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Image data management in the semiconductor manufacturing environment is becoming more problematic as the size of silicon
wafers continues to increase, while the dimension of critical features continues to shrink. Fabricators rely on a growing host of
image-generating inspection tools to monitor complex device manufacturing processes. These inspection tools include optical and
laser scattering microscopy, confocal microscopy, scanning electron microscopy, and atomic force microscopy. The number of im-
ages that are being generated are on the order of 20,000 to 30,000 each week in some fabrication facilities today. Manufacturers
currently maintain on the order of 500,000 images in their data management systems for extended periods of time. Gleaning the
historical value from these large image repositories for yield improvement is difficult to accomplish using the standard database
methods currently associated with these data sets (e.g., performing queries based on time and date, lot numbers, wafer iden-
tification numbers, etc.). Researchers at the Oak Ridge National Laboratory have developed and tested a content-based image
retrieval technology that is specific to manufacturing environments. In this paper, we describe the feature representation of semi-
conductor defect images along with methods of indexing and retrieval, and results from initial field-testing in the semiconductor
manufacturing environment.

Keywords and phrases: content-based image retrieval, semiconductor manufacturing, image indexing, automatic defect classifi-
cation, approximate nearest neighbors.

INTRODUCTION sensing, architectural and engineering design, geographic in-

The ability to manage large image databases has been a topic ~ formation systems, and weather forecasting. Content-based
of growing research. Imagery is being generated and main- image retrieval (CBIR) is a technology that is being devel-
tained for a large variety of applications including remote oped to address these application areas [1]. CBIR refers to
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techniques used to index and retrieve images from databases
based on their pictorial content [2, 3]. Pictorial content is
typically defined by a set of features extracted from an im-
age that describe the color [4, 5], texture [6, 7], and/or
shape [8, 9, 10] of the entire image or of specific objects
[11]. This feature description is used in CBIR to index a
database through various means such as distance-based tech-
niques, rule-based decision-making, and fuzzy inferencing
[12, 13, 14]. The manufacturing environment represents an
application area where CBIR technologies have not been ex-
tensively studied. In this paper, we will describe the applica-
tion of CBIR technologies to the semiconductor manufactur-
ing environment.

CBIR addresses a problem created by the growing prolif-
eration of automated microscopy inspection in semiconduc-
tor manufacturing applications, that is, the management and
reuse of the large amounts of image data collected during de-
fect inspection and review. In semiconductor integrated cir-
cuit (IC) manufacturing, the rapid identification of yield de-
tracting mechanisms is a primary goal of defect sourcing and
yield learning. At future IC manufacturing technology nodes,
yield learning must proceed at an accelerated rate to main-
tain current defect sourcing cycle times despite the growth
in circuit complexity and the amount of data acquired on a
given silicon wafer or lot [15]. For semiconductor yield man-
agement applications, we have denoted CBIR technology as
Automated Image Retrieval (AIR) [16, 17]. Digital imagery
for failure analysis is generated between process steps from
optical microscopy and laser scattering systems and from
optical confocal microscopy, scanning electron microscopy
(SEM), atomic force microscopy (AFM), and focused ion
beam (FIB) imaging modalities. This data is maintained in
a data management system (DMS) and used by fabrication
engineers to diagnose and isolate manufacturing problems.
The semiconductor industry currently has no direct means of
searching the DMS using image-based queries, even though
20000 images are collected on average at a typical fabrica-
tion (fab) facility every week [18]. Current abilities to query
the fabrication process are based primarily on product ID,
lot number, wafer ID, time/date, process layer, engineer clas-
sification, or automatic defect classification (ADC) [19], and
so forth. Although this approach can be useful, it limits the
user’s ability to quickly locate historical examples of visu-
ally similar imagery, especially for data that was placed in
the database over one or two weeks prior. Data much older
than this is nearly irretrievable since retrieval is dependent
on human memory and experience. Without the addition of
datamining capabilities such as AIR, this large image reposi-
tory will remain virtually untapped as a resource for rapidly
resolving manufacturing problems.

The Oak Ridge National Laboratory (ORNL) AIR sys-
tem represents a unique application of CBIR technologies to
the manufacturing environment. In Section 2, we provide an
overview of the AIR software system and the fundamental
premise of operation in the manufacturing environment. In
Section 3, we describe the method of image analysis, feature
combination, indexing, and image retrieval. In Section 4, we
compare the function of the AIR system to that of an ADC

tool, a common automation technology used in semicon-
ductor wafer inspection today. In Section 5, we present re-
sults obtained from field-testing of our image retrieval sys-
tem at two semiconductor fabrication sites during the fall of
2000, including statistics on system performance, quantita-
tive results on the efficacy of AIR as a defect sourcing tool,
and qualitative visual results of various queries for SEM and
optical imagery.

2. OVERVIEW OF THE AIR SYSTEM

Image retrieval technologies have been under development
since the early 1990s, but very few applications have evolved
for solving specific, real-world problems such as those in
the manufacturing environment. Researchers at ORNL de-
veloped the capability for a flexible image retrieval technol-
ogy for industrial applications that independently takes into
account details regarding the product defectivity, substrate
(i.e., the background structure on which the defect resides),
and imaging modality characteristics [16]. The fundamen-
tal premise of the ORNL AIR method and technology is that
a similar process or phenomenon likely generates images that
are visually similar. This implies that statistical process in-
formation that is associated with retrieved images can be
used to identify and isolate errant process tools and equip-
ment. Therefore, in our AIR system, process data associ-
ated with the inspected product is included with the defect
imagery in a relational database for subsequent statistical
analysis to provide the yield engineer with defect sourcing
information.

The basic component of the AIR system is the indexing
and retrieval engine, a dynamic link library (DLL), which
generates the defect and substrate image feature descriptions,
and the indexing structure used for efficient storage and re-
trieval of images from the database. In addition to the core
AIR DLL, the system includes an ORACLE™ (database, a set
of interface DLLs and executables, and graphical user inter-
faces such as shown in Figure 1. For our current semiconduc-
tor application, the fab DMS system generates an ASCII data
file on a daily basis that provides process and image data in a
format suitable for inclusion into the AIR database. A Win-
dows NT service executable periodically checks for output
from the DMS system, and when detected, the service adds
the imagery and associated process data to the ORACLE™
database, and builds the indexing structure necessary for ef-
ficient image retrieval.

3. IMAGE INDEXING AND RETRIEVAL METHOD

We describe the methodology associated with AIR process-
ing. In overview, this begins with the generation and/or use
of the defect detection mask, which localizes the defect in the
image. Next, a series of image features are extracted from the
defect and substrate regions of the image. The features be-
come the entire representation of the image and are indexed
for rapid retrieval from the database. Finally, the image data
is associated with the manufacturing process within a rela-
tional database for subsequent statistical process analysis.
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FiGure 1: Example interface to the AIR system. Queries are entered
in the upper left, results are displayed below in the lower left, and as-
sociated statistical process information is shown in the lower right.
AIR control parameters are listed in the upper right.

3.1. Defect masks and feature analysis

Figure 2 shows an SEM image containing a particle-type de-
fect sitting on the top of a product substrate in (a) and the
associated defect mask in (b). The defect mask is typically
a binary representation that localizes the defect boundaries
in the field of view and separates defect from substrate re-
gions in the image. This mask can be generated in the form
of a filled region, as shown in the figure, or as a perimeter
composed of boundary pixels. Every inspection tool in the
semiconductor industry today that performs automated de-
fect detection or redetection generates a defect mask during
the process. The defect mask is used to calculate descriptive
features regarding the defect such as its size and location, or
more extensive information useful for ADC, such as color,
texture, and shape features.

The defect mask is used in AIR to generate an exten-
sive description of the defect region and the substrate re-
gion. There are currently 60 numerical features measured for
the substrate that describe the color and structure. The de-
fect is decomposed into 51 numerical features that describe
the color, texture, shape, and area. These feature types are
detailed in Table 1. These features are organized into dis-
tinct sets of descriptors that are used to independently de-
scribe various attributes of the image according to a par-
ticular user’s query specifications. For example, there are
24 features used to describe the color of the defect and
36 features used to describe the structure of the substrate.
The feature descriptor lists are represented in the relational
database (DB) as independent tables as will be described be-
low. The user has the ability to select various sets of fea-
ture descriptors when formulating a query so that, for ex-
ample, a search can be accomplished to locate one defect

(a) (b)

FIGURE 2: (a) SEM image of a particle defect. (b) Associated defect
mask generated by the inspection tool during automatic redetec-
tion.

shape on another product substrate by ignoring color at-
tributes, which are likely to be highly variable from one pro-
cess layer or product to the next. The user could also enable
or disable other descriptive groups such as texture or shape as
required.

When calculating features of the substrate, it has been
determined to be advantageous to “fill” the known de-
fect region with an estimate of the substrate obtained from
areas adjacent to the defect as shown in Figure 3. This is ac-
complished by measuring the predominant orientation of
the substrate structure using a vertical and horizontal gra-
dient operator. The postprocessed gradient image energy is
then determined as G, = >.df(x, y)/0x for the horizon-
tal energy and G, = >, 0f(x, y)/dy for the vertical energy,
where the summation is over all pixels in the gradient im-
ages. To predict the direction of fill, a horizontal and verti-
cal distribution of energy is defined as E, = Gu/(G, + G,)
and E, = G,/(Gp, + G,), respectively, with E; + E, = 1. For
example, in Figure 3, the predominant orientation is hor-
izontal, therefore the defect region, defined by the known
mask, is filled from left to right, row by row, by extract-
ing a vector of pixels immediately adjacent to the defect
vector along each row in the image. This procedure is well
suited to semiconductor device imagery since device struc-
ture is printed predominantly in a vertical or horizontal
direction.

This independent description of defect and substrate fa-
cilitates a wide variety of queries such as find this defect on
a different substrate, or find this defect on any substrate. This
architecture and flexibility allows a single AIR system to be
used by a broad population of users with widely varying
needs while still providing focused and specific image re-
trieval searches.

3.2. Indexing and retrieval

The goal of indexing is to organize the image features in
the database such that a ranked list of nearest neighbors can
be retrieved without performing an exhaustive comparison
with all the records in the database. For AIR this is achieved
by generating a binary decision tree of the image features.
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TABLE 1: Feature summary of defect and substrate regions in the imagery.

Broad area Specific area Measurement Number of values
Defect Color Histogram 24
Defect Texture Statistical-based values derived

from intensity distributors 6
Defect Shape Fourier coefficients 20
Defect Area Number of pixels in defect 1
Substrate Color Histogram 24
Substrate Structure Statistical-based values derived

from intensity distributions,

measured on blocks of the

background image 36

Il

i
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FIGURE 3: Example of an image with defect in (a) and the estimated
“filled” version used to estimate substrate feature measurements
in (b).

A bin is defined as a bottom-level element in our tree struc-
ture, sometimes described as a “leaf” or terminal node, that
contains a small list of images, for example, a bottom-level
bin may contain a list of image vectors {v,, vp, v,,...}. Un-
der the AIR architecture, a query vector is compared at the
top level to each of the two subnodes, and a decision is made
as to which subtree to take. There are many ways to imple-
ment decision trees. For this work we have implemented an
approximate nearest-neighbor (ANN) indexing and search
method that builds on kd-tree methods [20]. Whereas an ex-
haustive nearest-neighbor search of the n vectors (i.e., im-
ages) in the database would be of O(n) computations, the
kd-tree approach is of O(log(n)).

Figure 4 shows a simple example of a two-dimensional
feature space, ( f, f;), containing 18 image vector points par-
titioned into a kd-tree structure where each bin contains 3
points (i.e., image vectors). The kd-tree method allows for the
rapid retrieval of the closest bin to the query point, Q, but the
data in this bin are not necessarily the closest points and the
nearest-neighbor result can be in error by an amount e.

The ANN method incorporates a search window that re-
sults in the collection of neighboring bins about the query
point. As this window increases in radius, the nearest-
neighbor error, ¢, decreases, but the performance of the
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F1GURE 4: Example of kd-tree bin structure showing the ANN search
region about a query point, Q.

system also decreases to O(n). The efficiency of the ANN
method is proportional to O((1/¢)N?1og(n)), where N is
the dimension of the feature space, n is the number of data
points, and ¢ is the nearest-neighbor error. The nearest-
neighbor error is therefore inversely proportional to the size
of the search window as shown in Figure 4. As the radius
of the search window increases, neighboring bins contain-
ing additional image vectors are included in the final nearest-
neighbor search. As the radius continues to grow, the system
approaches the complexity of an exhaustive nearest-neighbor
search. Therefore, the accuracy of the AIR system is selectable
as a trade-off between nearest-neighbor performance and
computational efficiency.

The architecture for AIR incorporates one table (repre-
sented by the kd-tree shown in Figure 4) for each set of de-
scriptors that were defined above. Therefore, there are six de-
scriptor sets that are used to independently characterize the
query image and perform retrievals from the system. Figure 5
shows schematically how the results from these tables are
combined. Once a query vector, Q, is submitted to the
AIR engine, each table will return a prespecified number of
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(a) (b)

FIGURE 5: (a) Representation of feature sets describing the semicon-
ductor defect substrate in (a) and defect in (b). The intersection of
these descriptive sets defines a similar retrieval.

image matches that form sets. These sets are combined ac-
cording to Boolean logic operations to determine the re-
gions of most overlap. For example in Figure 5, the query
point, Q, (shown in both the substrate set space and the
defect set space) would have matches only for similar sub-
strate structure, but similar defect texture and color. The
list of feature vectors are then returned for similarity pro-
cessing to determine a quantitative estimate of visual sim-
ilarity. For AIR, similarity s;(Q,v;) is determined for each
(query, vector) pair in each set independently as a function
of the L-norm distance, s;(Q,v;) = 1 — d;(Q,v;)/~/N, where
N is the dimension of the feature space and d;(Q,v;) =
IQ — vill. These similarity values from each set are then
combined in a cross-set average and ranked for the dis-
play of results or subsequent analysis of statistical process
information.

It should also be noted that the structure of the ANN
method facilitates the inclusion of new image data into
the data set without necessarily requiring a rebuild of the
database, or more specifically the indexing structure. The
database is updated on a periodic basis, for example, once
daily. During use, the system will be gathering image data
that will be incorporated into the indexing structure dur-
ing these periodic maintenance cycles. While images are
being collected, they can be placed within the bin struc-
ture and retrieved during subsequent queries. As the num-
ber of image vectors in these bins increases, the efficiency
of the ANN process will begin to degrade. When the pe-
riodic build is actuated, the image vectors will be redis-
tributed to result in the predefined minimum bin size re-
quired for optimal retrieval efficiency. The result is that this
structure allows access to the latest image data by incor-
porating it into the database on-the-fly without immediate
reindexing.

4. DIFFERENCES BETWEEN AIR AND ADC
TECHNOLOGIES

AIR has been designed to allow the management of large
repositories of defect image data through one system. Since
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FIGURE 6: A feature-space comparison of (a) ADC versus (b) AIR.
In (a) the query point Cis a point to be classified by the ADC system
whereas in (b) the data query Q is a query upon which to perform
image retrieval.

its inception as a yield management tool, there have been
many questions regarding the differences between AIR and
the more common ADC systems that have been proliferating
throughout the industry over the past decade. To respond
to this, it is necessary to view the two systems through the
concept of a simple feature space as shown in Figure 6. Each
point shown in the graph in (a) and (b) corresponds to the
feature description of an image. In the case of the classifier in
(a) the goal is to classify the data vector, C, whereas for image
retrieval in (b) the goal is to retrieve other data points that
are similar to the query vector, Q.

In more detail, Figure 6a shows a representation of the
ADC system whose function is to classify, or assign, an
unknown data point, C, to a class that has been defined
through a training procedure. The ADC system typically re-
quires training with data that is specific to an inspection tool.
Within that tool set, there is a requirement to train on specific
layers or process steps, and for the various products that are
being inspected. Training is a cumbersome and sometimes
unwieldy process that has proved to be a limitation, espe-
cially in fabs that manufacture many different products with
short cycle times [21]. The ADC system is typically trained
with relatively few samples, for example, ten examples per
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class, therefore resulting in a class representation that is lim-
ited to a small fraction of the universe of images that are
generated by tools and inspection processes. This is repre-
sented in Figure 6a by the small number of points shown in
each class region. The training set also defines the partition
of the class region (e.g., the shaded areas in Figure 6a), which
can vary greatly depending on the training data and classi-
fier method used. The ADC system has evolved to perform
the function of associating defects with labels (e.g., tungsten
particle, missing pattern, poly flake, etc.) and therefore has
the potential to be correct or incorrect, and the classifica-
tion process is only an intermediary step towards associating
the label with an errant manufacturing process, that is, defect
sourcing. And finally, ADC is defect-centric in that training
and execution of the classification procedure focuses primar-
ily on the defect itself, and largely ignores the substrate as an
identifying characteristic of the image or errant manufactur-
ing process.

Conversely, the AIR system, shown in Figure 6b, per-
forms the function of image retrieval based on a query vector,
Q. The AIR system organizes and maintains multiple sources
of images in one system (e.g., optical and SEM, multiple lay-
ers, steps, tools, etc.) and an image-based query will retrieve
a specified number of images from the database that are close
to the query in the sense of visual similarity (e.g., based on an
L-norm distance in feature space). Therefore, the AIR system
does not perform classification and does not assign a query
point to a predefined label. When the database of images is
coupled with the manufacturing data that describes the fab-
rication process (e.g., layer, step, lot, date, inspection tool-
ing, EDX spectra, multiple modes of imaging such as opti-
cal, SEM, and confocal) it becomes possible to associate the
query vector, Q, with visually similar historical images from
the database, therefore, linking the query image directly to
the process and potentially the source of the problem. And,
since the AIR system focuses on both an extensive defect and
substrate description, the association of defects with prod-
ucts, substrates, process steps, and layers is inherent in the
analysis. An AIR system does not require training and its abil-
ity to comprehend a large population of images from multi-
ple inspection tools and processes over a long period of time
means that the limitations of ADC associated with focused
training scenarios and frequent modifications to accommo-
date new products and process drift do not apply to AIR as
they do with ADC.

5. FIELD TESTING AND RESULTS

ORNL performed two field tests of the AIR software sys-
tem during the fall of 2000 for the purpose of verifying the
fundamental premise that a similar manufacturing process
or phenomenon likely generates images that are visually sim-
ilar. It was also desired that testing in a manufacturing en-
vironment be performed to determine information regard-
ing system robustness, timing, capacity, usability, and what
fab data was key to sourcing problems based on defect im-
agery. Additional defect information (defect position on the

TaBLE 2: Database statistics for Sites 1 and 2.

Value Site 1 Site 2
Number of defects 59593 76 653
Number of wafers 3856 3336
Number of lots 1375 1021
Number of step/layers 99 164
Number of images 62594 78953
Oldest date 10-7-2000 9-14-2000
Latest date 11-6-2000 11-1-2000

wafer, wafer ID, Lot No., etc.) had been incorporated into the
ORNL AIR system through the use of additional database
tables and established relationships (i.e., foreign keys). The
system was deployed at two semiconductor manufacturing
sites to demonstrate the utility of this approach in managing
large databases of images and to show causal relationships
between image appearance and wafer information such as
layer, lot, dates, and so forth. This section summarizes the
results of these field tests and demonstrates the utility of this
approach through data analysis conducted on approximately
one month of historical defect data at the two independent
fabrication sites.

5.1. Architecture and implementation

The AIR system and architecture was described in detail in
Section 3. For field-testing, a method for maintaining and
associating process information with defect imagery was cre-
ated. Although the AIR field test software was not designed
to be a complete defect management system, it was neces-
sary to include some DMS-type functionality to reach our
project goals. Toward this end, we envisioned the submission
of images to our system as the result of a defect detection
during inspection. During our design process, we developed
database tables containing several relevant entities. These en-
tities included the Image, which stores the file name associ-
ated with the image along with the feature values that de-
scribe its content; the Defect, including the classification of
the defect, its location on the wafer and die, and so forth;
the Inspection, a single act of taking one wafer and running it
through an inspection on a defect detection instrument; the
Wafer, an entity containing a set of die and possibly one or
more defects; and associated tables of defect classifications
and inspection tool types. The tables were embodied in a
software object coded in the AIR field test DLL.

5.2. Experimental results

Table 2 shows the database statistics for each of the manufac-
turing sites after approximately one month of data collection.
The table shows the total number of images associated with
the various defects (i.e., there can be more than one image of
each defect generated by different inspection tools), and the
number of wafers, lots, and process steps.

Regarding system performance there are generally two
times of interest to the semiconductor fab user. First, the
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TaBLE 3: Timing statistics for image addition and retrieval.

Value Site 1 Site 2
Addition mean 0.834s 0.476s
Addition median 0.765s 0.328s
Addition maximum 6.0s 3.813s
Addition minimum 0.312s 0.016s
Theoretical daily rate (Max.) 103 598 images 181 590 images
Retrieval time (128 images) 7.5s 7.25s
Retrieval time per image 0.12ms 0.09 ms

time to add images to the database is important because the
AIR system should basically be invisible to the underlying de-
fect detection and inspection activity. Second, retrieval time
is important because of usability issues and engineering re-
sponse time.

Table 3 lists the timing statistics for data from the two test
sites. For the purposes of comparison on a common plat-
form, the data sets from each test site for the initial month
of testing (i.e., 62 594 images from Site 1 and 78 953 images
from Site 2) were loaded on a common machine using data
that had been collected and returned to ORNL. The machine
used was a 750 MHz Pentium PC. The median, mean, maxi-
mum, and minimum time to add the images to the database
are recorded in Table 2, along with image retrieval time. The
image retrieval time was determined by requesting 128 re-
turned images and measuring the system response for each
database. The time to load images from a network and dis-
play them is not included in this total. Both these sets of
times show a very acceptable rate of performance, allowing
an overall daily sustained input of well over 100 000 images.
The main difference between the timing for the sites is the
image size; most images from Site 2 were JPEG, 320 x 240
images, while Site 1 images were JPEG, 640480 or 480x480.

Then, we have modeled the retrieval system as a k-
nearest-neighbor (k-NN) classifier for the step/layer and lot
classification categories. The experiments were performed as
follows. For each site, we sampled 1024 images from each
database and submitted them as query images returning 64
results. We then counted how many times the most common
occurrence in the results matched the selected parameter in
the query image. For example, we determined the layer/step
with the most common occurrence in the first 4, 8, 16, 32,
and 64 returned images. If the most common occurrence
matched our query image, the query was assigned a value of 1
(for success). Ties were assigned a value of 0.5 for unknown,
and if no matches were returned, a value of 0 was assigned.

Figure 7 shows the results of this k-NN test. Each chart in
the figure contains weighted and unweighted results for Sites
1 and 2, with classifiers using the first 4, 8, 16, 32, and 64
returned results. Unweighted results are computed by finding
the number of correct classifications for a given layer/step or
lot class, then averaging them.

This number considers all layer/steps and lots equally and
does not depend on the number of occurrences of each class
in the data set. Weighted results are computed by determin-

SS-CBIR as layer/step classifier

Fraction correct

4 8 16 32 64
Range of neighbors

—e— Site 1 unweighted
—&— Site 2 unweighted

—A— Site 1 weighted
—¢— Site 2 weighted

(a)

SS-CBIR as layer/step classifier

Fraction correct

4 8 16 32 64
Range of neighbors

—e— Site 1 unweighted
—B— Site 2 unweighted

—A— Site 1 weighted
—— Site 2 weighted

(b)

FIGURE 7: Results using the AIR field test system as a classifier. Plot
(a) shows layer/step, and (b) lot k-NN classification results. Note
that SS-CBIR refers to “semiconductor-specific CBIR”

ing the number of correct answers and adding them, then
dividing by the total number of queries. The performance
drops as more neighbors are considered because images that
are further down the list of retrieved images become visually
dissimilar to the query and therefore are less likely to come
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(®)

(c)

FIGURE 8: Examples of SEM image query results for three different substrates on a semiconductor device. Note that the query image in (a),

(b), and (c) are always the upper left image in the matrix.

(a)

(c)

FiGure 9: Examples of optical image query results for three different substrates on a semiconductor device. Note that the query image in (a),

(b), and (c) are always the upper left image in the matrix.

from the same source. Note that in Figure 7a there are 99 in-
dividual process steps represented in the Site 1 data and 164
in the Site 2 data. In Figure 7b, there are 1 375 lots and 1021
lots representing Sites 1 and 2 , respectively. In all three of
these k-NN comparisons, the number of times the top four
returned images matches the query for the indicated param-
eters averages around 70%—which supports our hypothe-
sis regarding visual similarity and manufacturing processes.
This also reveals much about the AIR system’s ability to per-
form classification in a very complex data environment. For
example, in Figure 6b, the system correctly classifies about
62% of the lots tested for 4-NN. This represents a single
classifier system that can differentiate over 1000 individual
classes.

Finally, Figures 8 and 9 show query results from both
SEM and optical imaging review tools, respectively. Note
the difference in substrate specificity apparent across the
SEM images in Figures 8a, 8b, and 8c. Figure 8a contains a
substrate containing vias to a sublayer on the device, while
Figures 8b and 8¢ contain increasingly dense structure. The
ability of AIR to group these data together rapidly out of a
large image repository has proved to be the only means avail-
able today to accomplish this task. Figures 9a, 9b, and 9c.
show results of images in the same database as Figure 8 but
from color optical microscopy review systems (i.e., these im-
ages are 24-bit, RGB color images). The detail apparent in
the thumbnails that are shown are less apparent due to the

change of magnification (i.e., field of view) in going from
SEM to optical microscopy. Optical images reveal color as a
function of the thickness of the semitransparent films being
printed on the device whereas SEM imaging is a near-surface
effect due to the small penetration distance of the primary
electron beam. The notable quality of the AIR system is that
it can manage image data from such diverse imaging modal-
ities within one system.

6. CONCLUSIONS

In this paper we have described a novel content-based im-
age retrieval and management system that has been designed
specifically for manufacturing environments. The manufac-
turing focus of the ORNL CBIR application takes advan-
tage of the way in which defects are detected with standard
industry inspection equipment by uniquely describing the
defect and the substrate areas of the image independently in
terms of color, texture, structure, and shape. Current image
retrieval systems for semiconductor manufacturing depend
on additional alphanumeric data to perform retrieval func-
tions (e.g., lot number, time/date, wafer ID, etc.), which pro-
duces an inherent limitation to the process of locating his-
toric imagery that may have been caused by a similar manu-
facturing process. AIR overcomes these limitations. The AIR
system has been installed in two semiconductor manufac-
turing sites to determine system performance and retrieval
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characteristics. The system was shown to perform exception-
ally well in terms of storage capacity and the time required to
add and retrieve images and process data to the system. Fi-
nally, we were able to demonstrate our fundamental premise
that a similar process or phenomenon likely generates images
that are visually similar by performing a series of k-NN clas-
sification tests to associate queries with process parameters
such as process step and lot number. Without the addition
of content-based image retrieval, this large image repository
of semiconductor images will remain virtually untapped as a
resource for rapidly resolving manufacturing problems. The
application of the ORNL AIR technology to other manufac-
turing environments that generate large amounts of prod-
uct imagery during defect inspection and quality control is
inherent.
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