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A common objective in the web transport industry is to increase the velocity as much as possible. Some disturbances drastically
limit this velocity. Time-varying eccentricity of the rolling winder is one of the major disturbances which affect the quality of the
rolling winder. This unsuitable factor can lead to a web break for a high-speed winding process. The main contribution of this
work is to offer a new measurement technique that is able to provide on-line the estimation of the roll radius and its variations
with a subpixel accuracy. A key feature within this work is the contour curvature classification by means of wavelets decomposition
of the edge orientation function. We also propose a new model accounting for the increasing radius of the rolling winder, which
confirms the experimental results and the reliability of the proposed approach.
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1. INTRODUCTION

Products made with paper, textile, metal, or polymers need
to be winded and unwinded during an industrial process. A
common objective is to increase as much as possible the web
transport velocity while controlling tension of the web. How-
ever, there exist many sources of disturbances like noncircu-
larity of the roll, eccentricity of the roll, web sliding, tem-
perature variations, variations in motor torque, ... which are
some limiting factors of performances. Since there exists a
coupling introduced by elastic property of the web, distur-
bances are transmitted to the web tension, resulting in a web
break or fold. In an attempt to reduce these harmful effects,
recent works on modelization and control for web handling
applications are promising and can be found, for example, in
[1, 2, 3]. They are mainly based on PID, H,, robust control,
fuzzy logic, or neural network approaches [4]: due to a wide-
range variation of the roll radius, system dynamics consid-
erably change (inertia is proportional to the fourth power of
the roll radius). Few works in the image processing or com-
puter vision fields applied to winding systems have been yet
published. However, the use of a visual sensor through digital
image analysis for supervising the quality of the roll is being
emerging [5, 6]. Figure 2 shows two reels with equal length

but winded under different conditions: the speed and tension
of the web were constant for the left reel while a too strong
and variant tension and speed magnitude were applied on
the web for the right reel.

This paper is built on some relevant image segmentation
features dedicated to the roll radius estimation and its varia-
tions. It is organized as follows. In Section 2, we present the
methodology of the contour-based image segmentation: fast
edges detection, gradient phase smoothing, contours classifi-
cation, and outer edge contours extraction of the roll. For this
application of visual motion in presence of noisy data, we fo-
cus on noise filtering for edge orientation analysis. Section 3
is dedicated to an elliptic curve fitting based on the Cholesky
decomposition since some elliptic arcs have been selected to
approximate the roll shape. In order to validate the mean
value of the estimated roll radius, a simple model account-
ing for the roll radius increase and based on pure kinematic
considerations is proposed. The last section is devoted to a
discussion about the results obtained with the implemented
technique on the experimental setup. Particularly, we com-
pare the roll radius estimations provided by the proposed
method and a series of measurements on static rolls with a
mechanical device.
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FIGURE 1: The experimental winding equipment.

FiGure 2: High quality (left) and low quality (right) of the resulted
reel.

2. IMAGES SEQUENCE ANALYSIS

A fundamental requirement in vision systems is the abil-
ity to extract from digital images primitives relevant to
the observed scene. Edge contour segmentation and curve
parametrization are therefore important stages for represent-
ing boundary information in a structural form. Since we
deal with grey level images, some classical preprocessings like
contrasts enhancement by histogram equalization and non-
linear median filtering (suppression of peak noise) are per-
formed but are not described here.

2.1. Contours detection

Since we are concerned by the analysis of visual motion in a
time-varying image sequence, we are interested in selecting
pixels that significantly contribute to the motion field. The
partial temporal derivative (ptd-image) is computed on two
consecutive frames (see Figure 4) in order to build a fast edge
detector as follows:

e in an attempt to detect “pixels in motion,” the absolute
value of image subtraction is computed and applied to
consecutive frames (the ptd-image),

e locations of pixels (for which absolute difference in the
ptd-image are greater than a threshold) are stored in a
list. Detection of edges is performed with a directional
filter in the original grey level image only for pix-
els having corresponding location in the list and also
for its eight-connected neighboring pixels. We choose
the Canny filter as a directional gradient filter since it

provides the edge orientation. To make the implemen-
tation as efficient as possible, we use the separability
property of the Canny filter (this filter is often approx-
imated with the first derivative of a continuous Gaus-
sian function g(x, y)), discrete kernels components are
scaled and approximated by integers and lookup tables
are also used to store the gradient magnitude entries.
Furthermore, we fixed the standard deviation parame-
ter according to Canny’s criteria (good detection, good
localization, and unicity of response) in order to con-
sider always a unique set of masks. It is clear that this is
a frequency limitation since this fix the width of grey-
level transitions. With a standard deviation value of
1.5 for the Canny filter parameter, we select the fifteen
most significant components of the two discrete con-
volution kernels as an approximation of the continu-
ous convolution kernels for the two operators dg/ox
and dg/dy (see Figure 5). This yields two (3 X 5 and
5x%3) masks. By this way, consuming time (the compu-
tational time is about 18 minutes (see Section 4 for de-
tails about the platform)) is significantly reduced and
static background of the observed scene is removed
(see Figure 6).

Canny’s detector always yields edges with many pixels
of thickness. Two thinning operations are performed on the
extracted set of edges based on the comparison of gradient
magnitude and orientation of each pixel with their neigh-
bors within the edge (nonmaxima suppression) producing a
1-pixel wide edge: this is a requirement for the apply of the
contour following method [7] to edges tracking. Edges track-
ing is the process of associating nearby edge points so as to
create a connected boundary. At any detected edge, this pro-
cess selects, among the set of the 8-nearest neighbors, the
next one to include in a list (and labeled or simply deleted in
the gradient image) producing a displacement through this
list. This process is significantly optimized if thinning oper-
ations are previously done (this confers the ability to begin
the search for the next edge with the direction of the previ-
ous displacement).

Contours in the list are merged by using a process called
mutual favorite pairing: as a quality measure, a cost func-
tion can be computed for every connected path between
two endpoints of distinct contours. It uses orientations and
distances between endpoints of each pair of contours [8].
This process allows to merge neighboring contour chains
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FIGURE 4: Some substractions of two successive frames: irrelevant static background has been removed from these three ptd-images (a bina-

rization has been carried out for a good print).

into a single contour. Contours that are too short for a fu-
ture classification are rejected.

2.2. Gradient phase smoothing

The sequence of operations of most computer vision systems
begins by detecting and locating some features in the input
images. To achieve this, edge contours have to be expressed
in a form suitable for classification. A global representation
based on set of moments or Fourier descriptors is unsuit-
able when partial objects or image features are involved, and
it is not suited for object location. Local representation as
edge orientation function (extracted from the gradient phase
signal), and its derivatives, is more interesting since it is not
strongly affected by partial occlusions and it allows to define
differential invariants under scaling, translation, and rota-
tion transformations. Furthermore, the edge detection gives
this information in a nearly continuous space as Canny filter
contributes to gradient phase smoothing. In this representa-
tion, local edge orientation is expressed as a one-dimensional
function of 8(s) where s is the curvilinear abscissa. Disconti-
nuities in 0(s) and its derivatives mark limits between ele-
mentary fragments of a contour and reflect transitions be-
tween them.

A major problem of methods relying on the orientation
function and its derivatives is their sensitivity to noise. How-
ever, application of classical filtering has harmful effects like
attenuation of discontinuities, change of shape, blurring ef-
fects, and so forth. This complicates the detection of singu-
lar points. Consequences are more severe for smoothed por-
tions of contours for which discontinuities related to singular

points only appear in the high-degree derivatives of the ori-
entation function. A simple noise filtering procedure may
lead to a delocalization, or even to a loss of these salient
points. Wuesher and Boyer [9] smooth at first the curvature
function (first derivative of the orientation) using a Gaussian
kernel with a low smoothing parameter in order to reduce
the blurring effect and to preserve valid high frequency shape
information. However, in that way, the noise was not well
attenuated and they were constrained to apply a nonlinear
filter to reduce the remaining noise. The polygonal approx-
imation of curves proposed by Pikaz and Dinstein [10] sig-
nificantly reduces the noise but the implemented algorithm is
complex and highly time-consuming. Our objective is to find
a linear smoothing filter that is a trade-off between a maxi-
mum reduction of noise and a good preservation of high fre-
quency informations in the orientation (or gradient phase)
function.

Weiss [11] defined what he called the power preserving
filter as follows: considering the Taylor expansion f(x) =
> (f"/n!)x" of a function f(x) representing the input sig-
nal, a filter of order [ is a filter which preserves the power x"
up to order I with respect to the convolution F(x, o) * x" =
x", (forn = 0,...,1) where Fi(x, o) is the impulsional re-
sponse of the filter. Weiss showed that moments of such fil-
ters, defined by

m, = J XFi(x, o) dx, (1)

vanish up to the order I except for the Oth moment which is
equal to 1. From this, a Gaussian filter is of order 1 (g(x, o) *
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F1GURE 5: The first derivative of a Gaussian as an approximate solution of Canny’s criteria for edges detection (¢ = 1.5). (a) and (b) partial
derivatives of the 2D Gaussian filter with respect to x and y, (c) the 1D Gaussian function, and (d) its first derivative.
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FIGURE 6: (a) Part of original image, (b) partial temporal derivative on consecutive frames, (c) gradient magnitude computed in the original

image for motion pixels and their neighborhood.

x = x). Errors due to additive terms and causing blurring
effect or bias are expressed by

m (Il+1
CeJWeiss = || l+1|| -

J+1)! s

(2)

The smaller (2), the best is the filter. ¢ is the smooth-
ing parameter, [ is the order of the filter, and s is a scale of
the smoothed function. In our case, it can be taken as the

length of the shortest contour. To have a low phase distor-
tion, the phase function of linear lowpass filters should be
quasi-linear in the bandpass. Among classical linear filters,
we choose the Butterworth, Chebyshev and elliptic filters for
their frequency characteristics (see Figure 7). Corresponding
filters will then be first order filters preserving the shape of
contours approximated with quadratic functions of coordi-
nates like ellipses (see Figure 8). It is clearly not the case with
the Gaussian filter (g(x, o) * x* = x* + 0?2).
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FIGURE 7: (a) Impulsional responses, (b) magnitude-frequency re-
sponses, (c) phase-frequency responses for Butterworth (solid),
Chebyshev (+), and elliptic (dashed) filters.

Elliptic

FIGURE 8: The preserving shape criterion Gyeis; with respect to the
smoothing ¢ parameter: Chebyshev (----), elliptic filter (—), But-
terworth filter (solid), Gaussian filter (....).

2.3. Classification

2.3.1 Multiscale detection of gradient phase

discontinuities

Classification of contours is an ubiquitous problem in im-
age segmentation. For high-level programs, it is convenient
to characterize a contour with some intrinsic few descrip-
tors rather than a set of many pixels. Since inflexion points
and also inflexion lines (tangent lines at inflexion points)
are invariant under projective transformations, they are good
candidates for such descriptors [12, 13]. Consequently, the
main objective is to detect curvature discontinuities along a
contour. It is essential to conceive an algorithm for curva-
ture discontinuities detection which provides the same loca-
tion of inflexion points for any viewpoint. This is of most
importance for image contours matching methods based on
differential invariants [12, 13] or corners [14] for instance.
The orientation function analysis proposed in this paper
is based on a multiscale scheme [15]. It used the wavelet
transform which is adequate for detecting discontinuities in
nonstationary signals with finite energy. In image process-
ing, wavelets have been used in image compression, con-
tours/features detection, and threshold selection of grey level
images for instance. A wavelet is a function with null average
and it is well localized in both time and frequency spaces. The
prototype wavelet y,(x) (one basic function of the decom-
position) can be thought of as a bandpass filter. The more
interesting property for our application is that the wavelet
does not reflect regularity of the function but rather of its
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(a) (b)

FIGURE 9: Curvature discontinuities detection. Fragment is defined between two discontinuities inside a contour. (a) a test image, (b) curva-
ture discontinuities detection, (c) curvature discontinuities found for the roll.

derivatives ([16, 17]). For a given scale, it takes a small value
for the regular part of the signal and it explode at points
where the signal or its derivatives undergo brutal changes.
Then, wavelet transform can disclose both the discontinu-
ities of the orientation function 6(s) and those of its first
derivative (local curvature), second derivative (variations of
the local curvature), and so forth. Considering the second-
derivative of a Gaussian function (the Marr’s wavelet) as the
prototype wavelet, this function vanishes quickly in both
time and frequency spaces. Zero-crossings of the wavelet
transform belong to a set of lines which converge at inflexion
points of the 8(s) function for different scales a. The choice
of a continuous wavelet is more convenient than a dyadic
wavelet for the study of the wavelet modulus along these lines
[14].
The wavelet transform W is defined as

Wita) = (o) = = (£9(2)) = | fomodx
®)

with

2 >
v(x) = ——=(1-x?)e™™’? asa prototype wavelet. (4)

e

Discontinuities detection gives as output a set of points
which defines the ends of simple fragments composing a con-
tour (see Figure 9). Contour fragments are bounded by cur-
vature discontinuities or by an endpoint and a discontinu-
ity. In other words, there are as many contour fragments as
curvature discontinuities detected minus one all along a con-
tour. The wavelet transform modulus of these points is above
a threshold. To improve their localization, we check neigh-
borhoods afterwards. The aim of thresholding is to eliminate
false discontinuities due to remaining noise in the orienta-
tion function after the linear smoothing operation. We have
to estimate statistics of noise in the wavelet transform of the
smoothed orientation function. We model the whole process
by a succession of lowpass filters followed by the bandpass fil-
ter corresponding to the wavelet transform. The variance 2,

of the output noise can be computed if the input is the ori-
entation function 6(s) to which white noise n(0, 62) is added
[15]. We choose a threshold value greater than o,,. In our
experiments, a threshold value of 2.50,, has proven to be
sufficient. Thus, we classified image contours between two
discontinuities (or between an endpoint and a discontinu-
ity) as follows: the wavelet transform of an orientation func-
tion corresponding to a straight line fluctuates around zero,
on the contrary it keeps a constant sign for a curve without
inflexion point (like an elliptic arc for instance). Therefore,
by counting the zero-crossings of the wavelet transform of
orientation function we can know whether it corresponds to
a straight line or not (see Figures 10 and 11).

2.3.2 Location of the outer contour

A list of contour fragments is built with fragments not corre-
sponding to straight line. Some small fragments are rejected
because they can be interpreted as the projections of lim-
its between inner layers of the roll and an approximation of
such portions of contours with a simple ellipse fitting is un-
tractable (as a limit, these arcs look like a noisy line). How-
ever, since all contour fragments contribute to the same cen-
ter (but not the same radius), we derive an estimate for the
localization of this center based on a modified circular fit-
ting. To find that global center C = (x,, yC)T, we can proceed
in three stages through the list of contour fragments:

(1) For any pair of pixels Q; = (x;, )T and Q; = (xj, y;)T
of the same contour fragment ¢, its contribution to a circular
fitting is computed as

5
(xj — %)+ (yj —y) +r2 =0 )

A simple difference on previous equations eliminates the
radius parameter and provides a linear relation with respect
to the center coordinates as unknown:

2((x;

X,
) 0-n) (F) = -m et ©
hy i

ny

~
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FIGURE 10: (a) A contour of the roll, (b) the 1D corresponding cur-
vature variations.

For a contour fragment with N, pixels, N — 1 relations as
above contribute for estimating the global center.

(2) Consider the next fragment (¢ + 1) in the list of con-
tour fragment and repeat the first stage until the end of the
list is reached.

(3) Build a (N;(= N1 + N, + - - - +N,;) X 2) matrix H =
(hi{,h;,...,hy )T and avectork = (ki ks, ..., ky,)" by a sim-
ple concatenation of all equations (6) obtained from all con-
tour fragments. The Least Mean Square (LMS) solution gives
an estimate C* = (x7, y) of that global center.

We point out that the right size of (6) may be very small.
A data normalization is needed to avoid numerical instabil-
ity of a homogeneous linear system. Furthermore, a judi-
cious choice of the couple (Q;, Q;) can be simply obtained
by browsing the list in both senses (j = N, — i) or by shifting
the index (j = N,/2+i) . Finally, fragments are sorted accord-
ing to the Euclidean distance (an average along the fragment)

from that center. Farthest fragments of contours have been
kept and reassembled to approximate the outer profile of the
roll with an ellipse fitting (see Figure 12).

3. ELLIPSEFITTING

Particularly, we have been interested in approximating con-
tour fragment with elliptic features. This kind of geometric
feature strongly constrains the 3D point of view. Thus, it is
salient for object localization and orientation if it can be de-
tected in a reliable manner. An ellipse can be represented with
the quadratic algebraic equation

b

2

(o}

x
(x y 1) y|=0, (7)
1

NI NS
NCHIRSVE Y
~ NN

m[

with the quadratic constraint b> —4ac < 0. Ellipse parameters
are components of the vector a = (a, b, ¢, d, e, f)T. There are
many ellipse fitting methods available in the literature. Meth-
ods based on Hough transform [18] are not suitable for our
purpose as they are computationally too expensive. Classical
least square method gives acceptable results for long arcs cov-
ering a large portion of the ellipse with Gaussian noise other-
wise estimation is biased. Extended Kalman filter avoids this
drawback but the problem persists in the case of shallow arcs
with high curvature ([15, 19]). Porril [20] suggested a bias-
corrected Kalman filter based on the likelihood principle to
overcome this problem. Since in (7) ellipse parameters have
been defined up to a scale factor, all previous methods usually
assume that f = 1,a? +c2+b*2=1,a+c=1,or |E| = 1.
It is clear that none of these constraints is adequate to segre-
gate ellipse from other conics. Recently, Pilu [21] proposed
a method based on the minimization of algebraic distance
solved with the generalized eigenvalue problem. By using a
prenormalization data processing (consisting in prescaling
and translating coordinates (x, y)) and Cholesky decompo-
sition, we propose to minimize the following criterion:

€ = ||Xia, + Xoa,|" — A(af Ca, +1) (8)
with
a,=(abo)’, a=ef), al=(al,al),
y% X1 )1 x% Y1 X1 1
2 2 1
X b Y2 X2
Xl = )/'2 zyz : > XZ = . . . >
: : : oo (9)
Vi XnYn Xp Yn Xn 1
0o 0 -2
C= 01 0
-2 0 0
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FIGURE 11: Detection of nonlinear contour fragments of the roll.

0O C

FIGURE 12: Extraction of outer contour fragments of rolling winder during the sequence.

0 O

Figure 13: Ellipse fittings of outer contour fragments of the roll.

FiGURrE 14: Ellipse fittings superposed to grey level images.

Derivatives of € with respect to vectors g, and a, pro- and with the constraint b?> — 4ac = —1, which is invariant to
vide an analytic solution a* for the smallest eigenvalue 1* Euclidean transformations:
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Eaigl = XlTXlgl +X1TX2Q2 —/\Cgl =0,
(10)
106
58—22 =X2TX1QI +X2TX2QZ =0.

This is the decomposition of the criterion used by Pilu but
with a non-rank-deficient constraint matrix C. Thus, vectors
a, and g, can be expressed by

a, = —5213{221, (11)

Sa; = ACa, (12)
with the scatter matrix S

S=8 -S1nS;'sh, 8 =XIXy,

(13)
S, = XI'X,, Siy = X[ X,
The only valid solution corresponds to the single negative
eigenvalue A* of (12). The proposed method is a good trade-
off between computational time and unbiased results in the
presence of noisy data (mainly due to quantization and thin-
ning operations) or outliers (one can see in Figures 12 and

13 that some inner layers are also selected).

4. POSE FROM ELLIPSE

Here, we remember the pose recovery from an ellipse (see
[22]). The problem is, given a known ellipse on the world
plane and its corresponding conic in the image, determine
the pose of the world plane. The solution is in two stages:

(1) determine the orientation R, of the plane,
(2) determine the orthogonal distance d, of the plane
from the camera origin.

The method exploits the property, unique to a conic that is an
ellipse, that the back-projected curve must have the following
representation: CoX2 + AgY2 = 1 (Ao > 0 and C, > 0) given
in a canonical reference frame (principal axes reference frame
R,).

(1) Plane orientation

The conic E in the image is given by (7). We assume that the
origin is at the principal point, and the distances are mea-
sured in units of focal length. Then, the image curve defines
acone ay’+bxy+cy?*+dyz+exz+ fz? = 0in 3D. The matrix
in the quadratic form representation of this cone is xX’Ex = 0
(where x = (x, y,2)") and may be diagonalized in the stan-
dard manner by a 3D rotation R, of the coordinate system to
eigenvector frame. We have E' = R{ER; and x’ = R!x, where
R, = (e}, ez, €e3) is the matrix of orthonormal eigenvectors
and

M0 o0
E=|02X 0|, (14)
0 0 A

where {A1,12,A3} are the eigenvalues in ascending order
(A1 is then the only negative eigenvalue). Identification
with coefficients Ay and Cp is achieved by a second rota-
tion about the y’ axis by an angle 6 such that cosf =
+J(A3 — A,(Co/Ag))/(A5 — A1), which sets both coefficients
to A,. There is therefore a four-fold ambiguity in the orienta-
tion (0, -0, 0+, m1—0). Wehave E’ = R,E'R; andx” = Rhx’
where

cosf@ 0 sinf
R, = o 1 0 | (15)
—sinf 0 cos@

The composite rotation from image plane to the plane that
intersects the cone in an ellipse is thus x” = R!x, where
R, = RiR; and, consequently, the normal to the plane in
the camera coordinate system is n = Rg(0,0, —1)" (the —1
accounts for the right-handed coordinate system).

(2) Plane distance

In the x” = (x”, ¥",z"”)" coordinate system, the ellipse has
the equation

_A%AIA:ﬁ Z/rz —

Co(x"” —a)* + Agy"? = Col2
3

1, (16)

with

o = (A2(Co/Ap) — A1) (A3 — 22(Co/Av))
(A2(Co/A0))’

>

(17)
v | Ma(C/A))?
Z'=d, = |-——7T—

Corids

is the perpendicular distance of the plane from the origin. Fi-
nally, the ellipse center is at the position t,, = Re(a,0,d, )"
in the camera frame. To conclude this section, it is clear
that values of Cy and Ay can be recovered if the orienta-
tion R of the plane and the orthogonal distance d, are
provided elsewhere, by a camera calibration procedure for
instance.

5. RESULTS ANALYSIS

Experimental investigations were performed on a wind-
ing plant composed of a winder, a traction motor and an
unwinder. Figure 1 shows some details of our small web
winding system. For experiments, velocity is typically about
100 m/min which is a typical value in the web transport in-
dustry. An 8-bit digital CCD camera is placed in front of the
winder. The image acquisition system consists of a DALSA
CA-D8 (512 x 512) grey-scale digital camera (80i/s) con-
nected to a PC-DIG frame grabber by Imaging Technology.
Video data transfer through PCI bus master to host memory
is complete in less than 4 milliseconds. All image acquisitions
and processings were done on a set of three Bi-Pentium III
computers (connected through an ethernet D-Link gigabit
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FIGURE 15: (a) Minor/major semiaxes of the roll along the image
sequence. (b) Experimental results of the mean roll radius and its
model (in pixels).
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FiGure 16: Estimations of the roll center coordinates (in pixels)
along the image sequence.
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FIGURE 17: (a) Spectrogram of the sine-sliding behavior (from 8
to 6 Hz) of the motion of the roll center. (b) Temporal model of
angular velocity Q(t) (a = 0.068, abscissa is unit time in second).
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FIGURE 18: Mean square error of ellipse fitting (in pixels) for outer
layer of the roll (x1073).
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FIGURE 19: The linear height measuring machine and locations of control points along the roll.

network) and developped under the C++/MPI programming
language. Today, the whole image processing is achieved at
a video rate of about 25i/s. Figure 15 shows estimations of
the minor and major semiaxes of the elliptic roll. As shown
in Figure 15b, a mean value of the roll is computed for ev-
ery image acquisition, compared with a model accounting
for the radius increase and described below. This confirms
the accuracy of the roll radius estimation in the image. The
metric value of the roll radius can be found by means of a
camera calibration [23] and the pose algorithm previously
described. The computed mean square error of data points
location from the estimated ellipse in Figure 18 is always less
than /2.1073 = 1/20 pixel all along the sequence, so this con-
firms our choice of an elliptical shape for the rolling winder
profile.

In this paragraph, we modelize the increase of roll radius
all along the sequence. It is of prime importance for an in-
dustrial process control to predict its value. Denote by V and
Q the linear and angular winding velocity, respectively, by r
the roll radius (the rolling winder is assumed to be circular in
this paragraph), and by e the thickness of a web layer. Con-
sidering that a small increase of the roll radius is proportional
to a small increase of the angle, then

() = r(0) + o Lt Q) dt, (18)

V =r(t)Q(t). (19)

Assuming that the sliding effect is of low significance along
the web, then the winding velocity is identical to the un-
winding velocity. The consequence of such hypothesis is that
dV/dt = 0 which leads to the simple differential equation

d*r  (dr\* _d( dr
et () =~ ala) -o 20
The solution for the radius is given by

eQ(0) eV

r() = rOv1+at, 7r(0) ~ 7r2(0)°

witha = (21)

From (19), the angular velocity can be also derived, Q(t) =
Q(0)/+/(1 + at). In spite of the fact that previous model has
been built on pure kinematic considerations and with a rigid
web, the course of the computed roll radius is very close to
its estimates all along the sequence as shown in Figure 15b.
Noise characteristics have been estimated to a value of 1.19
pixels for the standard deviation and 0.2 pixel for the mean.

Estimation of ellipse center coordinates are shown in
Figure 16. Variations (typically of about 5 pixels) are due to
the roll eccentricity. Frequency analysis was performed on
the x-coordinate of the roll eccentricity. It relates a displace-
ment of the main frequency mode and the angular velocity
(see Figure 17). Although eccentricity is detected, noise is
significant. A more accurate eccentricity detection could be
achieved with more images per round (here, we typically
have up to five images per round at 100 m/min).

In an attempt to validate the proposed method, we com-
pare previous results for the roll radius estimates and its
variations with those achieved straight with a high-accuracy
height measuring machine. A Mitutoyo Linear Height LH600
has been installed on a marble surface. This machine pro-
vides an elevation course of 600 mm and can be easily moved
on the plate. It incorporates a reflective-type linear encoder
which has a resolution down to 0.5um. A 10 mm diameter
ball probe is used for measuring the height h with respect to
the surface plate (the reference). We also defined eight con-
trol points per round by writing eight marks on the back side
of the roll (see Figure 19). Since an accurate measure of the
height h, of roll axis is performed, the difference i — h, pro-
vides a measurement value for the roll radius at each con-
trol point. We manually turned the roll of one eighth of a
round to reach the next control point (exactly nine control
points were used per round, the last one was identical to the
first one up to a round). Since unwinding entirely the web in
such a way is unpractical, we skip five rounds before begin-
ning a new series of measurements. An image is grabbed by
the camera for each series.

Figure 20a shows the results of 20 series of measure-
ments. From this, the web thickness e can be recovered
(e = 280um) as 5e is equal to the distance between each
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Figure 20: (a) 180 measurements of the roll radius (in mm) with
the LH600, (b) details of five series (45 measures) well arranged in
the sequence of measures.

curve. Furthermore, it is clear that a significant noncircular-
ity appears (see Figure 20b). To derive it, positions of control
points all around the roll have been computed for each series
in order to fit an ellipse.

Since an ellipse object (the roll) and its projection are
both available, we can recover the orientation (only 2 de-
grees of freedom since the roll is quite circular) and the po-
sition of a reference object frame with respect to the camera
frame provided that the camera calibration was previously
done (the focal length value has been estimated in [23], and
f = 11.59mm for the standard 12 mm optical lens used).
In fact, since the calibration plane (coplanar patterns) has
been placed just in front of the roll and since all calibration
procedures using geometrical features simultaneously esti-
mate intrinsic and extrinsic parameters (parameters of the
Euclidean transformation), these values may be used to back-
project the ellipse image to the 3D space. Results (in mm)
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FiGure 21: Comparison between minor/major semiaxes measure-
ments (in mm) on the static roll (dashed) and the back-projection
to 3D space of minor/major semiaxes estimated from ellipse fitting
(solid).

are shown in Figure 21 for the minor and major semiaxes
(defined as 4/Cy and /A in Section 4) of the set of twenty
ellipses. We observe in this figure that solid lines (estima-
tions with the vision system) are closed to dashed lines (me-
chanical measurements) with an absolute accuracy of about
0.4 mm for the minor semiaxis and 0.1 mm for the major
semiaxis (the mean value of the roll radius has an accuracy
better than 0.3 mm (|Ar/r| =~ 0.5%)).

6. CONCLUSION

This report presents the online detection and estimation of
a roll radius and its variations (noncircularity and eccen-
tricity) by the use of an imaging sensor applied to a web
winding system. We describe a method for features extrac-
tion and classification based on wavelets transform which is
well adapted for computer vision applications. In a real-time
environment, the smoothing filter we propose to implement
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for the orientation function of edge contours is highly ef-
ficient in comparison with the Gaussian filter. It trades off
maximum elimination of noise with preservation of the high
frequency information inside the gradient phase signal.

Another contribution of this work is the improve-
ment of the Pilu’s technique for ellipse fitting. With a pre-
normalization of data and the use of Cholesky decomposi-
tion, an adequate criterion is proposed for analytically seg-
regate ellipse from other conics. It is of most importance to
take care of the fact that a common characteristic of methods
based on the algebraic distance (the only methods providing
analytical solutions for ellipse fitting with no approximation)
is to be biased towards low-eccentricity for data covering a
short arc of ellipse. That is why we focus on extracting data
well-scattered along outer contours of the roll. We evaluate
the validity of the proposed method by comparing the results
obtained from the vision system to those measured with an
accurate mechanical measuring machine. The roll radius has
been well estimated with an accuracy (in 3D space) better
than 0.3 mm, since noncircularity and eccentricity of the roll
have been taken into account all through this work.
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