum mean squared error sense) MIMO linear and
decision feedback equalizers were presented in [7] for the
case of completely known and fixed channels, while adap-
tive versions were presented in [30]. A related study compar-
ing the performance of joint maximum likelihood detection
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and MMSE combining of co-channel signals was presented
in [31]. In this section, we consider similar MMSE linear and
decision feedback equalizers for MIMO systems in multipath
fading. We also consider alternative detectors for memory-
less MIMO channels, based on both the MMSE and the zero-
forcing criteria.

4.1. MIMO linear equalizer

The MIMO linear equalizer performs cancellation of ISI and
interchannel interference as well as diversity combining. It
consists of a bank of transversal filters, each with 2K + 1 co-
efficients, operating on theM received signals. Hence, the es-
timate of the data symbol transmitted on the nth antenna at
time k is represented by

d̃n(k) =
M∑
m=1

wT
mn(k)vm(k), n = 1, 2, . . . , N, (36)

where wmn(k) = [w(−K)
mn (k) · · ·w(0)

mn(k) · · ·w(K)
mn (k)]T is the vec-

tor of filter coefficients corresponding to channel n and re-
ceive antennam at time k, and vm(k) is the vector of symbol-
spaced signal samples from receive antenna m stored in the
transversal filter at time k, which is given by vm(k) = [vm(k +
K) · · · vm(k) · · · vm(k − K)]T . Equation (36) may be repre-
sented in matrix form as

d̃(k) = W(k)v1:M(k), (37)

where d̃(k) = [d̃1(k)d̃2(k) · · · d̃N (k)]T , W(k) is the N ×
M(2K + 1) matrix given by

W(k) =




wT
11(k) wT

21(k) · · · wT
M1(k)

wT
12(k) wT

22(k) · · · wT
M2(k)

...
...

. . .
...

wT
1N (k) wT

2N (k) · · · wT
MN (k)


 , (38)

and v1:M(k) is the M(2K + 1) × 1 vector of received signals
given by

v1:M(k) =
[
vT1 (k)v

T
2 (k) · · · vTM(k)

]T
. (39)

The optimal values of the filter coefficients at time k are
determined using the MMSE criterion. The overall mean
squared error is the sum of the mean squared errors for each
of the N transmitted symbols,

MSE =
N∑
n=1

E
[∣∣dn(k) − d̃n(k)

∣∣2]. (40)

Minimization of the MSE with respect to the filter coefficient
vectors {wmn(k)} yields the following solutions:

wT
mn(k) = E

[
dn(k)v′m(k)

](
E
[
vm(k)v′m(k)

])−1
,

m = 1, 2, . . . ,M, n = 1, 2, . . . , N.
(41)

In the case of flat fading, a somewhat simpler detector
can be designed [32]. In this case, estimates of the transmit-
ted symbols are formed by linearly combining the received
signal samples v1(k), v2(k), . . . , vM(k). The linear combining
may be represented in matrix form as

d̃(k) = W(k)v(k), (42)

where v(k) = [v1(k)v2(k) · · · vM(k)]T , W(k) is the matrix
of weights given by W(k) = [wT

1 (k)w
T
2 (k) · · ·wT

N (k)]
T and

wn(k) = [w1n(k)w2n(k) · · ·wMn(k)]T . Minimization of the
MSE with respect to the weights yields the solutions

wT
n (k)=E

[
dn(k)v′(k)

](
E
[
v(k)v′(k)

])−1
, n=1, 2, . . . , N.

(43)

If we use zero-forcing of the interchannel interference as
optimality criterion instead of the MMSE criterion in this
case, the combining weight matrix is simply given as the in-
verse of the channel matrix, that is,

W(k) = F−1(k). (44)

The price paid for the complete elimination of interfer-
ence is noise enhancement in all channels. However, at high
SNR levels, the zero-forcing solution approaches the MMSE
solution.

4.2. MIMOdecision feedback equalizer

The MIMO decision feedback equalizer (DFE) consists of a
feedforward section with transversal filters of length K1 + 1,
a feedback section with filters of length K2 = L and N sym-
bol decision devices. The structure of the feedforward section
of the DFE is similar to the linear equalizer, and it performs
cancellation of both interchannel interference and ISI, as well
as diversity combining. Just as in the single channel case, the
feedback section can further reduce ISI due to postcursors.
In general, the estimate of the data symbol transmitted on
the nth antenna at time k is represented by

d̃n(k) =
M∑
m=1

aTmn(k)v
f
m(k)

−
N∑
i=1

bTin(k)d̂
f
i (k), n = 1, 2, . . . , N.

(45)

The vector amn(k) = [a(−K1)
mn (k)a(−K1+1)

mn (k) · · · a(0)mn(k)]T repre-
sents the feedforward filter coefficients corresponding to
channel n and receive antenna m at time k, and vfm(k) de-
notes a vector of signal samples received at antenna m, given
by vfm(k) = [vm(k + K1)vm(k + K1 − 1) · · · vm(k)]T . The
feedback filter bin(k) takes the symbol decisions for trans-
mit antenna i as input and outputs an estimate of the in-
terchannel interference and postcursor ISI seen by chan-
nel n. The feedback filter coefficients are given by bin(k) =
[b(1)in (k)b(2)in (k) · · · b(K2)

in (k)]T . The K2 most recent decisions
obtained for the symbols transmitted by antenna i are repre-

sented by the vector d̂ f
i (k) = [d̂i(k−1)d̂i(k−2) · · · d̂i(k−K2)]T .
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The feedback filters bnn(k) mainly perform ISI cancellation,
while the filters bi j(k), where i 	= j, mainly perform cancella-
tion of interchannel interference. Equation (45) may be rep-
resented in matrix form as

d̃(k) = A(k)vf 1:M(k) − B(k)d̂ f
1:N (k), (46)

where A(k) is the N ×M(K1 + 1) matrix given by

A(k) =




aT11(k) aT21(k) · · · aTM1(k)

aT12(k) aT22(k) · · · aTM2(k)
...

...
. . .

...

aT1N (k) aT2N (k) · · · aTMN (k)


 , (47)

B(k) is the N ×NK2 matrix given by

B(k) =




bT11(k) bT21(k) · · · bTN1(k)

bT12(k) bT22(k) · · · bTN2(k)
...

...
. . .

...

bT1N (k) bT2N (k) · · · bTNN (k)


 , (48)

v f
1:M(k) is the M(K1 + 1) × 1 vector of received signals given
by

vf 1:M(k) =
[
vf

T
1 (k)v

fT
2 (k) · · · vf

T
M(k)

]T
, (49)

and d̂ f
1:N (k) is the NK2 × 1 vector of recent symbol decisions

given by

d̂ f
1:N (k) =

[
d̂ f T
1 (k)d̂ f T

2 (k) · · · d̂ f T
N (k)

]T
. (50)

As in the case of the linear equalizer, the optimal DFE
coefficients are determined using the MMSE criterion. In
particular, the solution for the feedforward coefficient vector
amn(k) is given by

aTmn(k) = E
[
dn(k)vf

′
m(k)
](
E
[
vfm(k)vf

′
m(k)
])−1

,

m = 1, 2, . . . ,M, n = 1, 2, . . . , N.
(51)

The feedback coefficient vectors are computed with the
help of the feedforward vectors and are given by

bTin(k) =
M∑
m=1

aTmi(k)
[
f(1)nm(k)f

(2)
nm(k) · · ·f(L)nm(k)

]
,

i, n = 1, 2, . . . , N,

(52)

where f(l)nm(k) is a column vector of length K1 + 1 which con-
sists of the discrete-time coefficients of the channel between
transmit antenna n and receive antennam at subsequent time
instants, and is given by

f(l)nm(k)=
[
f (l+K1)
nm (k+K1) f

(l+K1−1)
nm

(
k+K1−1

) · · · f (l)nm(k)
]T
,

l = 1, 2, . . . , L.
(53)

4.3. Decision-directedMRC detector for flat
fading channels

The idea behind the decision-directed maximal ratio com-
bining (DD-MRC) detector is to exploit the knowledge of the
channel coefficients to achieveMth-order diversity reception
of each of the N transmitted signals in flat fading channels.
The detector consists of two sections. The front section can-
cels interchannel interference due to signals transmitted on
antennas other than the one of interest, and the back sec-
tion performs maximal ratio combining [32]. In order to
cancel interference, preliminary symbol decisions are made
for the interfering signals. These decisions can, for example,
be obtained with the zero-forcing or MMSE detectors dis-
cussed in Section 4.1. Using the preliminary decisions, es-
timates of the interchannel interference are calculated and
subtracted from the received signals.Mth-order diversity re-
ception is achieved by performing maximal ratio combin-
ing of the (interference free) signals from each receiving an-
tenna. The signals at the input of the nth combiner are given
by



u1n
u2n
...

uMn


 =




fn1dn +
∑N

i=1
i 	=n

fi1
(
di − d̂i

)
+ η1

fn2dn +
∑N

i=1
i 	=n

fi2
(
di − d̂i

)
+ η2

...
fnMdn +

∑N
i=1
i 	=n

fiM
(
di − d̂i

)
+ ηM



, (54)

where we have left out the time indices to simplify nota-
tion. The preliminary symbol estimates are given by {d̂i},
i = 1, 2, . . . , N , and we observe that if the estimates are cor-
rect, the terms involving sums of interfering signals cancel.
In the case of BPSK, the output of the combiners can be ex-
pressed as decision variables in the form

Un = Re




M∑
m=1

umn f
∗
nm


, n = 1, 2, . . . , N. (55)

4.4. Performance of suboptimal detectors

We do not provide analytical performance results for the
suboptimal MIMO detectors discussed in this section. In-
stead, we give results for the bit error rate (BER) obtained
through computer simulations. Figure 4 shows the BER as a
function of average received SNR per bit for the linear equal-
izer and the DFE, respectively, in a two-path (L = 1) fading
channel. In both cases, the following systems were simulated:
(N,M) = (2, 4), (2, 6), and (2, 8). In the case of the linear
equalizer, the filter length was 5 (K = 2). The feedforward
filter lengths of the DFE were all K1 = 2, while the feedback
filters had K2 = L = 1 coefficients.

It is clear from the graphs that both suboptimal de-
tectors perform significantly poorer than the MLSE. Both
the linear equalizer and the DFE simulated here are unable
to fully cancel the interference, as is evident from the er-
ror floors in the graphs. However, we observe that as the
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Figure 4: Performance of the MIMO linear and decision feedback
equalizers in two-path fading channels.

number of receive antennas increases from 4 to 8, thus
increasing the order of diversity in the systems, the error
rates are improved. With a higher order of receiver diver-
sity the error floors are lowered, and it appears that in the
two-path channel, the improvements in BER are approxi-
mately one order of magnitude for every two receive anten-
nas added. This observation is made for both detectors. We
also note that the decision feedback equalizers provide im-
provements of 3–5 dB over the linear equalizers at a BER of
10−3.

Figure 5 shows the BER performance achieved with the
simplified detectors designed specifically for the case of flat
fading (L = 0). The simulation results were obtained by
simulating a (2, 2) system. In particular, we observe that
the performance of the MMSE detector is within 0.5 dB of
the “no diversity” curve, while the performance of the zero-
forcing detector is about 2 dB worse, mainly due to noise en-
hancement caused by the matrix inversion. The performance
curves for the DD-MRC detector were obtained with both
correct (known) preliminary bit decisions and actual pre-
liminary decisions provided by a zero-forcing detector. With
correct decisions, the performance attains the lower bound
on the performance of the optimal maximum likelihood de-
tector, which we expect since interchannel interference is
completely eliminated without compromising the order of
diversity. In the other case, the DD-MRC’s performance is
limited by the zero-forcing detector’s inability to make reli-
able decisions. We conclude that the linear detectors lose one
order of diversity compared to the optimal detector on the
flat fading channel.
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Figure 5: Performance of the simplified MIMO detectors in flat
fading.

5. ANALYSIS OF CODEDMIMO SYSTEMS

In this section, we turn our attention to coded MIMO sys-
tems. Error correcting codes may be applied to MIMO sys-
tems to improve the performance in fading and mitigate
the degradation resulting from interchannel interference. Al-
though there exist the so-called space-time codes which have
been developed specifically for MIMO systems, any (n, k)
convolutional code or block code may in principle be ap-
plied to improve the performance. In the MIMO systems
that we consider here, the data are encoded with a con-
volutional code and interleaved before they are transmit-
ted over spatially distributed fading multipath channels. This
scheme resembles a serially concatenated convolutional code
(SCCC), where the convolutional code is the outer code and
the MIMO multipath channel takes on the role of an in-
ner time-varying convolutional code. In realizing this resem-
blance, we may analyze the performance of MIMO systems
using the same bounding techniques as developed previously
for SCCCs [33, 34, 35].

5.1. The union bound for codedMIMO systems

First, we consider an SCCC which consists of an outer con-
volutional code Co with rate Ro = k/p and an inner con-
volutional code Ci with rate Ri = p/n. The two codes are
joined together by a uniform interleaver of length K . This in-
terleaver maps an input word with Hamming weight l into
any one of

(K
l

)
distinct permutations of itself with uniform

probability 1/
(K
l

)
. Assuming linear constituent codes, the re-

sulting concatenated code Cs is a linear code with rate Rs =
k/n. By terminating the trellis of the outer code at both the
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beginning and the end of the codeword, we construct an
equivalent block code. Thus, wemay process the received sig-
nals on a codeword-by-codeword basis. The length of the in-
put sequence is KRo, while the length of the SCCC codeword
is K/Ri. The optimal decoder for this code is a hypothetical
maximum likelihood sequence decoder which operates on a
hyper-trellis where the states are pairs of states of the outer
and inner codes. Although prohibitively complex due to the
interleaving, we will assume ML decoding for the purpose of
calculating the union bound on the bit error probability.

In [33], Benedetto et al. demonstrated that high coding
gains can be obtained at very low SNRs with serially con-
catenated codes, provided that the interleaver is large and the
inner code is a recursive code. The outer code can be either
recursive or nonrecursive. In particular, it was shown that ev-
ery term of the union bound decreases asymptotically at least
as rapidly asK−�(dofree+1)/2
, where dofree is the free distance of the
outer code and �·
 denotes the integer value. This is referred
to as interleaving gain.

We view the MIMO system shown in Figure 6 as an
SCCC. In order to benefit from interleaving gain, the inner
“code,” that is, the channel must be recursive. The multi-
path channel can be made to appear recursive to the outer
code by performing recursive precoding prior to transmis-
sion. Narayanan [36] showed that the preferred precoder is
of the form 1/(1 + ZR) due to the enhanced convergence
properties of iterative decoders for such codes. For this rea-
son and for simplicity, we will restrict our attention to a sim-
ple differential precoder with polynomial 1/(1 + Z) and rate
Ri = 1.

In the MIMO system of Figure 6, the output sequence
of the outer code is passed through a uniform interleaver
before being fed to N parallel and identical precoders and
modulators, where each modulator is connected to a sep-
arate antenna. The N signals are then transmitted over an
(N,M) channel and received by M receive antennas which
are connected to an ML receiver capable of performing joint
demodulation, detection and decoding. As before, the chan-
nels between each transmit and receive antenna are assumed
to be independently fading multipath channels, each with
L + 1 paths. In Section 3, we saw that the uncoded perfor-
mance in fading multipath channels is approximated by the
performance of a (1, D) system with maximal ratio combin-
ing in flat fading. Both implicit diversity of order L + 1 due
to channel dispersion, and explicit spatial diversity of order
M contribute to the effective diversity order D = (L + 1)M
of the uncoded system. Analogously, the performance of a
coded MIMO system is approximated by the performance of
an SCCC in flat fading with diversity of order D. We use this
knowledge in developing the union bound below.

Since the SCCC is a linear code, the bit error probabil-
ity can be calculated under the assumption that the all-zero
codeword was transmitted. We define a pairwise error event
as the event in which the likelihood of a codeword with Ham-
ming weight h, generated by an information word withHam-
ming weight w, is higher than the likelihood of the all-zero
codeword. Assuming ML decoding and BPSK modulation,
the union bound is given by (see [33])

Pb ≤
K/Ri∑
h=1

BhPh, (56)

where Ph is the pairwise error probability in Rayleigh fading
given by

Ph =

[
1
2
(1 − µ)

]Dh Dh−1∑
k=0

(
Dh − 1 + k

k

)[
1
2
(1 + µ)

]k
, (57)

and µ =
√
γ̄cRs/(1 + γ̄cRs), Rs = Ro = k/n, γ̄c = γ̄b/D, and

D = (L + 1)M. The bit error multiplicity is expressed as

Bh =
KRo∑
w=1

K∑
l=0

w

KRo
(K
l

)ACo

w,l · A
Ci

l,h, (58)

where ACo

i, j and ACi

i, j denote the number of codewords with

Hamming weight j generated by input sequences with Ham-
ming weight i of the outer and inner codes, respectively.
These input-output weight spectra may be calculated using
the recursive method described in [35].

For K much larger than the memory of the outer convo-
lutional code, (56) can be approximated by (see [33])

Pb ≤
K/Ri∑
h=1

Ph
KRo∑
w=1

K∑
l=dofree

noM∑
no=1

niM∑
ni=1

w

KRo

× Kno+ni−l−1 l!

pno+nino!ni!
TCo

w,l,no · T
Ci

l,h,ni
,

(59)

where TCo

i, j,n and TCi

i, j,n denote the number of codewords of
weight j generated by input sequences of weight i that are
formed by the concatenation of n adjacent error events of
the outer and inner codes, respectively. The free distance of
the outer code is denoted by dofree, and n

o
M and niM refer to the

maximum number of adjacent error events of the outer and
inner codes, respectively.

For large K , the dominant coefficient of Ph is the one for
which the exponent of K is maximum. We define this maxi-
mum exponent as

α(h) = max
w,l

{
no + ni − l − 1

}
. (60)

In general, α(h) cannot be evaluated without specifying the
outer and inner codes, but general expressions can be found
for two important cases, namely (i) the exponent corre-
sponding to the minimum output weight, and (ii) the overall
maximum exponent.

For large values of γ̄b, the union bound is dominated by
the term corresponding to the minimum value of h, known
as the free distance of the SCCC or dsfree. For smaller values
of γ̄b, the union bound is dominated by terms corresponding
to other values of h. To determine what these values are, we
must first find the maximum value of α,

αM = max
h

{
α(h)
}
= max

w,l,h

{
no + ni − l − 1

}
. (61)
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Figure 6: Coded MIMO system.

In the case of a nonrecursive inner code, input sequences
with weight 1 exist, so that an input sequence with weight
l will generate at most l error events in the inner code. Thus,
ni ≤ l and

αM = noM − 1 ≥ 0, (62)

which effectively eliminates interleaving gain.
For a recursive inner code, the minimum weight of input

sequences that can generate error events is 2. Input sequences
of weight l can therefore generate at most �l/2
 error events,
and it is shown in [33] that

αM = −
⌊
dofree + 1

2

⌋
≤ 0, (63)

when l = dofree. In this case, the exponents of K are always
negative integers yielding interleaving gain. We can therefore
conclude that the union bound is dominated by error events
for which l = dofree, that is, error events from the inner code
which generate error events in the outer code with weight
equal to dofree.

5.2. Approximation of the union bound

As we have seen, calculating the union bound involves
the calculation of input-output weight spectra for the con-
stituent codes. The bound is dominated by a relatively small
number of low-weight error events, and based on the obser-
vations made above, we can find an approximation of the
probability of error by considering only these events. This
approach allows us to circumvent the full calculation of the
weight spectra.

Benedetto et al. [33] concluded that the union bound is
dominated by the error event which is associated with the
maximum exponent αM . The output weight of this event is
denoted by h(αM). Furthermore, they observed that the re-
cursive inner code has minimum input weight 2, and the
minimum output weight of such input weight-2 codewords
is denoted by dimin,2, also known as the effective free distance.
The authors suggested that it is the concatenation of such
minimum weight error events that result in the dominat-
ing error event with output weight h(αM). In particular, er-
ror events with l = dofree consist of d

o
free/2 concatenated error

events in the inner code, each with input weight 2 and out-
put weight dimin,2. For even values of dofree, the SCCC output

weight is therefore given by

h
(
αM
)
=
dofreed

i
min,2

2
. (64)

For odd values of dofree, the SCCC error events are concatena-
tions of several inner code error events with input weight 2
and one event with input weight 3, that is,

h
(
αM
)
=

(
dofree − 3

)
dimin,2

2
+ dimin,3, (65)

where dimin,3 is the minimum output weight of codewords of

the inner code with input weight 3. If dimin,3 = ∞, the output
weight is given by

h
(
αM
)
=

(
dofree + 1

)
dimin,2

2
. (66)

However, in [37], Gray claimed that the concatenation
of dofree/2 error events from the inner code, each with output
weight dimin,2, is not guaranteed to be the most likely error
event with l = dofree. There may be other and more likely in-
ner code error events which also have input weight dofree. Our
approach here is to consider all concatenated error events of
the inner code that have input weight l∗ = dofree, regardless of
the specific minimum-weight error events they consist of. If
no such events exist in the inner code, wemust consider error
events with input weight l∗ = dofree + 1 or, if necessary, higher.
The procedure can be simplified by considering only con-
catenated events composed of error events with minimum
output weight dimin, j , where j = 2, 3, . . . . With this simpli-
fication there is a risk that certain compound events with
h > dsfree are missed, but the risk is justified by the simpli-
fied calculations.

The union bound can now be approximated using only
the multiplicity factors Bh that correspond to the particular
values of h associated with the concatenated error events dis-
cussed above, that is,

Bh ≈
k∑

w=1

w

KRo
·
ACo

w,l∗ · A
Ci

l∗ ,h(K
l∗
) . (67)

The value of ACo

w,l∗ is found from the input-output weight
spectrum of the outer code, while the value of ACi

l∗ ,h can be
approximated using the fact that a concatenated error event
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that consists of ni adjacent events in a block of size K , can be
obtained in (

K

ni

)
=

K !

ni!
(
K − ni

)
!
<
Kni

ni!
(68)

ways. This quantity includes overlapping events, but these
can be ignored if K is much greater than ni and the length
of the events. Also utilizing the inequality

(
K

l∗

)
<
Kl∗

l∗!
, (69)

we arrive at our final approximation of Bh,

Bh ≈
k∑

w=1

w

Ro
ACo

w,l∗
l∗!
ni!

Kni−l∗−1, (70)

where ni ≤ �l∗/2
, as stated previously.
In order to calculate the bit error multiplicity given by

(70), we must find the distances dimin, j for various values of
j. In most cases, this can be done by inspection of the trellis
of the inner code. As an example, consider the (2, 2) system
that uses a rate-1/2 nonrecursive terminated convolutional
code with generating polynomial (5, 7)8 as outer code and a
rate-1 differential code as inner code. The outer code has a
free distance of dofree = 5. Hence, the maximum exponent of
K is αM = −3. For this particular system, we realize that the
dominant error event has l∗ = 6, and the minimum output
weight for the input weight-2 error events in the inner code
is dimin,2 = difree = 1. Since dimin,3 = ∞ in this case, the dom-
inating output weight is h(αM) = 3. From the input-output
weight spectrum of the outer code we find that

ACo

2,6 = K − 7, (71)

and that only a single input weight (w = 2) is associated with
the output weight l∗ = 6, causing the summation over w in
(70) to vanish. Hence, the bit error probability is approxi-
mated by just one term,

Pb ≈ B3P3, (72)

where

B3 ≈ 480(K − 7)K−4, (73)

and P3 is given by (57) with h = 3.
Figure 7 shows the bit error probability versus the aver-

age SNR per bit, γ̄b, for a (2, 2) system with an interleaver of
length K = 512, calculated using the union bound in (56)
as well as the approximate result in (72). The figure shows
the error probability in a flat fading channel (L = 0, i.e.,
D = 2) and in a dispersive fading channel with two equal-
strength paths (L = 1, i.e., D = 4). Also shown is the per-
formance of a (1, 1) system in AWGN and in flat fading. As
expected, the performance improves as the order of diver-
sity increases. It is interesting to note that the performance

0 1 2 3 4 5 6 7 8 9 10
Average SNR/bit (dB)
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Pb

10−14
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100
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M = 2, L = 1

M = 2, L = 0

M = 1, L = 0 (no diversity)

Figure 7: Union bounds for coded (2, 2) systems in fading. Rs =
1/2, dofree = 5, K = 512. Approximate bounds shown as dashed
curves.

of the MIMO system with diversity of order D = 4 is only 1–
2 dB worse than the performance in AWGN for SNRs lower
than 10 dB. Note that the union bound diverges for values of
γ̄b less than 2.46 dB in AWGN and 4.52 dB in Rayleigh fad-
ing. These values correspond to the cutoff rate for a rate-1/2
code in AWGN and fading, respectively. The rather curious
shape of the bound deserves some explanation. At medium
to high SNR, the performance is dominated by only a few er-
ror events of low weight, resulting in the remarkable bit error
rate displayed in this region. At low SNR, however, several er-
ror events of larger weight contribute to the bound and this
causes the performance curve to have a different slope in the
divergence region. Other techniques than the union bound-
ing technique discussed here must be used to predict the per-
formance in this region. A survey of such techniques can be
found in the paper by Shamai and Sason [38]. We observe
that the bit error probability of (72) is a good approxima-
tion of the union bound above the divergence region, even
though only one value of h is used in the calculation.We con-
clude that we can obtain good approximations of the bit error
probability without having to calculate the full input-output
spectra of the constituent codes.

6. ITERATIVE EQUALIZATION ANDDECODING

In Section 5, we viewed MIMO systems in fading multipath
channels as serially concatenated codes in order to analyze
their performance. We assumed that a maximum likelihood
decoder was utilized to achieve optimal performance. While
theoretically optimal in the ML sense, such a decoder would
be prohibitively complex and therefore unrealizable in prac-
tice. In this section, we take a more practical approach and
consider receivers which decode the constituent codes sepa-
rately and in an iterative manner. This suboptimal approach
has been shown to yield near-optimal performance in many
cases. In our case, where the constituent “codes” are the
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Figure 8: Iterative MAP equalizer/decoder for (N,M) system.

outer convolutional code and the multipath channel, the re-
ceiver performs iterative equalization and decoding. This is
also known as “turbo equalization,” a technique which was
first proposed by Douillard et al. in [17]. The general idea is
to exploit the error correcting capabilities of the interleaved
channel code to enhance the performance of the equalizer.
This is accomplished by iteratively passing soft a priori in-
formation between a soft-input, soft-output equalizer and
a soft-input, soft-output channel decoder which are sepa-
rated by an appropriate interleaver-deinterleaver pair. In this
process, the reliability of the bit decisions is improved with
each iteration. This is similar to the original “turbo decod-
ing” principle which was first introduced by Berrou et al. in
[39] for decoding of parallel concatenated codes.

As in the previous section, we consider a MIMO system
which consists of an outer convolutional code followed by
a pseudo-random interleaver and a differentially precoded
MIMO channel. The differential precoder was chosen be-
cause of its simplicity and because it has been shown to
enhance the convergence properties, and, hence, the per-
formance, of the iterative equalizer/decoder [36]. The com-
bination of differential precoding, modulation and multi-
path channel is modeled equivalently as a MIMO recursive
transversal filter. We note that the number of memory ele-
ments in the precoded channel remains the same as in the
nonprecoded channel. Hence, the number of states in the fi-
nite state machine that characterizes the channel remains the
same, while the branch transitions are altered. Since the pre-
coder is a rate-1 recursive convolutional code, the data rate is
not decreased. The number of states in the channel state trel-
lis is 2NL, assuming binary signaling. Codewords of length
NW are formed from a rate-1/p convolutional code which
terminates in the all-zero state. These codewords are trans-
mitted, received and processed as separate frames.

When employing iterative equalization and decoding in
ourMIMO system, the receiver structuremust accommodate
the passing of soft information between the equalizer and the
decoder, and vice versa. We assume that the channel coeffi-
cients are known or can be perfectly estimated at all times,
and use a symbol-by-symbol maximum a posteriori proba-

bility (MAP) algorithm for both equalization and decoding,
as shown in Figure 8. The equalizer computes a posteriori
probabilities for the coded bits, based on both the received
signals and a priori probabilities derived from the outputs of
the channel decoder. Since we assume binary signaling, it is
convenient to compute this soft information in the form of
log-likelihood ratios, or L-values, which are given by

LE
(
d̂n(k)

)
= log

(
P{dn(k) = +1|v}
P{dn(k) = −1|v}

)
, n = 1, 2, . . . , N.

(74)

Here, v is the noisy received codeword

v = [v(1)v(2) · · · v(W)] = vW1 (75)

of lengthW , where {v(k)} areM-dimensional vectors, as be-
fore. The L-values contain channel information, extrinsic in-
formation and a priori information. The extrinsic informa-
tion is incremental information about the coded bit in ques-
tion that has been obtained from all the other coded bits in
the equalization process. Only channel information and ex-
trinsic information are passed from the equalizer to the de-
coder, where, after parallel-to-serial conversion and deinter-
leaving, they are used as a priori information in the decoding
process. This is important since, ideally, the a priori informa-
tion would be provided by an independent source. We do not
have access to such a source, but we may mimic the indepen-
dence by minimizing the correlation between the a priori in-
formation and the previous decisions made by the equalizer.
This is done by subtracting the a priori L-values LDe (d̂n(k))
from the L-values at the output of the equalizer, as shown in
Figure 8

LEe
(
d̂n(k)

)
= LE
(
d̂n(k)

) − LDe
(
d̂n(k)

)
, n = 1, 2, . . . , N.

(76)

After parallel-to-serial conversion and deinterleaving, the
MAP channel decoder computes the a posteriori probabil-
ities for the information bits and the coded bits, denoted
by LD(b̂( j)) and LD(d̂′(k)), respectively. The prime indicates
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deinterleaved coded bits. The extrinsic information to be fed
back to the equalizer is obtained by subtracting the a priori
information provided by the equalizer from the L-values at
the output of the decoder:

LDe
(
d̂′(k)

)
= LD

(
d̂′(k)

) − LEe
(
d̂′(k)

)
. (77)

The process described above constitutes one iteration and is
repeated until the bit error rate converges or reaches an ac-
ceptable level. The final bit decisions {b̂( j)} are obtained af-
ter the last iteration and are given by

b̂( j) = sign
[
LD
(
b̂( j)
)]
. (78)

6.1. TheMIMOMAP equalizer

The MAP equalizer uses the well-known BCJR algorithm
[40] to compute the L-values LE(d̂n(k)), n = 1, 2, . . . , N . This
algorithm optimally computes the a posteriori probabilities
p(dn(k)|v) for the coded bits dn(k), taking into account the
information gathered from all the NW bits of the codeword.
The L-value for a coded bit is given by

LE
(
d̂n(k)

)
= log


P
{
dn(k) = +1|v}

P
{
dn(k) = −1|v}




= log



∑

(s′ ,s)
dn(k)=+1

p
(
s′, s, v

)
∑

(s′ ,s)
dn(k)=−1

p
(
s′, s, v

)

, n=1, 2, . . . , N,

(79)

where s′ and s denote the states of the channel trellis at times
k−1 and k, respectively, and (s′, s) denotes a transition from s′

to s. The summations in the numerator and the denominator
are performed over all transitions which correspond to coded
bits dn(k) = +1 and dn(k) = −1, respectively.

The BCJR algorithm specifies a method for computing
the probability p(s′, s, v):

p
(
s′, s, v

)
= p
(
s′, vk1
) · P{s|s′} · p(v(k)|s′, s) · p(vWk+1|s)

= αk−1
(
s′
)
γk
(
s′, s
)
βk(s).

(80)

Here, vba denotes the sequence [v(a)v(a + 1) · · · v(b)]. The
probabilities αk(s) = p(s′, vk1) are computed recursively as

αk(s) =
∑
s′
γk
(
s′, s
)
αk−1
(
s′
)
, (81)

with initial conditions

α0(0) = 1, α0(s) = 0 ∀s 	= 0, (82)

since we assume that the zero state is the starting state. The
probabilities βk(s) = p(vWk+1|s) are computed using the back-
wards recursion

βk−1
(
s′
)
=
∑
s

βk(s)γk
(
s′, s
)
, (83)

where the initial conditions are

βW (s) = 1 ∀s. (84)

The branch transition probability γk(s′, s) is given by

γk
(
s′, s
)
= P
{
s|s′} · p(v(k)|s′, s), (85)

where P{s|s′} is the a priori probability defined by

P
{
s|s′} = N∏

n=1

Pe
{
dn(k)|v

}

=
N∏
n=1

exp
(
1
2
dn(k)L

(
dn(k)

))
,

(86)

and the event d(k) = [d1(k)d2(k) · · · dN (k)]T corresponds
to the transition (s′, s) [41]. As for the transition probability
p(v(k)|s′, s), we may write

p
(
v(k)|s′, s)

∝ exp


 − 1

2σ2

∣∣∣∣∣v(k) −
L∑
l=0

F(k, l)d(k − l)

∣∣∣∣∣
2



= exp


 − 1

2σ2

M∑
m=1

∣∣∣∣∣vm(k) −
N∑
n=1

Lnm∑
l=0

f (l)nm(k)dn(k − l)

∣∣∣∣∣
2



def= γ∗k
(
s′, s
)
,

(87)

where σ2 is the variance of the additive white Gaussian noise
(AWGN) [42]. Finally, combining (79), (80), (81), (82), (83),
(84), (85), (86), and (87), we obtain the L-values for the
coded bits

LE
(
d̂n(k)

)
=

N∑
n=1

L
(
dn(k)

)

+ log



∑

(s′,s)
dn(k)=+1

αk−1(s′)γ∗k
(
s′, s
)
βk(s)∑

(s′,s)
dn(k)=−1

αk−1(s′)γ∗k
(
s′, s
)
βk(s)


,

n = 1, 2, . . . , N,
(88)

where the a priori L-values L(dn(k)) are substituted with the
L-values LDe (d̂n(k)) provided by the MAP decoder.

6.2. TheMAP decoder

The decoder also uses the BCJR MAP algorithm to compute
the a posteriori probabilities p(b( j)|v) for the information
bits in the form of L-values

LD
(
b̂( j)
)
= log

(
P
{
b( j) = +1|v}

P
{
b( j) = −1|v}

)

= log



∑

(q′,q)
b( j)=+1

p
(
q′, q, v

)
∑

(q′,q)
b( j)=−1

p
(
q′, q, v

)

,

(89)
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where q′ and q denote the states of the code trellis at times
j − 1 and j, respectively.

The only difference in the computation of L-values be-
tween the decoder and the equalizer occurs in the computa-
tion of the branch transition probability γj(q′, q) (see [42]):

γj
(
q′, q
)
= exp


 p∑

ν=1

(
1
2
d′( j; ν)L

(
d′( j; ν)

))

+
1
2
b( j)L

(
b( j)
).

(90)

In this expression, p is the inverse of the code rate and
[d′( j; 1)d′( j; 2) · · · d′( j; p)] denotes the p-bit codeword pro-
duced by the convolutional encoder, associated with the jth
information bit. The prime denotes deinterleaved bits. We
use the equalizer outputs LEe (d̂

′( j; ν)), ν = 1, 2, . . . , p as esti-
mates for their L-values. L(b( j)) is the a priori L-value for the
information bit b( j). The probabilities αj(q) and βj(q) are
computed in the same way as described for the MAP equal-
izer, with the following initial conditions

α0(0) = 1, α0(s) = 0 ∀s 	= 0,

βNW (0) = 1, βNW (s) = 0 ∀s 	= 0.
(91)

From (89) and (90) we obtain the L-values for the informa-
tion bits

LD
(
b̂( j)
)
= L
(
b( j)
)

+ log



∑

(q′ ,q)
b( j)=+1

αj−1
(
q′
)
γej
(
q′, q
)
βj(q)

∑
(q′ ,q)

b( j)=−1
αj−1
(
q′
)
γej
(
q′, q
)
βj(q)


,

(92)

where

γej
(
q′, q
)
= exp

(
p∑

ν=1

1
2
d′( j; ν)L

(
d′( j; ν)

))
. (93)

The decoder must also compute L-values for the coded
bits to be fed back to the equalizer,

LD
(
d̂′( j; ν)

)
= log

(
P
{
d′( j; ν) = +1|v}

P
{
d′( j; ν) = −1|v}

)

= log



∑

(q′ ,q)
d′( j;ν)=+1

p
(
q′, q, v

)
∑

(q′ ,q)
d′( j;ν)=−1

p
(
q′, q, v

)

.

(94)

These are computed in a similar fashion as the L-values for
the information bits, yielding as final result

LD
(
d̂′( j; ν)

)
=L
(
b( j)
)
+ L
(
d′( j; ν)

)

+ log



∑

(q′ ,q)
d′( j;ν)=+1

αj−1
(
q′
)
γcj
(
q′, q
)
βj(q)

∑
(q′ ,q)

d′( j;ν)=−1
αj−1
(
q′
)
γcj
(
q′, q
)
βj(q)


,

(95)
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Figure 9: Performance of iterativeMAP decoding for a (2, 2) system
in flat fading (L = 0). An approximate bound is shown for interme-
diate SNRs. Rs = 1/2, K = 512.

where

γcj
(
q′, q
)
= exp


 p∑

µ=1
µ	=ν

1
2
d′( j; µ)L

(
d′( j; µ)

)

. (96)

Again, we use the equalizer outputs LEe (d̂
′( j; ν)) as estimates

for L(d′( j; ν)), ν = 1, 2, . . . , p, and L(b( j)) is the a priori L-
value for the information bit b( j). As we assume equiproba-
ble information bits in our case, L(b( j)) = 0 in both (92) and
(95).

6.3. Performance of iterative receivers

To evaluate the performance of the iterative MIMO receiver,
we performed computer simulations of a (2, 2) system which
uses a rate-1/2, 4-state convolutional code with generator
polynomial (5, 7)8 and dofree = 5, as outer code. The coded
bits were passed through a pseudo-random interleaver of
lengthK = 512, serial-to-parallel converted and differentially
encoded prior to transmission over a (2, 2) fading channel.
All simulations were carried out with BPSK modulation and
with perfect knowledge of the channel coefficients. The chan-
nel fading was independent from symbol interval to sym-
bol interval, and the variance of the channel coefficients was
σ2f = 1/D.

Figure 9 shows the BER performance in flat fading (L =
0), as well as the approximate analytical bound developed
in Section 5. Simulation results obtained with 1–7 iterations
are shown. The performance is determined by interleav-
ing gain as well as spatial diversity gain of order M = 2.
The SNR corresponding to the cut-off rate for the rate-1/2
code in Rayleigh fading (without spatial diversity) is γ̄b =
4.52 dB.
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Figure 10: Performance of iterative MAP equalization and decod-
ing for a (2, 2) system in a two-path fading channel with and with-
out recursive precoding. An approximate bound is shown for inter-
mediate SNRs. Rs = 1/2, K = 512.

Figure 10 contrasts the performance in a two-path (L =
1) fading channel with and without differential precoding. In
particular, the dashed curves show the BER results obtained
without precoding. In this case, 1– 4 iterations were per-
formed. The performance improves only by approximately
1 dB after the first iteration and converges thereafter. Evi-
dently, there is no interleaving gain available since the inner
“code” is nonrecursive. The solid curves show the BER per-
formance with differential precoding. In this case, the per-
formance continues to show improvement, even after seven
iterations. We note that the BER exhibits a dramatic drop at
γ̄b ≈ 4 dB, which indicates that interleaving gain due to the
recursive inner “code” affects the performance. It is worth
mentioning that recursive precoding results in a performance
loss during the first iteration which amounts to approxi-
mately 3 dB, relative to the first iteration of the nonprecoded
case. This is to be expected, as differential coding is known
to incur a 3 dB performance loss. Also shown is the approxi-
mate analytical bound developed in Section 5.

7. CONCLUSIONS

In this paper, we have presented a general system and channel
model for coded MIMO wireless systems that use multiple
transmit and receive antennas. Multiple transmit anten-
nas are used for the purpose of increasing the data rate,
while coding and multiple receive antennas are employed
to improve the performance in fading multipath channels
by introducing signal diversity. For uncoded systems, we
have examined the optimal MIMO MLSE detector and the
suboptimal MIMO linear and decision feedback equalizers.

These detectors are fairly straightforward generalizations of
their well-known single-input, single-output predecessors.
We have also considered the case of flat fading and presented
detectors targeted towards this special case. We have analyzed
the performance of the maximum likelihood detector and
found that it is capable of fully exploiting both the explicit
diversity due to multiple receive antennas and implicit diver-
sity due to multipath propagation. On the other hand, the
suboptimal detectors are not capable of fully exploiting the
diversity inherent in the channel and require many more re-
ceive antennas to achieve comparable performance.

For coded MIMO systems, we have presented a theo-
retical analysis of the bit error probability, assuming max-
imum likelihood decoding. We have also presented a more
practical iterative equalization and decoding scheme based
on the BCJR MAP algorithm, and evaluated its performance
through computer simulations. We have seen that by intro-
ducing differential precoding, thus translating the channel
into a recursive channel, significant interleaving gains can be
realized compared to systems without precoding. The pro-
posed receiver structure is applicable to any MIMO system
which uses a convolutional code. However, as the complex-
ity of trellis-based MIMO algorithms grows exponentially
with the number of transmit antennas as well as the chan-
nel memory, it is of interest to design receivers of lower com-
plexity. Methods for complexity reduction already developed
for single-input, single-output systems may be appropriately
modified for this purpose.
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