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We address the problem of multiuser detection in fast fading multipath environments for DS-CDMA systems. In fast fading
scenarios, temporal variations of the channel cause significant performance degradation even with the Rake receiver. We use a
previously introduced time-frequency (TF) Rake receiver based on a canonical formulation of the channel and signals to simul-
taneously combat fading and multipath effects. This receiver uses the Doppler spread caused by rapid time-varying channel as
another means of diversity. In dealing with multiaccess interference and as an attempt to avoid the prohibitive computational
complexity of the optimum maximum-likelihood (ML) detector, we use the expectation maximization (EM) algorithm to derive
an approximate ML detector. The new detector turns out to have an iterative structure very similar to the well-known multistage
detector with some extra parameters. At the two extreme values of these parameters, the EM detector reduces to either one-shot
TF Rake or generalized multistage detector. For the intermediate values of the parameters, it combines the two estimates to obtain
a better decision for the bits of the users. Because of using the EM algorithm, this detector has better convergence properties than
the multistage detector; the bit estimates always converge, and if an appropriate initial vector is used, they converge to the global
maximizer of the likelihood function. As a result, the new detector provides significantly improved performance while maintaining
the low complexity of the multistage detector. Our simulation results confirm the expected performance improvements compared
to the base case of the TF Rake as well as the multistage detector used with the TF Rake.
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1. INTRODUCTION

Multipath, fading, and multiple-access interference are the
major factors that limit the performance of the existing mo-
bile wireless communication systems. Fading of the received
signal caused by wireless channels, coupled with the interfer-
ence from other transmitters using the same channel, signif-
icantly degrades the performance of the receiver.

Wideband code-division multiple access (WCDMA), the
accepted technology for the next generation cellular net-
works, provides intrinsic protection against the multipath
effects of the channel. A Rake receiver structure is used to
exploit the large time-resolution of the wideband signal and
capture the information in its multipath components.

In fast-fading scenarios, temporal variations of the chan-
nel cause significant performance degradation even with the
Rake receiver. The Doppler spread caused by rapid time-
varying channel can be used as another means of diver-
sity in such environments. Joint multipath-Doppler diver-
sity schemes [1, 2, 3] use a canonical representation of the

channel and signals to capture the multipath-Doppler com-
ponents of the signal.

In multiple-access environments, the minimum prob-
ability of error reception can be achieved by a maximum
likelihood (ML) receiver [4]. Although this optimal receiver
shows significant performance gains over the conventional
detector, its computational complexity, which grows expo-
nentially with the number of users, prohibits its practical im-
plementation. Therefore, some practical suboptimum detec-
tors have been introduced for multiuser detection [5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21].

Lupas and Verdu [5] describe a family of linear detectors
called decorrelator. These detectors eliminate multiuser in-
terference at the expense of increased noise power. Further-
more, the linear decorrelating detectors require the correla-
tion matrix inversion, which may be difficult to perform in
real time, especially for asynchronous systems. Some subop-
timal approaches have been taken to implement the decor-
relating detector for asynchronous systems [6, 7, 8, 9]. The
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most important advantage of the decorrelating detector is
that it does not require the estimation of the received am-
plitudes.

Madhow and Honig [10] and Xie et al. [6] describe
a minimum mean-squared error (MMSE) linear detector,
which minimizes the mean-squared error between the actual
data and the conventional detector soft outputs. Because of
taking the background noise into account, the MMSE detec-
tor generally performs better than the decorrelating detec-
tor, and converges to the decorrelating detector as the back-
ground noise goes to zero.

Duel-Hallen in [11] presents a nonlinear multiuser
detector called decorrelating decision-feedback detector
(DDFD) in which the users are ranked according to their
signal strengths from the strongest one to the weakest one.
This detector is based on a white noise channel model whose
noise-whitening filter is obtained by the Cholesky decom-
position of the cross-correlation matrix. The detector per-
forms successive interference cancellation at the output of the
noise-whitening filter using past decisions. For the strongest
user, this detector performs similarly to the decorrelator, but
as the user’s power decreases compared to the power of inter-
ferers, the detector outperforms the decorrelator and its per-
formance approaches the single user bound. However, its im-
portant difficulty is the need for computing the Cholesky de-
composition. Other successive interference cancellation de-
tectors are described in [12, 13].

In [14, 15], Varanasi and Aazhang describe a parallel in-
terference cancellation detector called multistage detector in
which the tentative decisions obtained from the previous
stage are used to estimate and subtract the multiuser inter-
ference. The first stage decisions are usually obtained from
the conventional detector. This detector, like the DDFD of
[11], outperforms the decorrelator when interfering users are
stronger than the user under consideration, but its perfor-
mance degrades as the energies of the interfering users de-
crease.

The expectation maximization (EM) algorithm has also
been applied for multiple-access interference suppression in
CDMA systems [16, 17, 18, 19], as well as for channel esti-
mation [20, 21, 22]. In [16, 19], an iterative interference can-
cellation method in additive white Gaussian noise (AWGN)
channels based on the EM algorithm is proposed. Since the
likelihood function is bounded above, and since the EM es-
timates monotonically increase in likelihood, the suggested
receiver is convergent. Also, because of taking into account
the previous decision about the data symbol of each user in
making new decision for that user, this detector outperforms
the parallel interference cancellation detector of [15] for
strong users, while having similar performance for the other
users.

In [17], Nelson and Poor propose some other iterative
multiuser receivers for CDMA systems, based on the EM al-
gorithm and its generalized versions, such as space alternat-
ing generalized EM (SAGE), and missing-parameter space-
alternating algorithm. The suggested multiuser detectors
have structures similar to the parallel interference cancella-
tion method of [14], except that updates of the estimates are

made sequentially, rather than in parallel. For the same rea-
son mentioned above, these algorithms are also convergent.
The MPEM receiver suggested in this paper has a computa-
tional complexity which is proportional to the square of the
number of the users, whereas the computational complex-
ity of the original parallel interference cancellation method
grows only linearly with the number of users.

In [18], the EM algorithm is applied to maximize the
likelihood function over a nondiscrete set. The discrete se-
quence is obtained by quantizing the unquantized estimated
sequence at convergence. Since the nondiscrete maximiza-
tion problem has a closed form solution, namely, the decor-
relator, the performance of this scheme is expected to be
upper bounded by the performance of the decorrelating re-
ceiver. However, depending on the number of the iterations
used, the computational complexity of this scheme might be
lower. The proposed receiver also iterates between path com-
ponent estimation and maximal-ratio combining to refine
the nondiscrete sequence estimate.

In this paper, we first review the canonical representation
of the signal and channel in fast fading multipath environ-
ments [1, 3]. Then, in Section 3, we review some of the mul-
tiuser detection techniques in fast fading channels using this
representation. These include the optimal (minimum proba-
bility of error) and the linear suboptimal decorrelating and
MMSE receivers, rederived in [23] for the time-frequency
(TF) Rake, as well as a generalization of the multistage de-
tector of [15].

As mentioned earlier, we intend to use the EM algorithm
to find an iterative approximate ML solution for the mul-
tiuser detection problem. For this, we first, in Section 4, re-
view the EM algorithm, and then, in Section 5, in a similar
way to [16], derive the new detection scheme for fast fad-
ing multipath environments with canonical representation.
The proposed detector uses the two-dimensional TF Rake re-
ceiver [1, 3] to combat the fading and multipath effects. The
simulation results are reported in Section 6, and show the su-
perior performance of the proposed detector compared to
the original TF Rake, as well as the generalized multistage
detector. Finally, Section 7 contains the conclusions.

2. CANONICAL TIME-FREQUENCY REPRESENTATION
OF THE SIGNALS AND CHANNEL

The TF canonical representation [1, 3] exploits the multi-
path and Doppler effects for obtaining diversity and results
in a two-dimensional Rake receiver, which extracts Doppler
components in addition to multipath components. This rep-
resentation reduces the channel to a set of independent chan-
nels for the different time-delayed frequency-shifted versions
of the signal for each user. Figure 1 illustrates the locations of
canonical coordinates in the time delay-Doppler shift plane,
used for TF representation of the channel.

In a multiuser system, the received signal is a superposi-
tion of the signals of different users and noise. In this work,
we consider a synchronous CDMA system in which the sig-
nature sequences of different users are aligned in time. With



EM-Based Multiuser Detection in Fast Fading Multipath Environments 789

Multipath

−M

M

D
op

pl
er

θ
Tc

1/Ts

L τ

Figure 1: Canonical coordinates.

this assumption, if the delay spread of the channel is much
smaller than the symbol interval, we can ignore the correla-
tion terms between the symbols of different users in adjacent
time intervals, and use a one-shot detector for estimating the
data bits of different users, as in [23]. Therefore, we can re-
strict ourselves to only the first time interval and assume that
the received signal is as follows:

r(t) =
K∑
k=1

bkxk(t) + n(t), for 0 ≤ t ≤ Ts, (1)

where K is the number of users, bk denotes the data bit of the
kth user, n(t) is a white Gaussian noise with zero mean and
variance σ2, Ts is the symbol interval, and

xk(t) =
∫ Tm

0
hk(t, τ)sk(t − τ)dτ, for k = 1, 2, . . . , K. (2)

In this equation, sk(t) and hk(t, τ) are, respectively, the sig-
nature signal and the time-varying channel impulse response
for the kth user, and Tm denotes the multipath (delay) spread
of the channel.

An equivalent representation for the signal xk(t) in terms
of the channel spreading function Hk(θ, τ) [24] (i.e., the
Fourier transform of hk(t, τ) with respect to t), is

xk(t) =
∫ Tm

0

∫ Bd

−Bd

Hk(θ, τ)e j2πθtsk(t − τ)dθ dτ, (3)

where θ corresponds to Doppler shifts introduced by the
channel and Bd denotes the Doppler spread of the channel.
We use the wide-sense stationary uncorrelated scatterer (WS-
SUS) [24] model for the channel, which assumes thatH(θ, τ)
is a two-dimensional uncorrelated Gaussian process.

For a spread spectrum signal s(t) of duration Ts and chip
interval Tc, and with the WSSUS assumption for the chan-
nel, using the canonical coordinates [1, 3], we can rewrite
the signal xk(t) as

xk(t) ≈
L∑
l=0

M∑
m=−M

Hml
k sml

k (t), for 0 ≤ t ≤ Ts, (4)

where

sml
k (t) = sk(t−lTc)e j(2πmt/Ts)s, Hml

k = Tc

Ts
Ĥk

(
m

Ts
, lTc

)
, (5)

for l = 0, 1, . . . , L, m = −M,−M + 1, . . . ,M, k = 1, 2, . . . , K
with the number of multipath components L = �Tm/Tc�,
and the number of Doppler componentsM = �BdTs�. Here,
Ĥk(θ, τ) is the time-frequency smoothed version of H(θ, τ)
[23] given by the following expression:

Ĥk(θ, t) = Ts

Tc

∫ Tm

0

∫ Bd

−Bd

Hk(θ, τ)e− jπ(θ−θ′)Ts sinc
((
θ − θ′

)
Ts
)

× sinc
(
τ − τ′

Tc

)
dθ′ dτ′.

(6)

In order to simplify the mathematical expressions, we
use the following vector notation for the time-delayed and
frequency-shifted versions of the signature waveforms of the
users,

s(t) =
[
s1(t)T s2(t)T · · · sK (t)T

]T
, (7)

where

sk(t) =
[
s−M0
k (t) · · · s−ML

k (t)s(−M+1)0
k (t) · · · s(−M+1)L

k (t)

· · · sM0
k (t) · · · sML

k (t)
]T
(8)

for k = 1, 2, . . . , K . Using this representation, the K(L +
1)(2M+1)×K(L+1)(2M+1) cross-correlation matrix of the
components of the signature waveforms of different users is

R =
∫ Ts

0
s∗(t)sT(t)dt =


R11 R12 · · · R1K

R21 R22 · · · R2K

...
...

. . .
...

RK1 RK2 · · · RKK

 , (9)

where

Rkl =
∫ Ts

0
s∗k (t)s

T
l (t)dt, for k, l = 1, 2, . . . , K. (10)

We also define the channel matrixH as

H =


h1 0 · · · 0
0 h2 · · · 0
...

...
. . .

...

0 0 · · · hK

 , (11)
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where

hk =[
H−M0

k · · ·H−ML
k H(−M+1)0

k · · ·H(−M+1)L
k · · ·HM0

k · · ·HML
k

]T
(12)

for k = 1, 2, . . . , K .
Using the above notations, (4) and (1) can be rewritten

as

xk(t) ≈ sk(t)Thk, for 0 ≤ t ≤ Ts, (13)

r(t) ≈ s(t)THb + n(t), for 0 ≤ t ≤ Ts, (14)

where b = [b1 b2 · · · bK ]T . In Section 3, we will see that
the outputs of the time-frequency Rake receiver, given as

zk =
∫ Ts

0
s∗k (t)r(t)dt, for k = 1, 2, . . . , K, (15)

form a set of sufficient statistics for ML multiuser detec-
tion. We collect all of these vectors in one vector z =
[zT1 zT2 · · · zTK ]T . Using (14) and (9), it can be easily shown
that

z =
∫ Ts

0
s∗(t)r(t)dt ≈ RHb +w, (16)

where

w =
∫ Ts

0
s∗(t)n(t)dt (17)

is a zero mean complex Gaussian noise vector with
E[wwH] = σ2R.

3. REVIEWOF SOMEMULTIUSER DETECTION
SCHEMES

In this section, we review the optimal and linear suboptimal
multiuser detectors rederived in [23] for fast fading channels.
We also consider the generalization of the well-known mul-
tistage detector to fast fading channels using the TF Rake.

3.1. Conventional single user receiver

The single user receiver assumes that there is no multiaccess
interference, that is, either there are no interfering users, or
the signature codes of all of the users and their shifted ver-
sions are orthogonal. It can be easily shown [1, 2] that, in
this case, the TF Rake receiver with maximal ratio combin-
ing (MRC), given by the following expression, is the optimal
(i.e., minimum probability of error) receiver:

b̂k = sgn
{�[

hHk zk
]}
, for k = 1, 2, . . . , K. (18)

This receiver coherently combines the different multipath-
Doppler shifted components of the signal to achieve a diver-
sity of order (L + 1)(2M + 1). Of course, it is assumed that
the receiver has complete channel state information (CSI). In

practice, channel coefficients,Hml
k , may be estimated through

a pilot signal transmission.
In the presence of multiaccess interference, that is, when

the signature codes of the interfering users are not completely
orthogonal, the above receiver is no longer optimal, and does
not show acceptable performance. The optimal multiuser de-
tector is discussed in Section 3.2, and has a much more com-
putational complexity.

3.2. Minimumprobability of error receiver

Initially introduced by Verdu [4], the ML multiuser receiver
achieves the minimum probability of error and is optimal
in this sense. For the problem under consideration, the log-
likelihood function of the received signal (1) can be written
as

log fR(r;b) = A− 1
2σ2

∫ Ts

0

∣∣∣∣∣r(t)−
K∑
k=1

bkxk(t)

∣∣∣∣∣
2

dt, (19)

where A is a constant. The ML receiver finds the vector
b̂opt = [b̂1 b̂2 · · · b̂K ]T , such that the above log-likelihood
function is maximized for b = b̂opt.

Ignoring the constant terms and the terms which do not
depend on the unknown bits of the users, and using (9),
(10), (13), (14), (15), and (16), we define the simplified log-
likelihood function as

Λ(r;b) =
K∑
k=1

2�{
hHk zk

}
bk −

K∑
k=1

K∑
l=1

bkhHk Rklhlbl

= 2�[
bTHHz

]− bTHHRHb.

(20)

Therefore, the decision rule for the ML receiver can be writ-
ten as

b̂opt = arg max
b∈{−1,1}K

Λ(r;b). (21)

We observe that the outputs of the TF Rake, zk for k =
1, 2, . . . , K , form a set of sufficient statistics for the detection
problem. We also observe that, still, maximal ratio combin-
ing of the outputs of the TF Rake is necessary, though not
sufficient.

The above maximization is a K-dimensional discrete op-
timization problem and requires a search over 2K possi-
bilities. As a result, the computational complexity of the
receiver increases exponentially with the number of users,
which makes its real-time implementation prohibitive for
large number of users. Therefore, several suboptimal ap-
proaches have been proposed. In the next subsections, we re-
view some of these suboptimal receivers. Later, in Section 5,
we introduce a new detection scheme, which iteratively solves
the above optimization problem, and even with a few num-
ber of stages, shows better performance compared to the ex-
isting schemes with similar complexity.

3.3. Linear suboptimalmultiuser receivers

Having established that z = [z1 z2 · · · zK ] is a sufficient
statistic for the detection problem, we can try other low com-
plexity processings of this vector to obtain some suboptimal
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receivers. The approach is motivated by the fact that, in the
absence of multiaccess interference, that is, when the noise
free output of the correlators for the kth user is equal to hkbk,
the MRC is optimal. Therefore, we first try to find a reliable
estimate for the vectors hkbk for k = 1, 2, . . . , K , given the
observation z, and then, to coherently combine them to ob-
tain the bit estimate for each user. In [23], based on the above
idea, the well-known decorrelating and MMSE receivers are
rederived for the TF Rake. Since the noise vector at the out-
puts of these linear processings is correlated, a whitening
operation is performed before maximal ratio combining of
these outputs.

If the linear operation involved in the linear detector is
performed using a matrix F, the general form of the overall
linear multiuser TF Rake receiver will be

b̂ = sgn
{�[

HHDFz
]}
, (22)

where D is a block diagonal whitening matrix. The entries
of this matrix depend on the type of the linear processing,
that is, the matrix F, as well as the correlation matrix of the
signature codes, R,

D =


Q−111 0 · · · 0

0 Q−122 · · · 0
...

...
. . .

...

0 0 · · · Q−1KK

 , (23)

where

Q = E
[
FwwHFH

] = σ2FRFH

=


Q11 Q12 · · · Q1K

Q21 Q22 · · · Q2K

...
...

. . .
...

QK1 QK2 · · · QKK

 .
(24)

In Sections 3.3.1 and 3.3.2, we will consider two special
cases of the above generic linear detector, called decorrelating
and linear MMSE receivers.

3.3.1 Decorrelating receiver

From the likelihood function (20), it is easy to show that the
ML estimate for u = Hb is given by

ûML = argmax
u

{
2�[

uHz
]− uHRu

} = R−1z. (25)

Therefore, from (22) by letting F = R−1, a generalization of
the decorrelating receiver of [5] can be obtained,

b̂dec = sgn
{�[

HHDdecR−1z
]}
, (26)

where Ddec is defined as in (23), with Q = Qdec = σ2R−1.
This detector eliminates multiuser interference at the ex-

pense of increasing the noise power. It also requires the cor-
relation matrix inversion, which may be difficult to perform
in real time.

3.3.2 LinearMMSE receiver

A generalization of the linear MMSE multiuser detector of
[6, 10] results from employing a linear MMSE estimate for
u = Hb. It is shown in [23] that the corresponding linear
operation, F, for this detector is given by

FMMSE = argmin
F

E‖Hb− Fz‖2 = (
R + σ2Ψ−1)−1, (27)

where Ψ = E[HHH]. The resulting linear MMSE TF Rake
receiver is given by

b̂MMSE = sgn
{
�
[
HHDMMSE

(
R + σ2Ψ−1)−1z]}, (28)

whereDMMSE is defined as in (23), withQ = QMMSE = σ2(R+
σ2Ψ−1)−1R(R + σ2Ψ−1)−1 (for a WSSUS channel, Ψ is a real
diagonal matrix [23]).

Because of taking the background noise into account, this
detector generally performs better than the decorrelating de-
tector. However, like the decorrelating detector, it requires a
correlation matrix inversion, which may be difficult to per-
form in real time.

3.4. Generalizedmultistage receiver

In [14], Varanasi and Aazhang describe a parallel interfer-
ence cancellation detector called multistage detector, which
attempts to iteratively maximize the likelihood function. At
each stage, the bit estimate for each user is obtained by maxi-
mizing the likelihood function over the possible values of the
data bit of that user, and by using the bit estimates from the
previous stage for all other users. From the likelihood func-
tion (20), it is easy to show that for the system with TF Rake,
the (n + 1)st-stage estimate of the data bit of the kth user,
using this multistage detector will be given by the following
expression:

b̂(n+1)k = arg max
bk∈{−1,1}
bl=b(n)l ,l 
=k

Λ(r;b)

= sgn

{
�
[
hHk zk −

K∑
j=1, j 
=k

b̂(n)j hHk Rk jh j

]}
.

(29)

As it can be seen from the above expression, the tentative
decisions obtained from the previous stage are used to esti-
mate and subtract the multiuser interference. The first stage
decisions are usually obtained from the conventional detec-
tor, which will be given by

b̂(0)k = sgn
{�[

hHk zk
]}
, (30)

if the TF Rake is used. This detector outperforms the decor-
relating detector when the interfering users are stronger than
the user under consideration, but its performance degrades
as the energies of the interfering users decrease. In this case,
that is, when the interfering users are not much stronger
than the user under consideration, because of the enor-
mous errors in the estimate of the interference, the perfor-
mance of the multistage detector can be even worse than the
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conventional detector, and using more stages may only result
in even more degraded performance. Examples of this situa-
tion are given in Figures 3 and 5 and discussed in Section 6.

In general, there is no guarantee that the multistage de-
tector will converge, or in convergence, if at all, will produce
the global maximizer of the likelihood function. However, its
lower computational complexity, which is a result of its iter-
ative nature, is a motivation to look for other iterative meth-
ods for maximizing the likelihood function, which have bet-
ter convergence properties. The EM algorithm is one of these
methods, and will be reviewed in the next section.

4. EM ALGORITHM

Expectation maximization algorithm is an iterative method
for maximizing log-likelihood functions. The original prob-
lem is formulated as the following optimization problem:

maximize
b

log fR(r;b), (31)

where r is the observed data. The vector b can be any set
of parameters. In the problem under consideration, it is the
vector of unknown data bits of different users. This is a K-
dimensional discrete optimization problem whose real-time
implementation is prohibitive because of exponential com-
plexity in K (number of users). To construct an iterative sub-
optimal solution for this problem, a set of complete data, y,
is defined such that

r = g
(
y1, y2, . . . , yK

) = g(y), (32)

where g is some many-to-one transformation relating the
complete data set, y, to the observation r. Then, instead of
solving the problem given in (31), we solve the following
maximization problem:

maximize
b

log fY(y;b). (33)

However, as mentioned above, y is related to r by amany-
to-one transformation and there is no unique y for each value
of r. Therefore, we replace the log-likelihood function in (33)
with its expected value with respect to y given r, and maxi-
mize the following expression:

EY
{
log fY(y;b) | R = r;b

} = ∫
log fY(y;b) fY|R(y | r;b)dy.

(34)
Since b is also unknown, we cannot calculate fY|R(y | r;b) in
(34), therefore we replace b in fY|R(y | r;b) with the current

estimate of b, that is, b̂, and maximize the following function
with respect to its first argument, b,

U
(
b, b̂

) = ∫
log fY(y;b) fY|R(y | r; b̂)dy. (35)

Using Jensen’s inequality, it can be shown that

U
(
b, b̂

)
> U

(
b̂, b̂

) =⇒ fR(r;b) > fR
(
r; b̂

)
. (36)

This provides the following iterative method for max-
imizing likelihood function and guarantees that the likeli-
hood function does not decrease along the iterations:

• E-step (Expectation calculation step): compute
U(b, b̂(n)),

U
(
b, b̂(n)

) = ∫
log fY(y;b) fY|R

(
y | r; b̂(n))dy, (37)

where b̂(n) is the estimate of b in the nth iteration.
• M-step (Maximization step): maximize U(b, b̂(n)),

b̂(n+1) = argmax
b

U
(
b, b̂(n)

)
. (38)

Since the likelihood function is bounded above, and since
the above estimates monotonically increase in likelihood, we
expect the algorithm to converge to at least a local maximizer.

By an appropriate choice of the initial estimates, b̂(0), the al-
gorithm can produce the global maximizer of the likelihood
function.

In most cases, if the complete data is chosen properly,
the maximization step of the above algorithm can be decom-
posed into K one-dimensional maximization, which has lin-
ear complexity in K and can be easily implemented for real-
time processing.

5. EM-BASEDMULTIUSER DETECTOR

In order to apply the EM algorithm to the problem in hand,
we define the complete data, y(t) = [y1(t) · · · yK (t)]T ,
where

yk(t) = bkxk(t) + nk(t), for k = 1, . . . , K, (39)

and nk(t), k = 1, . . . , K are independent additive white Gaus-
sian noise with variance σ2k . Then we have r(t) =∑K

k=1 yk(t),
and the log-likelihood function of the complete data is

log fY(y;b) = B −
K∑
k=1

1
2σ2k

∫ Ts

0

∣∣yk(t)− bkxk(t)
∣∣2 dt, (40)

where B is a constant.
In the appendix, we will show that with this choice of

complete data, the result of the E-step, that is, U(b, b̂(n)), is
given by the following equality:

U
(
b, b̂(n)

)=�{ K∑
k=1

bk
σ2k

[
b̂(n)k hHk Rkkhk

+
σ2k
σ2

(
hHk zk−

K∑
j=1

b̂(n)j hHk Rk jh j

)]}
.

(41)

Since the data bit of each user appears only in one of the
terms in the summation in (41), we can maximize each term
separately in theM-step. Therefore, defining βk = σ2k /σ

2, the
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cancellation · · · MAI estimation &

cancellation

β β· · ·

HHz

TF RAKE
+

MRC

sgn
b(0)

I-β + sgn
b(1)

· · ·
b(n−1)

I-β + sgn
b(n)

Figure 2: Multiuser receiver structure.

iterative equation for updating the (n+1)st-stage estimate of
the data bit of the kth user will be

b̂(n+1)k =sgn

{
�
[(

1−βk
)
b̂(n)k

+
βk

hHk Rkkhk

(
hHk zk−

K∑
j=1, j 
=k

b̂(n)j hHk Rk jh j

)]}
.

(42)

As mentioned in Section 4, by an appropriate choice of
the initial values for the unknown parameters, the algorithm
convergence to the global maximizer of the log-likelihood
function. As in the well-known multistage detector, a good

choice for b̂(0)k can be the output of the filter matched to the
signature signal of the kth user, or if, as in our case, multipath
and Doppler diversities are available, the maximal ratio com-
bined outputs of the time-frequency Rake receiver for the kth
user,

b̂(0)k = sgn
{�[

hHk zk
]}
. (43)

The block diagram of this multiuser detection scheme is
shown in Figure 2.

With the above assumption for the initial value for b, we
can consider two extreme special cases of the new detection
scheme as follows:

• if βk = 1, then the new detector for user k will be the
same as the multistage one;

• if βk = 0, then the new detector for user k will lose its
iterative nature, and will reduce to the time-frequency
Rake receiver with maximal ratio combining.

With a suitable choice of parameter β for different users,
we hope to achieve better performance than both TF Rake
and multistage receivers. According to the discussions of
Section 3.4, we expect that large (close to one) values of βwill
result in good performance for weak (in terms of the signal-
to-interference ratio) users, whereas for strong users, smaller
values of β will provide better performance. This parameter
also determines the speed of convergence of the iterative al-
gorithm. In our simulations discussed in Section 6, the value
of this parameter for each user is chosen by simulation for the

best performance. However, further simulations show that
the performance of the detector is not very sensitive to the
exact values of these parameters, and the values from the fol-
lowing heuristic expression:

βk = 1
1 + SIRk

, (44)

where SIRk is a measure of the signal-to-interference ratio,
calculated as

SIRk =
∣∣hHk Rkkhk

∣∣∑
l 
=k

∣∣hHk Rklhl
∣∣ , (45)

provide similar performance.

6. SIMULATION RESULTS

We implemented the EM-based multiuser detector and com-
pared its performance with the base case of the time-
frequency Rake as well as the multiuser detector. The simu-
lations are done for a system with five users with Gold se-
quences of spreading length 7. In the EM and multistage
detectors we obtained the performance curves for two- and
three-stage cases. The channel was modeled as a three-path
channel, with independent Jakes’ models for each path.

Figures 3 and 4 show the plots of bit error rate (BER) ver-
sus the signal-to-noise Ratio (SNR) for a case with Doppler
frequency of 100Hz. We observe that the performance of
the EM-based detector is better for both users than the base
case of the TF Rake as well as the multistage detector. No-
tice that for the multistage detector, the performance of the
three-stage detector is worse than the two-stage detector for
user 2, and does not show much improvement in the perfor-
mance for user 5. As a result, the performance of the two-
stage EM detector is better than the three-stage multistage
detector with higher computational complexity. It should be
noted that the computational complexities of these two de-
tectors with the same number of stages are similar. Finally,
we observe that the three-stage EM provides significant gains
with respect to the multistage case.

Similarly, Figures 5 and 6 show that the performance is
consistent with other values of the Doppler (200Hz). EM de-
tector also shows similar performance for other users.
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Figure 3: BER versus SNR plot for Doppler = 100Hz.
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Figure 4: BER versus SNR plot for Doppler = 100Hz.

Note that the different users have different β’s in the dif-
ferent plots. The appropriate value for parameter β can result
in a rapid convergence of the EM algorithm. In our simu-
lations, these parameters are chosen by simulation for the
best performance within two or three stages. Asmentioned in
Section 5, however, even the values obtained from the heuris-
tic expression (44) provide satisfactory performance.
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Figure 5: BER versus SNR plot for Doppler = 200Hz.
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Figure 6: BER versus SNR plot for Doppler = 200Hz.

7. CONCLUSIONS
We have presented a new multiuser detector for CDMA sys-
tems in fast fading multipath channels. The detector uses the
time-frequency Rake receiver at the front end to exploit mul-
tipath and Doppler spreads as two sources of diversity. The
multiaccess interference cancellation part of the detector is
based on the EM algorithm. It has an iterative structure very
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similar to the generalized multistage detector but with better
convergence properties. As a result, unlike the multistage de-
tector whose performance could become very poor for strong
users because of the errors in the decisions of the weak users,
this detector shows good performance for all users. Our sim-
ulation results show that the new EM-based detector can pro-
vide a substantial improvement in performance compared to
the generalized multistage detector as well as the TF Rake.

The improvement in the performance comes at the ex-
pense of introducing a set of new parameters, which have
to be chosen appropriately. In this paper, the optimum val-
ues for these parameters were found by simulation and ex-
haustive search. Finding an analytical expression for the op-
timum values of these parameters is not addressed in this pa-
per and requires more investigation, but we have provided
an ad hoc expression which is shown to provide satisfactory
performance, very close to that of optimum values found by
simulation.

APPENDIX

In this appendix, we apply the E-step of the EM algorithm to
(40) to obtain (41). Expanding the squared absolute value in
(40) and noting that b2k = 1, we have

log fY(y;b) = g(y) +
K∑
k=1

1
σ2k

[
bk

∫ Ts

0
�{

yk(t)x∗k (t)
}
dt
]
,

(A.1)

where g(y) is a function of y and does not depend on b.
According to the definition of U(b, b̂(n)), we have

to compute the conditional expected value of the
log-likehood function in (A.1) given the observed sig-

nal r(t), at a parameter value b̂(n). Defining C(t) =
[(b1/σ21 )x

∗
1 (t) · · · (bK/σ2K )x

∗
K (t)]T and ignoring the first

term g(y), which has no effect on the maximization process,
we have

U
(
b, b̂(n)

)
= �

{∫ Ts

0
CT(t)E

{
y(t) | r(t); b̂(n)

}
dt

}
. (A.2)

Since both y(t) and r(t) given b̂(n) are Gaussian, we can
write

E

{
y(t) | r(t); b̂(n)

}
= E

{
y(t) | b̂(n)

}
+ CYrC

−1
rr

[
r(t)−E

{
r(t) | b̂(n)

}]
,

(A.3)

where

CYr

= E

{(
y(t)−E

{
y(t) | b̂(n)

})∗(
r(t)−E

{
r(t) | b̂(n)

})
| b̂(n)

}
,

Crr = E

{(
r(t)−E

{
r(t) | b̂(n)

})2 | b̂(n)}.
(A.4)

It can be easily shown that

E

{
y(t) | b̂(n)

}
=
[
b̂(n)1 x1(t) · · · b̂(n)K xK (t)

]T
,

E

{
r(t) | b̂(n)

}
=

K∑
k=1

b̂(n)k xk(t),

CYr =
[
σ21 · · · σ2K

]T
,

Crr = σ2.

(A.5)

Substituting (A.5) in (A.3), we have

E

{
y(t) | r(t); b̂(n)

}
=


b̂(n)1 x1(t)

...

b̂(n)K xK (t)



+


σ21
...
σ2K

 1
σ2

{
r(t)−

K∑
k=1

b̂(n)k xk(t)

}
,

(A.6)

and (41) can be obtained by substituting (A.6) in (A.2) and
using (10), (13), and (15).
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