
EURASIP Journal on Applied Signal Processing 2002:4, 362–371
c© 2002 Hindawi Publishing Corporation

Ordinal-Measure Based Shape Correspondence

Faouzi Alaya Cheikh
Signal Processing Laboratory, Tampere University of Technology, P.O. Box 553, FIN-33101 Tampere, Finland
Email: faouzi@cs.tut.fi

Bogdan Cramariuc
Signal Processing Laboratory, Tampere University of Technology, P.O. Box 553, FIN-33101 Tampere, Finland
Email: crama@cs.tut.fi

Mari Partio
Signal Processing Laboratory, Tampere University of Technology, P.O. Box 553, FIN-33101 Tampere, Finland
Email: partio@cs.tut.fi

Pasi Reijonen
Signal Processing Laboratory, Tampere University of Technology, P.O. Box 553, FIN-33101 Tampere, Finland
Email: pasi.reijonen@tut.fi

Moncef Gabbouj
Signal Processing Laboratory, Tampere University of Technology, P.O. Box 553, FIN-33101 Tampere, Finland
Email: Moncef.Gabbouj@tut.fi

Received 31 July 2001 and in revised form 10 February 2002

We present a novel approach to shape similarity estimation based on distance transformation and ordinal correlation. The pro-
posed method operates in three steps: object alignment, contour to multilevel image transformation, and similarity evaluation.
This approach is suitable for use in shape classification, content-based image retrieval, and performance evaluation of segmen-
tation algorithms. The two latter applications are addressed in this paper. Simulation results show that in both applications our
proposed measure performs quite well in quantifying shape similarity. The scores obtained using this technique reflect well the
correspondence between object contours as humans perceive it.
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1. INTRODUCTION

Shape representation techniques are generally characterized
as being boundary-based or region-based. The former (also
known as contour-based) represents the shape by its outline,
while the latter considers the shape as being formed of a set
of two-dimensional regions. The human visual system itself
focuses on edges and ignores uniform regions [1, 2]. This ca-
pability is hardwired into the retina. Connected directly to
the rods and cones of the retina are two layers of the neu-
rons that perform an operation similar to the Laplacian. This
operation is called lateral inhibition and helps us to extract
boundaries and edges. Therefore, in this paper we focus on
this aspect of the shapes and not on the regions they may
contain. Object contours however, will have intrinsic intra-
class variations. Moreover, object boundary deformation is
expected in most imaging applications due to the varying

imaging conditions, sensor noise, occlusion, and imperfect
segmentation.

Estimating the similarity between objects shapes can be
described in a simplistic way in two steps: shape features
extraction and feature comparison. Each of these two steps
however represents a difficult problem by itself. Selecting a
set of features to characterize a shape for a certain application
is not easy, since one must take into consideration the vari-
ability of the shapes and the application domain specificity.
Feature comparison can be understood as a way of quantify-
ing the similarity/dissimilarity between their corresponding
objects. This is a very difficult problem since it tries to mimic
the human perception [2].

Several shape features have been proposed in the liter-
ature for shape characterization [3]. Many of these tech-
niques however, cannot be used for content-based indexing
and retrieval due to their complexity or because they have no
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(a) (b)

Figure 1: (a) The original bird contour before the alignment step,
(b) the contour after alignment using three universal axes.

obvious counterpart in the human vision. Therefore, tech-
niques based on simple and visually meaningful shape fea-
tures have been used in several content-based indexing and
retrieval (CBIR) systems, for example, QBIC [4], MUVIS
[5, 6] such as high curvature points [7, 8, 9], polygonal ap-
proximation [10], morphological and topological features
and others [3, 11].

In this paper, we introduce a novel boundary-based ap-
proach to shape similarity estimation. This technique is
applied to two problems: shape-based image retrieval and
performance evaluation of segmentation algorithms. The
rest of the paper is organized as follows: Section 2 presents
an overview of the proposed method, followed by a de-
tailed description of each step. Experimental results for both
applications are presented in Section 3, using a subset of
the MPEG-7 shape test data and the segmentation masks
obtained by the COST Analysis Model (COST AM) [12,
13] segmentation algorithm. In Section 4, conclusions are
drawn.

2. THE PROPOSEDMETHOD

Images in the target applications are representing either: a
single object outline or a segmentation mask. Therefore, we
will not discuss how to obtain the contour or the segmenta-
tionmasks. Our goal is to compute a similarity score between
any two shapes or two segmentation masks. The proposed
method operates in three steps: alignment, boundary to mul-
tilevel image transformation, and similarity evaluation. The
alignment step is not needed in the case of the segmentation
performance evaluation, since we are comparing segmenta-
tions masks corresponding to the same image.

Once the boundaries are aligned, the binary images con-
taining the boundaries are transformed into multilevel im-
ages through distance transformation [3]. The obtained im-
ages are then compared using the ordinal correlation mea-
sure introduced in [14, 15]. This ordinal measure estimates
the similarity between the two shapes based on the correla-
tion of their corresponding transform images. In the rest of
this section we give detailed description of each one of the
steps mentioned above.

2.1. Object alignment based on universal axes

The alignment is performed by first detecting three universal
axes [16] (those with the largest magnitude) for each shape,
then orienting the shape in such a way that these axes are
aligned in a standard way for all the objects to be compared.
We use the same notation as in [16].

In this implementation of the universal axes determina-
tion algorithm we use the version number µ = 2l. The steps
of the alignment algorithm are detailed below.

Step 1. Translate the coordinate system so that the origin be-
comes the center of gravity of the shape S.

Step 2. Compute

∣∣x(l)µ + iy(l)µ
∣∣ = ∫ ∫

S

(√
x2 + y2

)µ x + iy√
x2 + y2




l

dxdy

=
∫ ∫

S
rµeilθdxdy,

(1)

and using normalized counterpart (called Universal Axes
(UA))

∣∣x̃(l)µ + iỹ(l)µ
∣∣ =

∣∣x(l)µ + iy(l)µ
∣∣∫ ∫

S

(√
x2 + y2

)µ
dxdy

, for l = 1, 2, 3. (2)

Step 3. Compute the polar angle Θµ ∈ [0, 2π] so that

Rµe
iΘµ =

∣∣x(l1)µ + iy(l1)µ

∣∣ (3)

with Rµ being the magnitude of |x(l1)µ + iy(l1)µ |. l1 is the number
of axes needed to align an object.

Step 4. Compute the directional angles of the l1 universal
axes of the shape S as follows:

θj =
Θµ

l1
+ ( j − 1)

2π
l1
, for j = 1, 2, . . . , l1. (4)

In our implementation we used l1 = 3, see Figure 1, since
for l1 = 2 the two universal axes orientation will verify θ2 =
θ1 + π. Therefore, they cannot be used alone to determine if
an object is flipped around the direction they define or not.

Step 5. Once the three universal axes are determined, rotate
the contour so that the most dominant UA (UA with the
largest magnitude) will be aligned with the positive x-axis,
see Figure 1.

Step 6. Then, if the y-component of the second most domi-
nant UA is positive, flip the contour around the x-axis.

To illustrate the alignment performance we applied it
to the set of contours in Figure 2. The results of the align-
ment are presented in Figure 3. It can be noticed that this
alignment scheme solved both problems of rotation and
mirroring.
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bird-1 bird-2 bird-3 bird-4 bird-5

bird-6 bird-7 bird-8 bird-9 bird-10

bird-11 bird-12 bird-13 bird-14 bird-15

bird-16 bird-17 bird-18 bird-19 bird-20

Figure 2: Bird contours from the MPEG-7 shape test set B.

bird-1 bird-2 bird-3 bird-4 bird-5

bird-6 bird-7 bird-8 bird-9 bird-10

bird-11 bird-12 bird-13 bird-14 bird-15

bird-16 bird-17 bird-18 bird-19 bird-20

Figure 3: The contours in Figure 2 after alignment.

2.2. Boundary tomultilevel image transformation

Let S be a shape represented by its contour C in a binary
image. The binary image is transformed into a multilevel
(grayscale) image G using a mapping function φ, such that
the pixel values in G, {G1, G2, . . . , Gn}, depend on their rela-
tive position to the contour pixels C1, C2, . . . , Cp:

Gi = φ
(
Ck : k = 1, 2, . . . , p

)
, for i = 1, 2, . . . , n, (5)

where Ck is the position of the contour pixel k in the image
G. It should be observed that several transformations satisfy
this requirement, including any distance transform [3].

As a result of this mapping the information contained in
the shape boundary will be spread throughout all the pix-
els of the image. Computing the similarity in the transform
domain will benefit from the boundary information redun-
dancy in the new image. We expect that there is no single op-
timal mapping; different mappings will emphasize different
features of the contour. We distinguish however two special
cases:

• the first is defined as follows:

Gi =

{
V0 − d

(
Pi, C

)
, if d

(
Pi, C

)
< Th,

0, otherwise,
(6)

for i = 1, 2, . . . , n and V0 > 0 is the value assigned
to the pixels on the boundary. The larger the distance
d(Pi, C) from the contour points is, the smaller the new
pixel value will be. This mapping function emphasizes
the details on the boundary;

• the second mapping is when V0 = 0 and Gi = d(Pi, C),
using a geodesic distance [17]. When this mapping is
applied inside the contour only, the emphasis is on the
shape skeleton which is a very important feature of a
shape, see Figure 4. Applying the distance mapping in-
side and outside the contour can lead to a better eval-
uation of segmentation results. One can even assign
different weights inside and outside of the contours.

In this work, we implemented the second mapping based
on the geodesic distance. The metric is integer and its appli-
cation is done through an iterative wave propagation process
[18]. The contour points are considered as seeds during the
construction of the distance map. The distance map can be
generated inside and/or outside the contour, as stated earlier.
The values can increase or decrease starting from the contour
and can be limited. The pixel values in the distance map can
be therefore written as follows:

Gi =
∣∣V0 ± d

(
Pi, C

)∣∣, for i = 1, 2, . . . , n, (7)

where, V0 is the value on the contour and d(Pi, C) is the dis-
tance from any point Pi in the image to the contour C.

Figure 4a represents an example of a distance map gen-
erated only inside the contour of a bird contour. Figure 4b
shows a 3D visualization of this distance map.

2.2.1 Similarity evaluation

The evaluation of image similarity is based on the frame-
work for ordinal-based image correspondence introduced in
[14]. Figure 5 gives a general overview of this region-based
approach.

Suppose we have two images, X and Y , of equal size.
In a practical setting, images are resized to a common size.
Let {X1, X2, . . . , Xn} and {Y1, Y2, . . . , Yn} be the pixels of im-
ages X and Y , respectively. We select a number of areas
{R1, R2, . . . , Rm} and extract the pixels from both images that
belong to these areas. Let RX

j and RY
j be the pixels from im-

ages X and Y , respectively, which belong to areas Rj , with
j = 1, 2, . . . , m.

The goal is to compare the two images using a region-
based approach. To this end, we will be comparing RX

j and R
Y
j

for each j = 1, 2, . . . , m. Thus, each block in image X is com-
pared to the corresponding block in image Y in an ordinal
fashion. The ordinal comparison of the two regions means
that only the ranks of the pixels are utilized. For every pixel
Xk, we construct a so-called slice SXk = {Sk,l : l = 1, 2, . . . , n},
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Figure 4: (a) The distance map generated for the “bird-19” contour in Figure 1, (b) a 3D view of this distance map.

where

SXk,l =

{
1, if Xk < Xl,

0, otherwise.
(8)

As can be seen, slice SXk corresponds to pixel Xk and is a
binary image of size equal to image X . Slices are built in a
similar manner for image Y as well.

To compare regions RX
j and RY

j , we first combine the
slices from image X , corresponding to all the pixels belong-
ing to region RX

j . The slices are combined using the operation

OP1(·) into a metasliceMX
j .

Figure 6 shows an illustration of the slices and metaslices
creation for a 4 × 4 image and blocks of 2 × 2. The four slices
S1, S2, S5, and S6 shown in this figure are computed for the
four pixels in block B1. The operation used in this illustration
to create the metasliceM1 is OP1(·) =

∑
(·).

More formally, MX
j = OP1(SXk : Xk ∈ RX

j ) for j =
1, 2, . . . , m. Similarly, we combine the slices from image Y
to form MY

j for j = 1, 2, . . . , m. It should be noted that the
metaslices are equal in size to the original images and could
be multivalued, depending on the operation OP1(·). Each
metaslice represents the relation between the region it cor-
responds to and the entire image.

The next step is a comparison between all pairs of
metaslices MX

j and MY
j by using operation OP2, resulting

in the metadifference Dj .That is, Dj = OP2(MX
j ,M

Y
j ), j =

1, 2, . . . , m. We thus construct a set of metadifferences D =
{D1, D2, . . . , Dm}. The final step is to extract a scalar mea-
sure of correspondence from set D, using operation OP3(·).
In other words, λ = OP3(D). It was shown in [14] that this
structure could be used to model the well-known Kendall’s τ
and Spearman’s ρmeasures [19].

The image similarity measure used in this paper is an
instance of the previously mentioned framework. This mea-
sure has been analyzed more extensively by Cramariuc et

al. [15]. Following is a short description of the operations
OPk(·), k = 1, 2, 3 adopted for this measure. Operation
OP1(·) is chosen to be the component-wise summation op-
eration; that is, metaslice Mj is the summation of all slices
corresponding to the pixels in block j or in other words,
Mj =

∑
k:Xk∈Rj

Sk.
Next, operation OP2(·) is chosen to be the squared Eu-

clidean distance between corresponding metaslices. That is,
Dj = ||MX

j −MY
j ||22. Finally, operation OP3(·) sums together

all metadifferences to produce λ =
∑

j Dj , for j = 1, 2, . . . , m.
Small values of λmean similar objects.

One advantage of this approach over classical ordinal cor-
relation measures is its capability to take into account differ-
ences between images at a scale related to the chosen block
size.

3. EXPERIMENTAL RESULTS

The proposed technique is applied to two important prob-
lems: content-based retrieval of shape images and perfor-
mance evaluation of segmentation algorithms. The experi-
ments performed are presented and their results analyzed in
the rest of this section.

3.1. Shape similarity estimation

The shape similarity estimation experiments were conducted
on two sets of 20 images. The two sets are taken from the
MPEG-7 CE Shape test set B, which contains 1400 images
grouped in 70 categories. These test sets are chosen in such
a way as to assess the performance of our technique in esti-
mating the object similarity within a single category (intra-
category) and between contours from different categories
(inter-category). Therefore, the first test set contains all the
samples in the bird category of the MPEG-7 Shape test set B,
see Figure 2. While, the second set contains 20 objects taken
from four different categories, see Figure 7. In both exper-
iments, the similarity score λ is computed for all the pairs
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Figure 6: Example of slices and metaslice for a 4 × 4 image using blocks of 2 × 2.

of shapes in the set. The similarity scores obtained are pre-
sented in Tables 1 and 2. All the scores are multiplied by 103

when they are presented in the tables and the figures. The
distance maps were generated inside the objects only with
V0 = 50. This setting emphasizes the shape skeleton and
gives less importance to contour pixels. The distance trans-
formed images are resized to 32 × 32 pixels and blocks of
size 4 × 4 were used. Larger images can be used if more
precision is needed, this would imply the creation of more
slices and therefore more computational power would be
needed.

Figure 8 represents a surface plot of the similarity scores
in Table 1. It shows that within the same category, the scores

have small values, whichmeans that they are quite similar ac-
cording to our measure. It is worth noticing that the scores
on the diagonals are zero which means that each object is
identical to itself, so there is no bias in the similarity scores. It
is worth noticing that the scores obtained between the “bird-
3,” “bird-4,” “bird-5,” “bird-6,” and the rest of the birds in this
category are larger than the rest of the scores. This can be ex-
plained by the fact that these four birds have much shorter
tails and have a more circular contours compared the rest of
the birds. The similarity scores are low between themselves,
moreover, the scores for the pairs (bird-3, bird-4), (bird-5,
bird-6), (bird-7, bird-8), and (bird-9, bird-11) are very small.
By visual inspection one can verify that each pair of con-
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Table 1: Similarity scores for the contours in Figure 3. These scores are multiplied by 103.

Object bi
rd
-1

bi
rd
-2

bi
rd
-3

bi
rd
-4

bi
rd
-5

bi
rd
-6

bi
rd
-7

bi
rd
-8

bi
rd
-9

bi
rd
-1
0

bi
rd
-1
1

bi
rd
-1
2

bi
rd
-1
3

bi
rd
-1
4

bi
rd
-1
5

bi
rd
-1
6

bi
rd
-1
7

bi
rd
-1
8

bi
rd
-1
9

bi
rd
-2
0

bird-1 0 32 75 74 80 81 46 44 52 44 52 49 64 49 53 63 60 51 64 59
bird-2 32 0 71 70 79 79 39 38 60 59 62 61 65 56 53 68 58 52 62 55
bird-3 75 71 0 0 48 48 80 77 88 84 85 87 102 53 71 117 112 105 116 106
bird-4 74 70 0 0 48 48 80 76 88 83 85 87 102 53 71 116 112 104 116 106
bird-5 80 79 48 48 0 1 101 98 105 89 102 98 120 76 95 125 122 112 125 121
bird-6 81 79 48 48 1 0 101 98 106 90 103 99 120 76 95 126 122 113 126 121
bird-7 46 39 80 80 101 101 0 7 39 42 42 40 42 54 28 53 42 38 46 43
bird-8 44 38 77 76 98 98 7 0 38 39 39 38 44 52 23 58 47 41 51 47
bird-9 52 60 88 88 105 106 39 38 0 25 7 17 32 51 33 51 44 39 49 60
bird-10 44 59 84 83 89 90 42 39 25 0 22 12 45 53 32 55 48 43 53 60
bird-11 52 62 85 85 102 103 42 39 7 22 0 16 36 49 31 56 49 45 55 63
bird-12 49 61 87 87 98 99 40 38 17 12 16 0 37 55 31 52 46 41 50 61
bird-13 64 65 102 102 120 120 42 44 32 45 36 37 0 60 42 41 35 37 40 57
bird-14 49 56 53 53 76 76 54 52 51 53 49 55 60 0 47 86 80 75 86 83
bird-15 53 53 71 71 95 95 28 23 33 32 31 31 42 47 0 67 56 52 59 61
bird-16 63 68 117 116 125 126 53 58 51 55 56 52 41 86 67 0 17 22 19 44
bird-17 60 58 112 112 122 122 42 47 44 48 49 46 35 80 56 17 0 18 8 39
bird-18 51 52 105 104 112 113 38 41 39 43 45 41 37 75 52 22 18 0 17 35
bird-19 64 62 116 116 125 126 46 51 49 53 55 50 40 86 59 19 8 17 0 38
bird-20 59 55 106 106 121 121 43 47 60 60 63 61 57 83 61 44 39 35 38 0

bird-16 bird-17 bird-18 bird-19 bird-20

cattle-5 cattle-6 cattle-7 cattle-8 cattle-9

fork-5 fork-6 fork-7 fork-8 fork-9

frog-10 frog-6 frog-7 frog-8 frog-9

Figure 7: Contours of test set 2 after alignment.

tours represent the same bird contour rotated or rotated and
scaled. Therefore, we can safely say that our measures have
a 0.5% error, which can be explained by the small contour
variation introduced by rotation and the size reduction of the
distance maps. Lower error can be obtained by increasing the
size of the distance map images and reducing the block size
used for the metaslices creation.

Dark blue regions in Figure 8 represent very low scores
(close to zero), which shows that there are quite many objects
in this category which are very similar or even identical.

To find out which are themost similar contours to a given
contour in Figure 7 we sort the scores on the raw correspond-
ing to this contour in Table 2. Using Figure 9, one can easily

2
4

6
8

10

12
14

16
18

20

0
50
100

2 4 6 8 10 12 14 16 18 20

Figure 8: The similarity scores for the bird contours in Figure 3,
dark blue cells mean most similar contours.

estimate which are the most similar objects within this cat-
egory, based on the clustered dark blue cells. Figure 9 shows
that similarity scores between subjects from the same cate-
gory are low, while those obtained for subjects from different
categories are relatively high. Therefore, sorting the scores in
ascending order will yield the most similar object first.

The inter-category scores obtained by our similarity es-
timation technique are larger than the inter-category ones.
Therefore, this technique can be used as a shape classification
technique. Moreover, it is sensitive to intra-category shape
variations thus it can be used in a content-based retrieval
system.
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Table 2: Similarity scores for the contours in Figure 7. These scores are multiplied by 103.

Objects bi
rd
-1
6

bi
rd
-1
7

bi
rd
-1
8

bi
rd
-1
9

bi
rd
-2
0

ca
tt
le
-5

ca
tt
le
-6

ca
tt
le
-7

ca
tt
le
-8

ca
tt
le
-9

fo
rk
-5

fo
rk
-6

fo
rk
-7

fo
rk
-8

fo
rk
-9

fr
og
-1
0

fr
og
-6

fr
og
-7

fr
og
-8

fr
og
-9

bird-16 0 39 63 39 101 282 322 321 351 348 358 368 361 379 401 196 209 210 303 302
bird-17 39 0 58 22 94 273 306 304 342 341 337 345 339 363 377 199 206 208 297 297
bird-18 63 58 0 58 83 256 293 291 325 322 325 330 323 346 364 182 185 187 285 284
bird-19 39 22 58 0 74 298 332 331 369 366 360 368 363 388 402 215 227 228 318 318
bird-20 101 94 83 74 0 304 333 334 370 367 365 370 363 387 392 234 233 234 330 330
cattle-5 282 273 256 298 304 0 73 71 75 73 247 221 184 206 244 162 152 153 136 138
cattle-6 322 306 293 332 333 73 0 1 52 53 246 204 168 198 234 195 192 193 143 145
cattle-7 321 304 291 331 334 71 1 0 51 52 247 206 169 199 236 193 191 192 141 144
cattle-8 351 342 325 369 370 75 52 51 0 5 244 207 172 191 228 206 199 200 141 143
cattle-9 348 341 322 366 367 73 53 52 5 0 244 209 173 190 232 202 196 197 140 142
fork-5 358 337 325 360 365 247 246 247 244 244 0 59 118 84 63 373 347 346 356 359
fork-6 368 345 330 368 370 221 204 206 207 209 59 0 62 74 77 355 337 338 326 329
fork-7 361 339 323 363 363 184 168 169 172 173 118 62 0 81 123 320 304 305 287 290
fork-8 379 363 346 388 387 206 198 199 191 190 84 74 81 0 79 351 331 331 319 321
fork-9 401 377 364 402 392 244 234 236 228 232 63 77 123 79 0 379 354 352 339 340
frog-10 196 199 182 215 234 162 195 193 206 202 373 355 320 351 379 0 50 51 132 129
frog-6 209 206 185 227 233 152 192 191 199 196 347 337 304 331 354 50 0 1 138 138
frog-7 210 208 187 228 234 153 193 192 200 197 346 338 305 331 352 51 1 0 139 139
frog-8 303 297 285 318 330 136 143 141 141 140 356 326 287 319 339 132 138 139 0 2
frog-9 302 297 284 318 330 138 145 144 143 142 359 329 290 321 340 129 138 139 2 0
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Figure 9: Similarity scores obtained for the contours in test set 2
presented in Figure 7.

3.2. Segmentation quality evaluation

The objective evaluation of the performance of segmentation
algorithms is an important problem [20, 21, 22]. Even when
a reference mask is available, comparing two segmentation
masks is still a difficult problem. Several factors make such
evaluation difficult, among the most important factors is the
difficulty to discriminate between many small distributed er-
ror segments and few larger error segments.

Our shape correspondence technique proposed in
Section 2, discriminates easily between the two cases of seg-
mentation errors. The geodesic distance transformation is
applied inside each segment of the mask. Therefore, small
regions yield small distances inside them and therefore will
generate pixels with low gray values.
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Figure 10: The segmentation performance scores for frames 4–49
of the sequence “Erik,” for COST AM versions 5.0 and 5.1.

In this experiment, the segmentation masks resulting
from the COST AM versions 5.0 and 5.1 [12, 13], are com-
pared against a reference mask. The plot in Figure 10, shows
the segmentation performance scores obtained by our tech-
nique, for the frames 4–49 of “Erik” sequence. The plots in
Figures 11 and 12, show quantitative measures of the errors
in number of pixels from both COST AM versions 5.0 and
5.1, respectively. Three different numbers are computed for
each frame:

• number of pixels of the background segmented as fore-
ground pixels,
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Figure 11: Plot of the segmentation errors, for COST AM 5.0.
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Figure 12: Plot of the segmentation errors, for COST AM 5.1.

• number of pixels of the foreground segmented as back-
ground pixels,

• sum of the two previous numbers.

For illustration we present the colored segmentation
masks for frames 15 and 20 from “Erik” sequence in Figures
13, 14, 15, and 16. The frame pixels are colored as follows:

• black represents the background,
• white is the region where the reference and estimated
masks overlap,

• green represents the areas of the background seg-
mented as part of the object,

• purple represents the regions from the object merged
with the background.

Figure 13: The colored segmentation error of frame 15 from the
sequence “Erik,” segmented using COST AM 5.0.

Figure 14: The colored segmentation result of frame 15 from the
sequence “Erik,” segmented using COST AM 5.1.

Figure 15: The colored segmentation result of frame 20 from the
sequence “Erik,” segmented using COST AM 5.0.

Figure 16: The colored segmentation result of frame 20 from the
sequence “Erik,” segmented using COST AM 5.1.
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It can be easily seen that our segmentation performance
scores in Figure 10, correlate very well with the variation of
the total number of pixel errors. Moreover, it reflects the vari-
ation in both types of segmentation errors. Our measure in-
herently resolves the case of many small errors and the case
of a single large error region.

4. CONCLUSIONS AND FUTUREWORK

In this paper, we proposed a contour correspondence mea-
sure, based on distance transformation and ordinal correla-
tion. The similarity scores obtained are in line with the vi-
sual perception of the similarity between shapes. We showed
that the proposed measure can be used in two applications:
shape similarity estimation in the context of content-based
image retrieval, and for performance evaluation of segmen-
tation algorithms. Simulation results were presented for both
applications using images from the MPEG-7 shape test set B
for the first application, and 50 frames from “Erik” sequence
for the second. The proposed technique produced encourag-
ing results in both experiments. Further study is needed to
optimize the proposed technique in order to select appropri-
ate parameters for the application at hand. Finally, further
analysis of the behavior of the proposed technique may iden-
tify new applications.
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