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We introduce a new SVD-based (singular value decomposition) strategy for noise reduction in hearing aids. This technique is
evaluated for noise reduction in a behind-the-ear (BTE) hearing aid where two omnidirectional microphones are mounted in an
endfire configuration. The behaviour of the SVD-based technique is compared to a two-stage adaptive beamformer for hearing
aids developed by Vanden Berghe and Wouters (1998). The evaluation and comparison is done with a performance metric based
on the speech intelligibility index (SII). The speech and noise signals are recorded in reverberant conditions with a signal-to-noise
ratio of 0 dB and the spectrum of the noise signals is similar to the spectrum of the speech signal. The SVD-based technique
works without initialization nor assumptions about a look direction, unlike the two-stage adaptive beamformer. Still, for different
noise scenarios, the SVD-based technique performs as well as the two-stage adaptive beamformer, for a similar filter length and
adaptation time for the filter coefficients. In a diffuse noise scenario, the SVD-based technique performs better than the two-stage
adaptive beamformer and hence provides a more flexible and robust solution under speaker position variations and reverberant
conditions.
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1. INTRODUCTION

Amajor problem for hearing impaired listeners is the under-
standing of speech in noise. Indeed, their speech reception
threshold (SRT: defined as the sound-pressure level of speech
at which 50% of the speech is correctly understood by the lis-
tener) in noise, interfering noises or competing speakers, is
higher than for normal hearing subjects [1]. To compensate
for this difference, several noise reduction strategies with one
or multiple microphones have been developed.

As for single microphone approaches, a noise reduction
system in hearing aids is typically based on a hardware di-
rectional microphone. Some studies have shown that the
directional microphone may give an SRT improvement of
about 3 dB in difficult listening conditions [2, 3]. With other
methods, such as spectral subtraction or Wiener filtering,
an improvement in physical signal-to-noise ratio (SNR) has

been found, but unfortunately a similar improvement of the
speech reception thresholds has not been observed [4].

As for multiple microphone approaches, beamforming is
by far the most developed method. There are fixed and adap-
tive beamformers. Fixed beamformers focus on a target di-
rection independent of the interfering signals. This has given
significant improvement of the SRT in anechoic conditions.
Soede et al. [5] obtained an SRT improvement of 7 dB with
an endfire array configuration (an endfire array has its mi-
crophones colinear with the target direction), where five car-
dioid microphones were spaced on a 10 cm-long array, as
compared with an omnidirectional microphone system. Sim-
ilar approaches to the Soede strategy have been investigated
[6, 7] and comparisons between these different methods have
shown improvements of speech intelligibility in noise [8, 9].

Widrow and Stearns [10] introduced adaptive noise can-
cellation (ANC), where the aim is to null out the interfering
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noise source(s). Griffiths and Jim gave an extension of the
ANC, commonly known as “Griffiths-Jim beamforming,”
and for this approach, several studies have shown improve-
ments in speech intelligibility for directional jammers [11,
12]. These studies were carried out with different micro-
phone arrays and with monaural or binaural conditions.
Adaptive systems are known to give a significant improve-
ment in speech intelligibility when the noise is located, but
not when it is diffuse [12, 13]. Generally, these studies tested
systems with a microphone array larger than the behind-
the-ear (BTE) device (which is a practical impediment)
and without any limitations on the available computing
power.

Based on the work by Van Compernolle [14], Vanden
Berghe and Wouters [15] have developed a two-stage adap-
tive beamformer for BTE devices. This technique was imple-
mented on a wearable digital signal processor (DSP) plat-
form and tested with a hearing aid that contained a hardware
directional microphone and an omnidirectional microphone
spaced by 1.5 cm. A significant SRT improvement of about
11 dB was obtained between a hardware directional micro-
phone and the output of the two-stage adaptive beamformer
for a directional jammer [16]. Unfortunately, this perfor-
mance is dependent on the microphone configuration used.

Here, we study the behaviour of a new multiple micro-
phone signal enhancement technique based on SVD [17].
Signals coming from a normal-sized BTE device are used
to evaluate offline the speech enhancement using a perfor-
mancemetric based on the so-called SII [18]. The hearing aid
contains two omnidirectional microphones, spaced by 2 cm,
and a dual microphone technique is implemented to cre-
ate a directional microphone (see Figure 1). The signals of
the software directional microphone and the rear omnidi-
rectional microphone are used as input of the noise reduc-
tion algorithms. The SVD-based technique is compared to
the two-stage adaptive beamformer of Vanden Berghe in dif-
ferent noise conditions. These noises have the same spectrum
as the speech signals and the SNR of the recorded signals was
0 dB. In addition, a comparison has been performed for these
algorithms in reverberant and diffuse noise conditions. Also,
different parameters of the SVD-based technique were opti-
mized, to improve the speech intelligibility.

2. METHODS

2.1. SVD-basedmulti-microphone noise reduction

2.1.1 Basic principle

Assume that the microphone samples processed at time k are
stacked into a vector (N × 1) uk, and that uk = sk + nk, where
sk is the speech part and nk is the noise part. To extract the
speech part sk from uk, McAulay and Malpass [19] used the
well-known Wiener filter which minimizes the mean-square
error (MSE). The estimate of the speech s̃k takes the form

s̃k = WTuk (1)

withW ∈ RN×N the optimal filter (withN the size of the filter
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Figure 1: Strategy for noise reduction for hearing aids.

per channel), uk ∈ RN being the filter input vector at time k,
and s̃k ∈ RN the filter output vector. The ith column of W is
then an optimal filter for the ith component of sk. Then, the
error of the estimation at time k is defined by ek = sk − s̃k,
and the MSE cost function for optimal filtering is

JMSE = �
{∥∥ek∥∥2

2

}
= �

{∥∥(sk − s̃k
)∥∥2

2

}
= �

{∥∥(sk −WTuk
)∥∥2

2

}
= �

{(
sk −WTuk

)T(sk −WTuk
)}

= �
{
sTk sk

} − 2�
{
uTkWsk

}
+ �

{
uTkWWTuk

}
.

(2)

The optimal filter is found by setting the derivative
∂JMSE/∂W equal to zero
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Hence, the optimal filterWWF is
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. (4)

However, obtaining an estimate for �{uk · sTk } is not
straightforward as sk, obviously, is unknown. If we use a ro-
bust speech/noise detection algorithm, and noise-only obser-
vations can be made during speech pauses at time k′(uk′ =
0 + nk′), then we can use such observations to estimate
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stationarity is assumed. During speech activity (at time k),
we observe both the signal-of-interest and the noise signal,
�{uk · uTk }. If we assume that sk and uk are statistically inde-
pendent of each other (�{sk · nT
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Given �{uk · uTk } and �{nk · nT
k }, we can thus compute

�{sk · sTk }. Finally, from the assumed independence of sk and
nk, it also follows that

�
{
uk · sTk

}
= �

{
sk · sTk

}
+ �

{
sk · nT

k

}
= �

{
sk · sTk

}
, (7)

so that the optimal filterWWF is finally given by
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Also, an approach often used to approximate the Wiener
filter in the frequency domain is (see [20])

WWF( f ) =
(
�
{∣∣S( f )∣∣2} + �

{∣∣N( f )
∣∣2})−1 · �

{∣∣S( f )∣∣2}.
(9)

The function �{|N( f )|2} is obtained by averaging many
frames during silence intervals in which the statistics of the
background noise can be assumed stationary. To estimate
�{|S( f )|2}, there are different possibilities [21, 22].

Doclo and Moonen [17] use an interesting and useful
simplification in formula (8), of which more theoretical jus-
tification can be found in [23]. The matrix WWF is derived
from the joint diagonalization (generalized eigenvalue decom-
position) of the symmetricmatrices�{uk ·uTk } and�{nk′ ·nT

k′ },
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= X · diag {σ2i } · XT ,
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(10)

whereX is an invertible (but not necessarily orthogonal) ma-
trix. Note that diag{σ2i } represents a diagonal matrix with
diagonal elements σ2i , i = 1, . . . , N , and that diag{η2i } is simi-
larly defined. In practice,X, σ2i , η

2
i are computed by means of

a generalized singular value decomposition of the data matri-
ces Uk ∈ Rp×N and Nk ∈ Rq×N (with p and q typically larger
than N),
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such that�{uk ·uTk }⇒(UT
k ·Uk)/p and�{nk′ ·nT

k′ }⇒(NT
k ·Nk)/q.

The generalized singular value decomposition of thematrices
Uk and Nk is defined as

Uk = Y · diag {σi} · XT ,

Nk = Z · diag {ηi} · XT ,
(12)

where Y ∈ Rp×N and Z ∈ Rq×N are orthogonal matrices,
X ∈ RN×N is an invertible matrix and σi/ηi are the gener-
alized singular values. By substituting the above formulas in
(8), we obtain

WWF = X−T · diag
{
σ2i − (p/q) × η2i

σ2i

}
· XT . (13)

2.1.2 Singlemicrophone applications

In single microphone speech processing, generally the vector
uk is taken from a time series u(k), that is,

uk =
[
u(k) u(k − 1) u(k − 2) · · · u(k −N + 1)

]T
(14)

and similarly

sk =
[
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,
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The data matrices Uk ∈ RpN and Nk ∈ RqN , as defined in
(11), are then Toeplitz matrices, for example,
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The optimal filtering approach of (1) then provides an
optimal filtered estimate s̃(k) at time k, but in addition op-
timal smoothed estimates s̃(k − 1), s̃(k − 2), . . . , s̃(k − N +
1) (all at time k). Conversely, optimal estimates for s(k)
are obtained at time k, k + 1, . . . , k + N − 1, correspond-
ing to different columns of WWF, applied to, respectively,
uk , uk+1, . . . ,uk+N−1. The question then arises which estimate
should be picked. A first solution consists in computing the
error covariance matrix. The estimation error ek is defined
as

ek = sk − s̃k = sk −WT
WFuk. (17)

It is easily shown that the error covariance matrix is given
as

�
{
ek · eTk

}
= �

{
nk · nT

k

} ·WWF. (18)

In particular, we are interested in the diagonal elements
of the error covariance matrix {�{nk · nT

k } · WWF}ii. In-
deed, the smallest element on the main diagonal of this er-
ror covariance matrix corresponds to the best estimatorw1 =
WWF(:, i′), where i′ = argmini(�{ek · eTk })ii. A second solution
consists in computing an average over all available estimates.
This technique is often applied to rank truncation based es-
timation [24, 25]. The corresponding filter is then given as
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with w(i, j) denoting the (i, j)-element of WWF. A third so-
lution is to simply take an arbitrary column ofWWF and use
that as a noise reduction filter, w3 = WWF(:, i) for random
i ∈ {1, . . . , N}. A comparison between these three different
strategies will be given in Section 3.1.

2.1.3 Multiplemicrophones applications

In a multiple microphone application, the vector uk ∈ RMN

takes the form
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with

u jk =
[
uj(k) uj(k − 1) · · · uj(k −N + 1)

]T
, (21)

where j refers to the jth microphone and M is the number
of the microphone inputs. In our case we have two micro-
phones, so j = 1, 2. The vector nk is similarly defined. The
data matrices Uk ∈ R(p×MN) and Nk ∈ R(q×MN) as defined in
(11) then take the form

Uk =
[
U1k U2k

]
,
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Using similar formulas as in the one-channel case, the
optimal filter WWF and then the (2 × N)-taps estimator w
can be computed, so that the estimated signal s̃k is given as

ŝk =
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where s̃k is an estimate for the (delayed version of the) speech
part of either microphone signal 1 or microphone signal 2
depending on the choice for w.

+

− +

+

A1

A2

β( f )

Front omnidirectional
microphone

Software directional
microphone

Output

Rear omnidirectional
microphone

Omnidirectional
microphone

Figure 2: Scheme of the SVD-based strategy.

This filter can be considered as a two-channel filter (see
Figure 2), where each microphone is filtered with an N-taps
filter Aj

wWF =
[
AT
1 AT

2

]T
. (24)

2.2. Two-stage adaptive beamformer

The behaviour of the SVD-based technique is compared with
another noise reduction algorithm. This algorithm is a two-
stage adaptive beamformer which has been developed by
Vanden Berghe andWouters [15]. The complete noise reduc-
tion strategy is depicted in Figure 3. The two-stage adaptive
beamformer, which is based on adaptive noise cancellation
(ANC), attempts to model noise during noise periods (where
only noise signal is present), and subtracts noise from speech
plus noise when speech is present. A speech detection algo-
rithm is implemented to decide whether the signal contains
speech plus noise or noise only. The sum and subtraction
(middle part of Figure 3) based on the scheme of Griffiths
and Jim [26] improve the noise reference of the ANC. Van
Compernolle [14] used a second adaptive filter instead of
the fixed filter, which adapts when desired speech is present
and compensates for the different transfer functions between
the speaker and the microphone array. It has been shown
that this procedure experiences robustness problems. For ex-
ample, it can converge to a wrong direction when different
speakers are around the listener or if loud noise is wrongly
detected as speech by the speech detection algorithm. For
this reason, the first filter will be kept fixed, under the as-
sumption that the speaker is always in front of the listener. In
fact, we gave a specific look direction to the two-stage adap-
tive beamformer, namely the direction of the desired signal,
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Figure 3: Scheme of the two-stage adaptive beamformer strategy.

at 0◦. To determine the coefficients of the first filter, we used a
stationary ICRA-signal as described below. In anechoic con-
ditions, this signal was presented by a loudspeaker 1meter
in front of the dummy head with the hearing aid. The first
filter’s coefficients were adapted, by means of a normalized
least mean squares procedure (NLMS) [27], during few sec-
onds and then the adaptation was stopped. The obtained co-
efficients are used from then on to create the fixed first fil-
ter. Thus, a front cardioid and a back cardioid are obtained,
respectively, at the speech reference and the noise reference.
The number of coefficients are 10 and 30, respectively, for the
first and the second filter. The additional delays (Figure 3) ac-
tually allow to have noncausal filters, and their values are set
to half of the size of the filters (5 and 15). The second filter is
an adaptive filter, also adapted by an NLMS procedure.

2.3. Performancemetric

To evaluate the improvement of the speech intelligibility of
noise reduction algorithms different performance metrics
have been developed, which are mostly based on an averaged
intelligibility gain. The basic idea was introduced by Peterson
[11]. Greenberg et al. [28] developed an SNR measure where
signals of output and input were decomposed in third oc-
tave bands and for each frequency band, weights were applied
as defined in the articulation index calculation [29]. Hoff-
man et al. [30] introduced an improvement by limiting the
speech peak-to-noise ratios to the range of 0 to 30 dB. Unfor-
tunately, these performance metrics do not take into account
the masking and the reverberation effect and, respectively,
Kates and Weiss [8], Saunders and Kates [9], gave solutions
that also consider these two effects. Since 1997, an extension
of the articulation index calculation has been suggested. This
extension is known as the SII [18], and comprises a variety of
adverse listening conditions, such as noise masking, filtering,
distortion, and low reverberation. Thus, we define a perfor-
mance metric based on the SII

SNRweigthed =
k∑
i=1

Ii · Ai · SNRi, (25)

where SNRi is the signal-to-noise ratio measured (in dB-
SPL) in the ith third octave band; Ii and Ai are the weights

for the importance of the band and the audibility func-
tion, respectively, as described by [18]. Thus, SNRweigthed is
a weighted SNR, where the weights reflect speech intelligi-
bility. As Greenberg et al. [28], we estimate speech recep-
tion threshold (SRT) improvement between the input, the
omnidirectional microphone in our case, and the output of
the two-stage adaptive beamformer or the SVD-based tech-
niques

SNRSII = SNRweigthed, output − SNRweigthed, input. (26)

Maj et al. [13] obtained a mean of 0.63 dB for the dif-
ference between the SRT values obtained by performing lis-
tening tests with subjects and the computed SNRSII. For this
evaluation to be valid, a linear relation has to be assumed be-
tween the input and the output of the system. This means
that the hearing aid must have a linear amplification and the
noise reduction system, the two-stage adaptive beamformer
or the SVD-based technique, must implement a linear trans-
formation of the input signals. Also, to measure the perfor-
mance, the system must not be in transient conditions. As
for the linearity conditions, we know that the hearing aid has
a linear amplification, and that the noise reduction systems
introduce a linear transformation of the input signals. As for
the no transient conditions, the evaluation is done with sta-
tionary speech weighted noise and we took care that the dif-
ferent algorithms were given enough time to converge.

2.4. Hearing aid

To study the behaviour of the SVD-based technique on
speech intelligibility improvement, we have applied it to
signals which were recorded with a behind-the-ear hear-
ing aid. The hearing aid is a Danavox-163D hearing aid
housing where two omnidirectional microphones (Knowles
Electronics-EM4368) are mounted in an endfire array con-
figuration spaced 2 cm apart. Furthermore, in the first sig-
nal processing stage, a software directional microphone [31]
is created with the omnidirectional microphones (Figure 1).
The directional microphone signal is computed as the dif-
ference between the signal from the front microphone and
the delayed-weighted signal of the rear microphone, result-
ing in a response comparable to a hardware directional mi-
crophone. The microphone parameters are the interport



SVD-Based Optimal Filtering Technique for Noise Reduction in Hearing Aids Using Two Microphones 439

distance d, internal delay τ, and the weight factor for the back
port is β( f ) = a · e− j2π f τ . The delay τ and the weight a have
been chosen to give a hypercardioid spatial characteristic in
anechoic conditions. The hearing aid has a linear amplifica-
tion and does not have systems for compression or feedback
control.

2.5. Signals

Two neighboring rooms were used for the experiments. The
first room simulates the acoustics of a living room situa-
tion with a volume of 63m3 and a reverberation time of
0.76 s. The estimated direct-to-reverberant ratio is 5.20 dB at
1m [32]. In this room, the hearing aid was positioned on a
dummy head and loudspeakers (Yamaha CBX-S3) were situ-
ated at 1m from the dummy head (see Figures 4 and 5).

The signals of the two microphones of the hearing aid
were amplified and connected to the second room where
further signal processing took place. The signal of the mi-
crophones were amplified with a two-channel Larson Davis
2200C amplifier and were digitized, at a sampling frequency
of 16000Hz, with a PC-platform using a Texas Instruments
TMS320C40 digital signal processor (DSP) and two input
channels with 16-bit analog-to-digital conversion (ADC).
The amplifier of the hearing aid and the different devices
have been checked to ensure that they were not saturating.

The speech and noise signals, which were sent to
the loudspeakers, were stationary speech weighted noises,
namely ICRA, BLU, NVA, and BRUGSE. The ICRA-signal
(International Collegium of Rehabilitative Audiology) is
based on the multilanguage long-term average speech spec-
trum (LTASS). It has been produced by the Hearing Aid Clin-
ical Test Environment Standardization Work Group, and is a
white noise signal filtered in close accordance with the LTASS
[33] and ANSI S3.79 [18]. The signal is unmodulated ran-
dom Gaussian noise representative of a male weighted ideal-
ized speech spectrum with a normal effort [34]. The BLU-
signal, NVA-signal, and BRUGSE-signal are described and
available on the Compact-Disk of Wouters [35]. They are
also stationary speech-weighted noises but they do not have
the same spectrum as the ICRA signal.

2.6. Optimization of the SVD-based technique

In these experiments, one loudspeaker (L0) was situated in
front of the dummy head (at 0◦) and presents the speech ma-
terial, and a second (L90) at 90◦ (on the side of the hearing
aid) presents noise material (see Figure 4).

We used an ICRA-signal at 0◦ for speech and a similar
ICRA-signal at 90◦ for noise, implying that the noise and
speech signals have the same spectrum. These two signals
were recorded separately, that is, the speech was recorded
when only the loudspeaker in front of the dummy head was
active, and the noise was recorded when only the loudspeaker
on the side of the dummy head was active. This provides ad-
ditional experimental flexibility. The two loudspeakers have
the same frequency response and were matched to get a level
of 70 dBSPL at the center of the dummy head. We recorded
the signals during 10 seconds, thus we got two signals with

Loudspeaker at 0◦

L0

Loudspeaker at 90◦

L90

Loudspeaker at 180◦

L180

Loudspeaker at 270◦

L270

Dummy
head

Hearing
aid1

m
1
m

1 m 1m

Figure 4: Setup for the recording of the signals.

Loudspeaker at 0◦

L0

Hearing
aid

1
m

Figure 5: Setup for the recording of the signals in one noise source
scenario.

160000 samples for speech as well as for noise. From these
signals, a noise frame was created only with the noise signal,
and a speech-and-noise frame by the addition of the speech
and the noise signals.

We define a point inside the original 160000 samples
frames referred to as “start speech.” “Start speech” can be in-
terpreted as a perfect “speech detection” and means that be-
fore the point “start speech” we have only noise (we use the
noise frame) and after this point, we have speech and noise
(we use the speech-and-noise frame).

With the SVD-based algorithm, the optimal filter wWF

can be viewed as a two-channel filter, where each micro-
phone is filtered with an N-taps filter Aj , see formula (24).
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The resulting estimated signal is computed by filtering, and
summing the microphone signals sk and nk with the filters
Aj (see Figure 2). The SNRSII computation uses these two fil-
tered signals separately to make the evaluation of the algo-
rithm performance. For the two-stage adaptive beamformer
the coefficients of the second filter were adapted on the noise
signal until convergence and then they were kept fixed. Then,
the speech and noise signals were filtered separately with the
fixed coefficients, and the evaluation of the SNRSII perfor-
mance was measured in the same fashion as for the SVD-
based technique.

2.6.1 Optimal estimate

As already mentioned, WWF (formula (13)) contains a col-
lection of 2N-taps filters. We need to make a choice for wWF

to obtain an estimate for s(k). In Section 2.1.2, we have de-
scribed three different methods, an error-covariance matrix
based method, an averaging over all available estimates, and
an arbitrary choice between the columns of the filter matrix
WWF. The SVD-based algorithm was applied with a speech-
and-noise frame and noise frame of 2000 samples and the
filter length N was 20 per channel.

2.6.2 Influence of the design parameters

The SVD-based algorithm depends on three parameters: the
size of the noise frame (q), the size of the speech-and-noise
frame (p), and the length of the filter for each channel (N).
In the next paragraph, we describe the experiments to study
the influence of these parameters on the speech intelligibility
performance through the SNRSII.

The signals uk and nk are stationary, which implies that
for different values of “start speech,” we can expect to obtain
the same SNRSII improvement. We applied the SVD-based
algorithm with the strategy described in Section 2.3 for four-
teen different values of “start speech.” With the beamformer,
the second stage adapted on the 10000 samples of the noise
frame before the “start speech.” We calculated the standard
deviation and the mean of the improvement with the four-
teen different values for “start speech” for both algorithms.
Also, with the SVD-based technique, we varied the length of
the speech-and-noise frame and the noise frame, while the
filter size is kept fixed (N = 20).

Next, we investigate the influence of the filter size N for
each channel. A size of 5000 samples for the speech-and-
noise frame and a size of 15000 samples for the noise frame
are chosen. The “start speech” is taken in the middle of the
file, at sample 80000 (= 5 s).

It is instructive to also investigate the improvement that
can be obtained with a single microphone configuration. The
method is the same as for the two microphones configura-
tion. We have chosen the middle column of the matrixWWF

as the optimal filter, and we have varied the different lengths
of the speech-and-noise frame, noise frame, and the size of
the filter.

Finally, it is important to know if the algorithms distort
or have an influence on the speech signal itself. To investigate
this effect, we analyze the transfer function between the sys-

tem input and output. For this and the next experiments, the
“start speech” is taken in themiddle of the file. The adaptation
of the beamformer second filter was performed during 10000
samples of the noise period. With the SVD-based technique,
we have calculated the filter with a length of 5000 samples
for the speech frame and 15000 samples for the speech-and-
noise frame. The length of the filter for each channel was 20.

2.7. Noise scenarios

2.7.1 One noise source

In this experiment, the recordings have been made with the
same “ICRA” signals and under the same conditions as de-
scribed in Section 2.6. The signals were recorded for differ-
ent locations of the noise source, corresponding to angles
between 0◦ and 345◦ in steps of 15◦ (90◦ is the side of the
hearing aid). The desired speech source is always located at
0◦ (see Figure 5).

2.7.2 Multiple noise sources

For scenarios with multiple and different noise sources, we
used four loudspeakers (see Figure 4), one for the speech sig-
nal (L0) and three for the noise signals (L90, L180, and L270).
For the speech signal, we have again used “ICRA” signals, but
for the noises we have utilized the ICRA-signal, BLU-signal,
NVA-signal, and BRUGSE-signal. The sum of the signals has
been recorded with the same level (70 dBSPL) at the middle
of the dummy head.

2.7.3 Diffuse noise

Until now, we have focused on localized noise sources. How-
ever, the sound field in a large room or in a car may appear
as diffuse noise. A diffuse noise does not have a well-specified
direction. To create the diffuse noise, we have made a setup
as defined by Veit and Sander [36].

The reverberation time of the room was T60 = 0.88 s for
a speech-weighted noise. The estimated direct to reverberant
ratio is 4.55 dB at 1m. The point M is in the middle of eight
loudspeakers. The level of each loudspeaker has been fitted to
give the same sound level at the point M (61 dB) and when
the eight loudspeakers work together we obtain a sound level
of 70 dB atM. For themeasurements, we have placed the cen-
ter of the dummy head at the point M. To create the speech
signal, a loudspeaker was put in front of the dummy head at
1m at different angles between −45◦ and +45◦ in steps of 15◦.
The two signal contributions, speech, and diffuse noise, were
recorded separately.

3. RESULTS ANDDISCUSSION

3.1. Optimal estimate

The results are shown in Figure 6. The error covariance ma-
trix method (ECM) clearly performs better than the averag-
ing method and selects the optimal estimator (column 10).
The improvement for each column of WWF shows two dif-
ferent parts, namely between the columns 1 to 20, and the
columns 21 to 40. In fact, in the first part we have the data of
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Figure 6: Results for the different methods to determine which col-
umn of WWF corresponds to the best estimator. (—) shows the re-
sults obtained with the different column of WWF, (−−) with the er-
ror covariance matrix method, and (· · · ) with the average of the es-
timates.

the directional microphone, and in the second part we have
the data of the omnidirectional microphone. In these two
parts, the maximum improvement is reached when we take
the column exactly in the middle, for the two kinds of mi-
crophones (omnidirectional and directional). Obviously, we
have a better improvement with the directional part because
the data of the directional microphone contains less noise
than the data of the omnidirectional microphone when the
noise source is located at 90◦ (remember that SNRweigthed, input

input in formula (26) corresponds to the front omnidirec-
tional microphone). The ECM method shows that column
10 gives the best result. Hence, from now on (and for the sake
of simplicity) we will always take column 10 of theWWF.

3.2. Influence of the design parameters

Figures 7 and 8 show the effect of the size of the noise frame
and the speech-and-noise frame on the mean and the stan-
dard deviation of the SNRSII improvement. The values of
the beamformer are taken as references, that is, 6.32 dB for
the mean and 0.12 dB for the standard deviation. In the case
of a large standard deviation, it is found that the signal has
fluctuations which can correspond to unnatural sounds. The
two-stage adaptive beamformer with this standard deviation
(0.12 dB) is known to give satisfactory results in this respect.

Up to 5000 samples, if we increase the size of the speech
and noise frame, we increase the SNRSII improvement and
the standard deviation drops. After 5000 samples, there is
only a marginal improvement. For the noise frame, when
we increase the length, we have the same effect as with the
speech-and-noise frame. The SNRSII improvement increases
and the standard deviation decreases. So the longer the size of
the noise frame, the larger the SNRSII improvement. To ob-
tain the same performance as the beamformer (with adap-
tation of the second filter on 10000 samples) for the stan-
dard deviation, we need to take a noise frame longer than
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Figure 7: Influence of the length of the noise and the speech-and-
noise frame on the mean of the SNRSII improvement. The size of the
filters for one channel is N = 20. (−−) shows the results obtained
with a size of the noise frame = 5000 samples, (· · · ) with a size of
the noise frame = 10000 samples, (−·) with a size of the noise frame
= 15000 samples, and (—) with a size of the noise frame = 20000
samples.
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Figure 8: Influence of the length of the noise and the speech-and-
noise frame on the standard deviation of the SNRSII improvement.
(−−) shows the results obtained with a size of the noise frame =
5000 samples, (· · · ) with a size of the noise frame = 10000 samples,
(−·) with a size of the noise frame = 15000 samples and (—) with a
size of the noise frame = 20000 samples. (++) shows the standard
deviation obtained with the two-stage adaptive beamformer.

10000 samples (15000 samples). Furthermore, for the size
of frame that we used, the SVD-based algorithm performs
slightly worse (0.4 dB) than the beamformer.

Figure 9 shows the influence of the filter size N for each
channel. For a length N > 20, the SNRSII improvement stays
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Figure 9: Influence of the filter size for each channel on the SNRSII

improvement. The length of the speech frame is 5000, the length of
the noise frame is 15000.

roughly the same, while forN < 20 the SNRSII is seen to drop
significantly.

In the case of a single microphone configuration, if the
noise frame is equal to 15000 samples, the filter length is 20
and the length of the speech-and-noise frame is varied from
5000 samples to 20000 samples by steps of 5000 samples, an
SNRSII improvement < 0.1 dB is found. If the speech-and-
noise frame is equal to 5000 samples, the filter length to 20
and the length of the noise frame is varied from 5000 samples
to 20000 samples by steps of 5000 samples, again an SNRSII

improvement < 0.1 dB is found. Finally, when the speech-
and-noise frame is equal to 5000 samples, the noise frame
is equal to 15000 samples and the length of the filter is var-
ied from 10 to 50 taps, no significant SNRSII improvement is
measured. The results of these different configurations show
that the SVD-based algorithm for a single microphone con-
figuration does not significantly improve the SNRSII, which
is a good predictor for the speech intelligibility.

Figure 10 shows the transfer function between the direc-
tional microphone and the output of the two algorithms. The
SVD-based technique performs as well as the beamformer
and the transfer function for speech is around 0 dB for the
frequencies between 500Hz and 6500Hz. Thus, we can con-
clude that we do not have any distortion of the speech signal
for each algorithm.

From these experiments, we can conclude that the SVD-
based technique roughly performs as well as the two-stage
adaptive beamformer. Indeed, with a filter size of 2 × 20 co-
efficients for the SVD-based technique and 10 + 30 coeffi-
cients for the beamformer, the speech intelligibility improve-
ment is only 0.4 dB higher for the beamformer. Furthermore,
this improvement can be obtained with a similar adaptation
time for the coefficients (10000 samples) for both algorithms.
However, to obtain a similar standard deviation in the SNRSII

we prefer to take the adaptation time a bit longer for the
SVD-based technique.
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Figure 10: Magnitude of the transfer function estimate between
the directional microphone and the output of the algorithms for
speech only and for noise only. (—) shows the transfer function of
the two-stage adaptive beamformer for speech and (−·) for noise.
(−−) shows the transfer function of the SVD-based technique for
speech and (· · · ) for noise.
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Figure 11: The curves show the SNRSII at the omnidirectional mi-
crophone (—) as a function of angle relative to the direction of the
speech source, at the directional microphone (· · · ), at the output of
the two-stage adaptive beamformer (−−) and at the output of the
SVD-based technique (−·).

3.3. Behaviour with different noise scenarios

3.3.1 One noise source

Figure 11 shows the behaviour of the omnidirectional mi-
crophone, the software directional microphone, the output
of the two-stage adaptive beamformer and the output of the
SVD-based technique. Ideally, the omnidirectional micro-
phone has the same sensitivity for all angles (around 0 dB
in our case). However, the sensitivity is seen to be a func-
tion of the angle, mainly due to the effect of the dummy
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Table 1: SNRSII improvement (in dB) for multiple noise sources.

Beamformer SVD-based Dir. mic.

L90 L180 L270 SNRSII SNRSII SNRSII

ICRA 6.04 5.74 1.22

ICRA 5.57 5.72 1.72

ICRA 3.85 3.92 3.00

ICRA BLU 3.87 3.85 2.06

ICRA BLU 5.57 5.33 2.25

NVA BLU 4.15 4.01 1.74

NVA BLU 6.05 5.30 2.14

ICRA ICRA 2.80 2.77 1.28

ICRA ICRA 4.92 4.66 2.21

ICRA BLU NVA 3.35 3.45 2.25

NVA BLU BRUG 4.04 3.92 1.97

ICRA ICRA ICRA 2.84 2.87 1.88

head. Figure 11 shows that the beamformer and the SVD-
based procedure have a very similar behaviour, and so we can
say that the improvement is the same for the two algorithms.
These algorithms always give a larger improvement than the
omnidirectional and the directional microphone. Remark-
ably, the directional microphone can perform worse than the
omnidirectional microphone, namely between angles +285◦

and +345◦.

3.3.2 Multiple noise sources

For scenarios with multiple and different noise sources, the
results are shown in Table 1. Evidently, with two and three
noise sources, both the beamformer and the SVD-based al-
gorithm perform worse than in the one noise source case.
These two strategies give better results than the directional
microphone and have roughly the same SNRSII improvement
for the different situations. As in the one noise source con-
figuration, the head diffraction contributes to the improve-
ment. Indeed, the SNRSII improvement is larger when we
have a noise source at 270◦ instead of 180◦. Also, we can
observe a better SNRSII improvement when the noise source
does not contain an ICRA-signal spectrum.

3.3.3 Diffuse noise

In this section, we worked with high reverberations in the
room and hence we cannot apply the SNRSII procedure prop-
erly [18]. For this reason we modified the SNRweighted, as in-
troduced by Greenberg et al. [28] and defined by (27), where
now we only applied the weights for the importance of the
band for the speech intelligibility. Thus, the SNRweighted be-
comes

SNRweigthed =
k∑
i=1

Ii · SNRi (27)

and the SNR improvement, between the signal of the front
omnidirectional microphone (input) and the signal of a

−50 −40 −30 −20 −10 0 10 20 30 40 50
−0.5

0

0.5

1

1.5

2

2.5

3

SN
R
A
I
im

pr
ov
m
en
t
(d
B
)

Position of the speaker (◦)

Figure 12: In a diffuse noise case, the SNRAI improvement between
the omnidirectional microphone and the directional microphone
(· · · ), the two-stage adaptive beamformer (−·) and the SVD-based
technique (—).

noise reduction algorithm (output), is given by

SNRAI = SNRweigthed, output − SNRweigthed, input. (28)

The SNRAI improvement of the SVD-based technique is
always better than the directional microphone and the two-
stage adaptive beamformer (see Figure 12). For angles above
0◦ the two-stage adaptive beamformer performs worse than
the directional microphone and the omnidirectional micro-
phone, in the case where the speaker is at +45◦. The differ-
ence between the directional microphone and the SVD-based
technique is small but still important for hearing-aid users,
because in critical listening conditions (close to 50 per cent of
speech understood by the listener) an improvement of 1 dB
in SNR corresponds to an increase of speech understanding
of about 15% in every day speech communication [37].

4. COMPUTATIONAL COMPLEXITY

The computational complexity of the two-stage adaptive
beamformer equals (2 · N1 + 7 · N2) × f s operations (mul-
tiplications or additions) per second (ops/s). N1 represents
the size of the fixed filter, N2 the size of the adaptive filter
and f s the sampling frequency. In our case, N1 = 10 taps and
N2 = 30 taps, thus the two-stage adaptive beamformer has
a computational complexity of 3.7Mops/s at sampling fre-
quency 16.000Hz.

Doclo and Moonen [23] suggests an implementation us-
ing a recursive and approximate SVD-based technique. The
cost of calculation of this technique equals (17.5 · N2/dg +
4 · N2/df ) × f s ops/s. N represents the size of the filters per
channel, dg and df indicate the number of samples between
respectively two GSVD and filter updates and they trade off
convergence speed and cost of calculation. An optimal size
of N = 20 taps has been found (see Section 2.6.2) and if
dg = df = 1 the cost of calculation equals 550Mops/s.
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Also, an interesting implementation of the SVD-based
technique has been proposed by Spriet [38], which is based
on the Doclo’s implementation. The difference between both
implementations is that Doclo presents a full band imple-
mentation and Spriet a subband implementation where an
important reduction of the computational complexity can be
obtained.

5. CONCLUSION

In this paper, we have assessed the performance of a SVD-
based multimicrophone enhancement procedure in the con-
text of two microphone hearing aids. Through the differ-
ent evaluations, the SVD-based noise reduction technique of
[17] is seen to achieve roughly the same improvement of the
speech intelligibility as the two-stage adaptive beamformer
of [15] in the case of located noise sources. However, in the
diffuse noise case, the SVD-based technique performs always
better than the two-stage adaptive beamformer and the di-
rectional microphone. The SVD-based algorithm, further-
more, works without initializations nor assumptions about
a look direction, unlike the two-stage adaptive beamformer.
Indeed, with the beamformer, we have to give a look direc-
tion to the algorithm, which is not a simple task, and then
assume that the speaker is always in front of the listener. This
beamformer initialization is a function of the microphone
characteristics and displacement and should be adapted to
each and every hearing aid.

An important result is that the SVD-based technique
does not distort speech during noise suppression. Indeed, the
transfer function between the unprocessed and the processed
speech signals is flat (0 dB) and we get roughly the same be-
haviour as for the beamformer.

Themain disadvantage of the SVD-based technique is the
cost of calculation but even this can be reduced to an ac-
ceptable level [23]. In the future, the technique will be im-
plemented in real time on a PC-platform, and perceptual
test will be done with normal hearing and hearing impaired
listeners.
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