
EURASIP Journal on Applied Signal Processing 2002:6, 601–612
c© 2002 Hindawi Publishing Corporation

Combined Frequency and Spatial Domain Algorithm
for the Removal of Blocking Artifacts

George A. Triantafyllidis
Information Processing Laboratory, Electrical and Computer Engineering Department, Aristotle University of Thessaloniki,
Thessaloniki 54006, Greece
Email: gatrian@iti.gr

Dimitrios Tzovaras
Informatics and Telematics Institute, 1st Km Thermi-Panorama Road, Thermi-Thessaloniki 57001, Greece
Email: dimitrios.tzovaras@iti.gr

Demetrios Sampson
Informatics and Telematics Institute, 1st Km Thermi-Panorama Road, Thermi-Thessaloniki 57001, Greece
Email: sampson@iti.gr

Michael G. Strintzis
Information Processing Laboratory, Electrical and Computer Engineering Department, Aristotle University of Thessaloniki,
Thessaloniki 54006, Greece

Informatics and Telematics Institute, 1st Km Thermi-Panorama Road, Thermi-Thessaloniki 57001, Greece
Email: strintzi@eng.auth.gr

Received 31 July 2001 and in revised form 7 February 2002

A novel combined frequency and spatial domain method is presented in this paper for blockiness reduction for low bit rate com-
pressed images. The method consists of two stages: in the first, better estimates of the reconstructed DCT coefficients are obtained
based on their observed probability distribution. In the second, an efficient postprocessing scheme consisting of a region classifi-
cation algorithm and a spatial adaptive filtering is applied for blockiness removal. The type of filtering is decided on the basis of an
estimation of the local characteristics of the coded image. Themain advantage of the proposedmethod is the efficient combination
and design of these two stages which are acting complementarily for the reduction of blocking artifacts. This approach is shown
to produce excellent results in removing blocking artifacts. The efficient performance of the proposed algorithm is due, firstly, to
the proposition that the shape and the position of the filter kernel are adjusted according to the characteristics of the local image
region and secondly, to the employment of the modified improved DCT coefficients by the postprocessing filter. Experimental
results illustrating the performance of the proposed method are presented and evaluated.
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1. INTRODUCTION

The block based discrete cosine transform (B-DCT) scheme
is a fundamental component of many image and video com-
pression standards. Due to its performance on highly corre-
lated signals which is close to that of the (optimal) Karhunen-
Loeve transform (KLT), and the availability of fast software
and hardware implementations, the B-DCT is highly popu-
lar in application to image compression. In particular, the B-
DCT is used inmost of current image and video compression
standards, such as JPEG [1, 2] and MPEG [3].

A major problem related to the DCT techniques is that

the decoded images, especially at low bit rates, exhibit vi-
sually annoying gray-level discontinuities along the block
boundaries, commonly referred to as blocking artifacts. This
is due to the fact that transform coefficient blocks are quan-
tized independently.

Subjective picture quality can be significantly improved
by decreasing the blocking artifacts. Increasing the band-
width or bit rate to obtain better quality images is often not
possible or too costly. Several approaches to improve the sub-
jective quality of the degraded images have been proposed
in the literature. Techniques which do not require changes
to existing standards, appear to offer the most practical
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solutions, and with the fast increase of available computing
power, more sophisticated methods can be implemented.

In the present paper, a new method is presented which
acts both in the frequency and the spatial domains, in or-
der to enhance the visual result of the reconstructed image
and reduce the blocking artifacts. The proposed algorithm
consists of two stages: in the first, better estimates of the AC
coefficients are obtained based on observations about their
probability distribution. In the second, a region classifica-
tion is performed, classifying the areas of the image into
areas of high detail (textures-edges) and areas of low de-
tail. Then, depending on the classification, a novel efficient
adaptive Gaussian-type filtering follows. These two stages
are acting complementarily for blockiness removal. In the
frequency domain, the modified improved DCT coefficients
contributes to blockiness reduction and in the spatial do-
main, the spatial adaptive filtering furthers the reduction of
the blocking artifacts.

In B-DCT the quantization noise is highly correlated
with the characteristics of the original signals, so that dif-
ferent areas of the coded image suffer from distinctly dif-
ferent impairments. In particular, the artifacts create two
kinds of visual distortions (i) blurring of sharp edges and
changes in the texture patterns, and (ii) formation of false
edges at interblock boundaries. The first kind of distortion
is generally due to near elimination or improper trunca-
tion of the high- and mid-frequency DCT coefficients and
is efficiently reduced by the proposed AC distribution-based
restoration. The other kind is due to severe reductions in the
low-frequency DCT coefficients (especially in the DC coeffi-
cient) and is tackled with the proposed adaptive spatial filter-
ing. Hence, the two stages are acting complementarily for the
removal of blocking artifacts.

Many techniques have been proposed in the literature for
the distribution-based estimation of the DCT coefficients.
Most of them are based on the fact that there should be a
bias in the reconstructed DCT coefficients, since the stan-
dard, bin center reconstruction is suboptimal. Particularly,
the standard method of restoring a DCT coefficient is equiv-
alent to replacing each coefficient by the center of the quan-
tization interval in which the original coefficient falls. How-
ever, the distribution of the AC coefficients for a given fre-
quency peaks at zero and decreases monotonically. Thus, for
quantization intervals not including zero, the distribution of
the original coefficients is denser at the end of the interval
closer to zero making the selection of the center of the inter-
val suboptimal. In this context, the optimal reconstruction
(minimum mean squared error) lies in the centroid of the
distribution for the interval and such an estimation is em-
ployed in this paper.

The novel postprocessing method, described in this pa-
per, exploits the properties of smoothed image gradient data
to identify the high- and low-detail regions of the decoded
image. The filtering process is then based on the region clas-
sification. For the high image detail regions, which include
edges and texture, a fully adaptive Gaussian type filter is em-
ployed. The shape and the position of the Gaussian kernel is
chosen according to the characteristics of each local region.

For the low image detail regions, which include areas of con-
stant or slowly varying intensity, a simple Gaussian smooth-
ing operator is used.

The rest of this paper is organized as follows: Section 2
contains a review and discussion of various techniques that
have been proposed in the past for the removal of block-
ing artifacts. In Section 3, the mathematical analysis under-
lying the concept for the distribution-based restoration of
the DCT coefficients is described. Section 4 presents in de-
tail the blocking artifact reduction algorithm by the spa-
tial adaptive filtering procedure. Experimental results, given
in Section 5, evaluate visually and quantitatively the perfor-
mance of the proposed methods. Finally, conclusions are
drawn in Section 6.

2. BACKGROUND

Many approaches have been proposed in the literature aim-
ing to alleviate the blocking artifacts in the B-DCT image
coding technique. The earliest attempts in enhancing block-
encoded images involved space-invariant filtering. Jarske et
al. [4] test several filters to conclude that the Gaussian low
pass filter with a high pass frequency emphasis gives the best
performance. Reeves and Lim [5] apply the 3 × 3 Gaussian
filter only to those pixels along block boundaries. A similar
technique by Tzou [6] applies a separable anisotropic Gaus-
sian filter, such that the primary axis of the filter is always
perpendicular to the block boundary. It was quickly discov-
ered, however, that space-invariant filters are generally not
very effective for this application; they either do not remove
enough of the artifacts, or oversmooth the image. Space-
varying filters provide a more flexible framework for the re-
duction of compression artifacts. A space-variant filter that
adapts to local characteristics of the signal is proposed by
Ramamurthi and Gersho in [7]. The algorithm distinguishes
edge pixels from nonedge pixels via a neighborhood testing
and then switches between a 1D filter and a 2D filter accord-
ingly to reduce blocking effects. In [8], an adaptive filtering
scheme is reported, progressively transforming a median fil-
ter within blocks to a low pass filter when it approaches the
block boundaries. A region-basedmethod is presented in [9],
where the degraded image is segmented by a region growing
algorithm, and each region obtained by the segmentation is
enhanced separately by a Gaussian low pass filter. Lee et al.
in [10] propose a two-dimensional signal adaptive filtering
and Chou et al. [11] remove blockiness by performing a sim-
ple nonlinear smoothing of pixels. In [12], Apostolopoulos
and Jayant propose to identify the blocks that potentially ex-
hibit blockiness by calculating the number of nonzero DCT
coefficients in a coded block and comparing it to a threshold.
Then, a filter is applied along the boundaries updating the
pixels within the distorted block.

Another class of postprocessors using iterative image re-
covery methods based on the theory of projections onto con-
vex sets (POCS) are proposed in [13, 14, 15]. In the POCS-
based method, closed convex constraint sets are first defined
that represent all of the available data on the original un-
coded image. Then alternating projections onto these convex
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sets are iteratively computed to recover the original image
from the coded image. POCS are effective in eliminating
blocking artifacts but less practical for real-time applications,
since the iterative procedure adopted increases the computa-
tion complexity.

Constrained optimization is the basis of another family
of JPEG postprocessors. A subset of this family is known as
regularization, a method to solve ill-posed inverse problems.
Yang et al. and Zakhor [16, 17] proposed a regularization
scheme for a constrained least squares solution, which aims
to reconstruct the image by minimizing an objective func-
tion reflecting a smoothness property. The constrained least
squares approach arises from the desire to remain within the
quantization convex set (constraint) but at the same time
minimize the highpass energy of the signal (expressed as
least squares). Hong et al. [18] also applied regularization
methods in the subband domain to reduce DCT artifacts in
images.

Another family of postprocessors are based on sophis-
ticated stochastic modeling of the image. All postproces-
sors use a priori knowledge of the image properties. How-
ever, in the model-based approach, the a priori assump-
tions and their introduction into the algorithm are more ex-
plicit. Markov random fields (MRF) are among the more
successful models applied to image enhancement. O’Rourke
and Stevenson [19] propose a postprocessor that can re-
move blockiness by maximizing the a posteriori probabil-
ity (MAP) of the unknown image. The probability func-
tion of the decompressed image is modeled by an MRF,
and the Huber minimax function is chosen as a poten-
tial function. A similar approach is followed by Luo et
al. [20]. Li and Kuo [21] developed a multiscale MAP tech-
nique, again under the MRF prior. Because of the itera-
tive procedure necessary for the generation of Markov ran-
dom fields, MRF techniques suffer from high computational
complexity.

Among the most simple and effective denoising algo-
rithms are those using the wavelet representation. Gopinath
et al. [22] proposed an enhancement method involving
the oversampled wavelet transform, in conjunction with a
soft thresholding motivated by the minimax arguments of
Donoho [23]. Another version of oversampled wavelet de-
noising was employed by Xiong et al. [24]. Xiong uses an
overcomplete wavelet representation to reduce the quanti-
zation effects of block-based DCT. Other approaches using
wavelet representation are presented in [25, 26]. In [26] the
wavelet transform modulus maxima (WTMM) representa-
tion is used for image deblocking.

Finally, there are some approaches in the literature which
have tackled the problem of blocking artifact reduction com-
pletely in the transform domain [27, 28, 29, 30]. In the
JPEG standard [1] a method for suppressing the block-to-
block discontinuities in smooth areas of the image is in-
troduced. It uses DC values from current and neighboring
blocks for interpolating the first few AC coefficients into each
block. In [27], Minami and Zakhor present a new approach
to reduce the blocking effect, which is applied in the fre-
quency domain. This approach removes the blocking effect

by minimizing a new criterion called mean squared differ-
ence of slope (MSDS), while imposing linear constraints cor-
responding to quantization bounds. To minimize the MSDS,
a quadratic programming (QP) problem is formulated and
solved using a gradient projection method. The solution is
obtained in the form of the optimized value of the three
lowest DCT coefficients. In [28], Lakhani and Zhong fol-
low the approach proposed in [27] for reducing blocking
effects, using however a different solution of the optimiza-
tion problem, minimizing the MSDS globally and predict-
ing the four lowest DCT coefficients. In [29, 30] a closed
form representation of the optimal (in terms of blockiness
removal) correction of the DCT coefficients is produced
by minimizing a novel enhanced form of MSDS, for every
frequency separately. This correction of each DCT coeffi-
cient depends on the eight neighboring coefficients in the
subband-like representation of the DCT transform and is
constrained by the upper and lower bound of the quantized
DCT coefficients.

The method proposed in this paper for the reduction of
blocking artifacts combines techniques acting in both the fre-
quency and spatial domain. In the DCT domain, new im-
proved and modified DCT coefficients are produced, and in
the spatial domain, an adaptive filtering is performed after
classification in high- and low-detail areas. The type of fil-
tering is decided on the basis of an estimation of the local
characteristics of the coded image. The algorithm of the AC
coefficient adjustment is elaborated in the next section while
the analysis of the postprocessing spatial filtering is presented
in Section 4.

3. DCT COEFFICIENT ADJUSTMENT

In the classical B-DCT formulation, the input image is first
divided into 8 × 8 blocks, and the 2D DCT of each block is
determined. The 2D DCT can be obtained by performing a
1D DCT on the columns and a 1D DCT on the rows. The 64
DCT coefficients of the spatial block Bi, j are then determined
by the following formula:

Fi j(u, v) =
7∑

n=0

7∑
m=0

cn,ucm,v fi j(n,m), (1)

where

cn,u = au cos
(2n + 1)uπ

16
, cm,v = av cos

(2m + 1)vπ
16

,

ax =




1√
2

if x = 0,

1 if x �= 0,

(2)

u, v = 0, . . . , 7, i = 0, . . . , N/8 − 1, j = 0, . . . ,M/8 − 1, Fi j(u, v)
are the DCT coefficients of the Bi, j block, fi j(n,m) is the lu-
minance value of the pixel (n,m) of the Bi, j block, andN ×M
are the dimensions of the image.

The transformed output from the 2D DCT is ordered
so that the DC coefficient Fi j(0, 0), is in the upper left cor-
ner and the higher frequency coefficients follow, depending
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Figure 1: Example of DCT coefficient distribution. The interval
(ab) is the quantization interval. The bin center is indicated by the x
(i.e., standard reconstruction) and the center of the mass of the dis-
tribution over the shaded region is indicated by the y (i.e., optimal
reconstruction).

on their distance from the DC coefficient. The higher verti-
cal frequencies are represented by higher row numbers, and
higher horizontal frequencies are represented by higher col-
umn numbers.

A typical quantization-reconstruction process of the
DCT coefficients, as described in JPEG [1], is given by

FQ
i j (u, v) = round

(
Fi j(u, v)

Q(u, v)

)
, (3)

FR
i j(u, v) = FQ

i j (u, v)Q(u, v), (4)

where Q(u, v) indicates the quantization width bin for the
given coefficient, FQ

i j (u, v) indicates the bin index in which

the coefficient Fi j(u, v) falls, and FR
i j(u, v) represents the re-

constructed quantized coefficient. Then, the reconstructed
pixel intensity is obtained from the inverse DCT.

As it has beenmentioned in the introduction, B-DCT de-
coders may be improved by making use of the observation
that the distributions of the DCT coefficients peak at zero
and decrease algebraically or exponentially with rather heavy
tails [31]. An efficient DCT coefficient restoration based on
this observation, is made in [32, 33]. Both propose that the
unquantized AC coefficients Fi j(u, v) are best described by
the Laplacian distribution. Considering this distribution of
the AC (i �= 0 or j �= 0) coefficients, the standard bin center
reconstruction is suboptimal (except for the zero bin). Refer-
ring to standard JPEG, any unquantized coefficient Fi j(u, v)
in the bin denoted by the shaded region (see Figure 1) will be
reconstructed to the bin center. However, the minimumMSE
is achieved by reconstructing the coefficient to the centroid of
the distribution over the given bin.

The Laplacian probability density function (pdf), which
models the AC coefficients, is (see [34])

f (x) =
a

2
e−a|x|, (5)

and is characterized by the single parameter a. If the
Laplacian-modeled variable is quantized using uniform step
sizes, the only information available to the receiver is that the

original DCT coefficient is in the interval

γ − t ≤ Fi j(u, v) ≤ γ + t, (6)

where γ = FQ
i j (u, v)Q(u, v), t = Q(u, v)/2. The trivial solu-

tion suggested in JPEG is to reconstruct the coefficient in the
center of the interval as FR

i j(u, v) = γ, which simplifies im-
plementation. As mentioned, the optimal reconstruction γ′

(minimum mean squared error) lies in the centroid of the
distribution for the interval (γ − t, γ + t), thus, under the as-
sumption of Laplacian statistics [35],

γ′ =

∫γ+t
γ−t x f (x) dx∫γ+t
γ−t f (x) dx

= γ +
1
a
− t coth(at). (7)

Note that this implies a bias δ toward the origin,

δ = γ − γ′ = t coth(at) − 1
a
. (8)

For different coefficients we have different step size and pa-
rameter a [32]. Therefore, considering the DCT coefficient of
block Bi, j at frequency (u, v), we have quantization step size
Q(u, v) and parameter ai j(u, v). Then, the bias δuvi j toward the
origin can be found from (8) and (6):

δuvi j =
Q(u, v)

2
coth

(
ai j(u, v)Q(u, v)

2

)
− 1
ai j(u, v)

. (9)

Thus, we obtain the optimal estimation F̂R
i j(u, v) of the re-

constructed AC coefficient,

F̂R
i j(u, v) = FR

i j(u, v) − sign
[
FQ
i j (u, v)

]
δuvi j

= FQ
i j (u, v)Q(u, v) − sign

[
FQ
i j (u, v)

]
δuvi j ,

(10)

where the sign function is appropriately used to handle both
positive and negative values and sign[0] = 0.

The parameter a, which characterizes the Laplacian dis-
tribution and which is needed for the coefficient estimation
in (10), can be estimated through two different methods.

In [32], an estimate of a is found by simply comput-
ing the variance σ2F , of the dequantized coefficients recon-
structed to bin center and then setting a =

√
2/σF , which is

a well-known relation between the Laplacian parameter and
the variance of the distribution.

Price [33] suggests a more rigorous, ML estimate for the
parameter a. Assuming the Laplacian distribution, suppose
that we have a series of N observations of a given coefficient
FR
i j(u, v), prior to any quantization. Referring to these obser-

vations as Fk for k = 1, . . . , N , it is easily shown that the ML
estimate of a is given by

aML =
N∑N

k=1 |Fk |
, (11)

where it is assumed that the summation in the denominator
does not reduce to zero. The decoder side, however, does not
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have access to the original, unquantized coefficients. There-
fore, the parameter a must be estimated from the recon-
structed coefficients. Referring to the quantized coefficients
by FQ

k , and the Laplacian parameter by aQML, it can be shown
that (see [33])

aQML =
2
Q

ln(γ), (12)

where

γ = − N0Q

2NQ + 4S
+

√
N2

0Q
2 − (

2N1Q − 4S
)
(2NQ + 4S)

2NQ + 4S
(13)

and whereN0 is the number of observations that are zero, N1

is the number of observations that are not zero, N is the total
number of observations (N = N0 +N1), and S =

∑N
k=1 |FQ

k |.
Although the Laplacian distribution model remains a

popular choice balancing simplicity and fidelity to the em-
pirical data, researchers have tried a variety of other fitting
methods for the DCT coefficients, such as χ2, Kurtosis and
Watson tests [36, 37]. Many other possible distributionmod-
els have also been proposed including generalized Gaussian
and even a sum of Gaussian distributions [37]. Generalized
Gaussian densities describe the AC coefficients quite accu-
rately [38], since they have heavy tails [39]. However, these
coefficients can be described even more accurately by the α-
stable pdf [40], which is a rich and flexible modeling tool.
The α-stable density can be best described by its characteris-
tic function, which is

φ(ω) = e jδω−g|ω|
a[1+ jβ sign(ω)φ(ω,a)], (14)

where

φ(ω, a) =



tan

aπ

2
for a �= 0,

2
π
log |ω| for a = 1.

(15)

This density is completely described by the following four pa-
rameters: the location parameter δ (−∞ < δ < ∞), the scale
parameter g (g > 0), the index of skewness β (−1 ≤ β ≤ 1),
and the characteristic exponent α (0 < α ≤ 2). The sym-
metric α-stable SaS family (in which β = 0) is often used to
describe non-Gaussian signals characterized by heavy-tailed
distributions, like the low frequency DCT coefficients. The
characteristic exponent a determines the shape of the den-
sity as it measures the “thickness” of the tails of the density.
For smaller values of a the tails of the density are heavier and
the corresponding random process displays high impulsive-
ness. The SaS density with a = 1 corresponds to the Cauchy
density [40]. Thus, the Cauchy density can be considered as
a better distribution model for the AC coefficients, since it is
a more heavy-tailed than the Laplacian and the generalized
Gaussian densities.

The pdf of the Cauchy model is the following:

f (x) =
1
π

g

g2 + (x − δ)2
. (16)

Recall that the optimal solution for the DCT coefficient is
achieved by reconstructing the coefficient to the centroid of
the distribution for the interval γ − t, γ + t. Then, we obtain,
similarly to (7), the following result based on the assumption
of a Cauchy distribution of the AC coefficients:

γ′ =

∫γ+t
γ−t x f (x) dx∫γ+t
γ−t f (x) dx

=

[
g ln

(
x2 + g2

)]γ+t−δ
γ−t−δ[

arctan(x/g)
]γ+t−δ
γ−t−δ

+ δ, (17)

where [ f (x)]kl = f (k) − f (l). The Cauchy parameters g and
δ are computed using the ML method.

4. POSTPROCESSING USING SPATIAL ADAPTIVE
FILTERING

Following the description of the main picture quality impair-
ments due to low bit rate B-DCT compression scheme and
after the biased reconstruction of the DCT coefficients, the
design requirements of the proposed efficient postprocess-
ing method can be outlined as follows. The compressed im-
age is initially segmented into different regions, which corre-
spond to areas that suffer from different types of degradation.
Hence, a classifier, which distinguishes the smooth regions
from the detailed ones, needs to be employed.

Provided that the above step has been implemented suc-
cessfully, an adaptive filtering technique takes into consider-
ation the characteristics of the quantization noise in different
areas of the coded image. More specifically:

• staircase noise along the edges must be removed, so
that edges appear continuous and sharp. This requires
smoothing along, but not across, the edge direction to
avoid blurring;

• false contours visible in the areas of slowly-varying in-
tensity should be eliminated. This requires smoothing
of the intensity changes that occur between adjacent
blocks;

• the disturbing blocking effect should also be removed
from textured areas, while any high-detail that sur-
vived during the coding process should be preserved.

The proposed method employs a useful tool in the de-
scription of local image features, known as windowed sec-
ond moment matrix (WSMM) [41], whose elements are the
locally-smoothed functions of the image derivatives. Infor-
mation provided by the WSMM has been utilized for a num-
ber of computer vision tasks, such as the detection of feature
points and the extraction of shape information from texture
areas [41].

Let P(x, y) denote the image intensity value at point
(x, y). The image gradient ∇P = (Gx,Gy)T is computed as
follows:

Gx(x, y) =
P(x + 1, y) − P(x − 1, y)

2
,

Gy(x, y) =
P(x, y + 1) − P(x, y − 1)

2
.

(18)
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The WSMM is then defined as (see [42])

W =
[
A C
C B

]
, (19)

A =
∑

(x,y)∈(M×M)

wb(x, y)G
2
x(x, y),

B =
∑

(x,y)∈(M×M)

wb(x, y)G
2
y(x, y),

C =
∑

(x,y)∈(M×M)

wb(x, y)Gx(x, y)Gy(x, y),

(20)

whereM×M is the analysis block, that is, the area fromwhere
information is obtained for the calculation of the WSMM
components A, B, and C. The function wb(x, y) is a symmet-
ric and normalized window function which is used for local
smoothing of the image features. This is necessary due to the
sensitivity of the first order derivatives of image intensity to
noise. A natural choice for wb(x, y) is a Gaussian function of
the form wb(x, y) = e−(x

2+y2)/2τ2 .
The WSMM coefficients are then employed to perform

the tasks required for the removal of annoying artifacts from
the compressed images, namely, region classification and fil-
tering.

4.1. Region classification

A simple algorithm based on the values of the WSMM co-
efficients is used to distinguish low-detail areas from the
high-detail ones in the coded image. The quantities A and
B, defined in (19), contain information about the local edge
strength [41, 43]. It is expected that a large value of either
of them will be due to the presence of a jagged edge or im-
age texture. This is especially true when the area of smooth-
ing defined by parameter M is chosen to have size similar to
the coding block. Thus, region classification is performed by
comparing the values of A and B against a predetermined
threshold T [43]. If at least one of them exceeds T then
the corresponding picture element is assumed to belong to
a high-detail area of the image; otherwise, it is assumed to
lie in a uniform low-detail area. The filtering strategy is then
decided according to the outcome of the classification.

4.2. Filtering

4.2.1 Filtering of high-detail areas

The purpose of the postprocessing in high-detail areas is
twofold: to eliminate the visible noise from the edges and
to preserve any detail that remains in the texture blocks. A
new adaptive filtering operation which satisfies both require-
ments is employed in this paper. The process computes for a
pixel a Gaussian-type kernel, which is shaped and displaced
according to locally smoothed image gradient functions [44].
The filter kernel K(x, y) is then defined as follows:

K(x, y) =
1
S
e−(Â(x+Dx)2+2Ĉ(x+Dx)(y+Dy)+B̂(y+Dy)2)/2σ2 , (21)

where S is a normalization factor defined [43] as

S =
∑

(u,v)∈(N×N)

e−(Â(u+Du)2+2Ĉ(u+Du)(v+Dv)+B̂(v+Dv)2)/2σ2 , (22)

and N is the side length of the square truncation mask that
contains the kernel, σ is the standard deviation of the vari-
able Gaussian kernel, Â, B̂, and Ĉ are the coefficients of the
WSMM normalized by division by A + B to reduce image
dependency problems [44], and Dx, Dy determine the mag-
nitude of the kernel displacement along each of the principal
axes and are defined as follows [45]:

Dx =
N

2
Vx√

µ2 + V 2
x + V 2

y

,

Dy =
N

2

Vy√
µ2 + V 2

x + V 2
y

,

(23)

where µ is an attenuation constant and

Vx =
1

A + B

×
∑

(x,y)∈(M×M)

wb(x, y)
[
G2
x(x, y)x + Gx(x, y)Gy(x, y)y

]
,

Vy =
1

A + B

×
∑

(x,y)∈(MM)

wb(x, y)
[
G2

y(x, y)y + Gx(x, y)Gy(x, y)x
]
.

(24)

The three terms in the exponent adapt the shape of the
kernel in such a way that its longest axis is parallel to the edge
direction locally dominant in the image [45]. The function of
the displacement components, which are also obtained from
gradient calculations, is to displace the main weights of the
kernel away from edges. The effect is that, when the centre
is close to an intensity edge, the main contribution to the
convolution comes from the region the centre is in, not from
the other side of the boundary, and hence the sharpness of
the edge is preserved.

This filter satisfies all the requirements for processing de-
tailed areas of the reconstructed image. First, near an inten-
sity edge the filter kernel is oriented along the edge, which is
important in order to avoid blurring. Secondly, the fact that
the main weights of the kernel are displaced in or out of the
edge (depending on the relative position of the point which
is filtered) ensures the continuity and the sharpness of the
edge. Finally, the presence of strong intensity discontinuities
in different directions has the effect of a reduction in weights
away from the centre of the filter kernel, which means that
the image details are preserved in textured areas.

4.2.2 Filtering of low-detail areas

For the areas of the image with low detail, the adaptive filter
described above is not appropriate. This is due to the fact that
intensity changes in the boundaries of neighbouring blocks
will be perceived wrongly as corresponding to intensity dis-
continuities. For these areas simple small-scale Gaussian fil-
tering can smooth the boundaries between coding blocks as
required, without introducing any noticeable defects in the
output image.
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5. EXPERIMENTAL RESULTS

Experiments were carried out to evaluate the performance
of the proposed method. In order to show its robustness,
a number of known standard 256 gray-level test images
were encoded with the block discrete cosine transform-based
(DCT-based) JPEG compression algorithm, and then re-
stored using the AC coefficient restoration algorithms pre-
sented in Section 3 and the postprocessing spatial adaptive
filtering presented in Section 4.

The most appropriate type of distortion measure is based
on human perception. The human observer is the end user
of most image information. Therefore, a distortion measure
that is based on human perception is more appropriate for
picture quality evaluation. This type of distortion measure
gives a numeric value that will quantify the dissatisfaction of
the viewer in observing the reproduced image in place of the
original. One method for finding such a measure is subjec-
tive testing. In these tests, subjects view a series of reproduced
images and rate them based on the visibility of artifacts. Sub-
jective tests are tedious and time-consuming, and the results
depend on various other factors such as the observer’s back-
ground, sensitivity, and so forth.

Therefore, an objective measure that accurately predicts
the subjective rating would be a useful guide when optimiz-
ing image compression algorithms. There have been several
attempts in the past to derive visual models to predict pic-
ture quality by means of such objective measures. Most of
these models use visual criteria such as the frequency sensi-
tivity and frequency masking properties of the eye.

Such a measure of blocking artifacts is used in this paper
in order to evaluate the reduction of the blocking artifacts.
Specifically, the HVS-based measure of blocking artifacts is
adopted, originally presented in [46]. In [46], Bovik and
Liu prove that this metric is very efficient and stable for the
blind measurement of blocking artifacts in DCT-coded im-
ages. According to this metric, brightness (luminance) mask-
ing and activity (texture) masking are the two most signifi-
cant effects when evaluating the visual perception of block-
ing artifacts. Masking also depends on the relative orienta-
tion [47]. In the following, the blockiness measure of [46] is
outlined.

Consider two vertically adjacent 8 × 8 blocks x1, x2. An
overlap block is formed composed of the bottom half of x1,
and the top half of x2 to constitute a new 8 × 8 block x. A 2D
step function in the block x is then defined as follows:

u =



−1
2

top half of the block x,
1
2

bottom half of the block x.
(25)

We also define S = ā− b̄ where ā is the average value of the
bottom four rows of x1, and b̄ is the average value of the top
four rows of x2. Since blocking artifacts have two particular
directions in the image, vertical and horizontal, an edge dis-
tortion will be more masked if the activity in the background
has the same orientation. To account for this property, two
distinct oriented activities are defined, vertical activity Av

and horizontal activity Ah, as follows:

Av =
7∑

v=1
v

7∑
u=0

∣∣F(u, v)∣∣, Ah =
7∑

u=1
u

7∑
v=0

∣∣F(u, v)∣∣, (26)

where F(u, v) are the DCT coefficients of the overlapped
block x [47].

For vertical blocking artifacts (vertically adjacent blocks),
the vertical activity will be dominant, hence

Atotal
v = Av + qAh. (27)

Similarly, for the horizontal artifacts (horizontally adjacent
blocks), the activity may be written as

Atotal
h = Ah + qAv, (28)

where q = 0.8 according to [47].
The masking of artifacts due to activity should vary as

a decreasing function of the local activity. Although some
more accurate yet complicated models have been advanced
[47, 48], in [46] a simple model is proposed to facilitate some
real-time applications:

Sa =
|S|

1 + Atotal
, (29)

where |S| is the amplitude of 2D step function in block x,
Sa is the visibility of the artifact after activity masking, and
Atotal can be either Atotal

v or Atotal
h , depending on the direc-

tion of the blocking artifact being considered (in our case
it is Atotal

v , since we considered the vertically adjacent blocks
x1, x2). The visibility of the blocking artifact also depends on
the brightness of the local background [47, 48]. To account
for this phenomenon, we adopt the model proposed in [48],
which is

Sb =
Sa

1 +
(
B/B0

)r , (30)

where B is the average value of block x, B0 = 150, and r = 2
[46].

These valuesmay be combined to give a numerical metric
of the image quality regarding the vertical blocking effect, as
follows:

St =

(∑N
k=1

(
Sb
)p
k

N

)1/p

, (31)

where N is the total number of interblock boundaries in the
image, St is the global measure of the blocking artifacts in the
image, and the usual value of the exponent is p = 4 [47].

A similar formula for St can be produced if we apply
the above procedure to the horizontally adjacent blocks.
Therefore, since blocking effects in the horizontal and ver-
tical directions generally have no difference in principle,
we evaluate the overall image quality metric as the average
of the values of St metric for the horizontal and vertical
directions.
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Inverse quantization
of the quantized
DCT coefficients

Distribution based
DCT coefficient
restoration

Inverse DCT Region
classification

Low-details areas Smoothing
operator

Reconstructed
image with reduced
blocking artifacts

High-details areas

Adaptive Gaussian
type filter

Frequency domain stage Spatial domain stage

Figure 2: A flow graph of the proposed scheme for blockiness reduction.

Table 1: Blocking artifact measurement in terms of St (as defined in [46]) comparing among the standard JPEG compression, the adaptive
POCS method of [13], the postprocessing method proposed in [10], our algorithm A (which uses the Laplacian distribution), and our
algorithm B (which uses the Cauchy distribution).

Original Bit per pixel JPEG Algorithm Algorithm Our algorithm Our algorithm

image in [13] in [10] A B

Lena 0.3 bpp 5.9 5.9 5.7 5.2 5.1

512 × 512 0.4 bpp 3.1 3.0 2.8 2.6 2.6

Peppers 0.3 bpp 6.1 6.0 5.5 5.4 5.4

512 × 512 0.4 bpp 3.3 3.1 2.9 2.8 2.7

Tower 0.3 bpp 2.2 2.1 2.1 2.0 1.9

512 × 512 0.4 bpp 1.3 1.3 1.3 1.1 1.0

Barbara 0.3 bpp 7.9 7.7 7.4 7.1 7.1

512 × 512 0.4 bpp 6.0 5.8 5.8 5.6 5.5

Cameraman 0.3 bpp 7.4 7.4 7.3 7.0 6.9

256 × 256 0.4 bpp 2.9 2.7 2.7 2.2 2.2

In our experiments, the encoded images were decoded
using the standard JPEG bin center reconstruction as well as
biased reconstruction, as described in Section 3. For biased
reconstruction, the three algorithms presented in Section 4
were tested. The first algorithm [32] assumes Laplacian pdf
and employs the estimate a =

√
2/σF , which uses the vari-

ances of the reconstructed DCT coefficients, when the sec-
ond algorithm [33] employs an ML estimation of the Lapla-
cian parameter. Finally, the last algorithm assumes a Cauchy
pdf for the AC coefficients.

Experiments show that the best results among these algo-
rithms assuming Laplacian pdf are obtained from the tech-
nique [33] which uses the ML estimation of the a param-
eter, since this seems to be a more efficient estimation of
the Laplacian parameter compared to the simple estimation,
a =

√
2/σF . The results obtained under the assumption that

the AC coefficients follow a Cauchy distribution are also very
promising.

Figure 2 shows the proposed two-fold scheme which was
used for our experiments. We compared our method us-
ing the metric St described above. Table 1 shows the results

obtained if St is calculated for various images at different bit
rates. We compared our algorithm to the method of adaptive
POCS in [13] and to the method of [10]. The latter also em-
ploys a signal adaptive filtering. Our approach, using either
Laplacian distribution or Cauchy distribution, shows a sig-
nificant reduction of St and clearly outperforms the methods
in [10, 13] (see Table 1). Comparing the results after apply-
ing our algorithm, we infer that results based on the assump-
tion of a Cauchy distribution are better (approximately 3%–
10% better) than those based on the assumption of a Lapla-
cian distribution, which was expected, since the Cauchy pdf
is a better model for the AC coefficients of the DCT trans-
form. Hence, in our experiments we chose to use the Cauchy
pdf coefficient estimation algorithm before applying spatial
adaptive filtering.

In Figure 3, the performance of the proposed method
for the JPEG compressed Lena image is illustrated. To bet-
ter investigate the performance of the proposed algorithm,
two areas of the image with different characteristics were
zoomed in: Figure 4 illustrates a magnified part of the facial
area of Lena from the JPEG-coded and the processed image,
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(a) (b)

Figure 3: (a) The JPEG coded Lena image at 0.28 bpp. (b) The
Lena image after applying the proposed method for blockiness
reduction.

(a) (b)

Figure 4: (a) A low-texture portion of JPEG coded Lena image at
0.32 bpp. (b) The same portion of the Lena image after applying the
proposed method for blockiness reduction.

(a) (b)

Figure 5: (a) A high-texture portion of JPEG coded Lena image at
0.32 bpp. (b) The same portion of the Lena image after applying the
proposed method for blockiness reduction.

respectively. It can be seen that blockiness has been reduced
in the slowly changing areas of the face. In Figure 5, a part
near the hat in the Lena image is magnified. This example
illustrates that the noise has been reduced in the edges.

Finally, a visual illustration of the performance of our

(a) (b)

Figure 6: (a) A portion of JPEG coded Barbara image at 0.43 bpp.
(b) The same portion of the Barbara image after applying the pro-
posed method for blockiness reduction.

(a) (b)

Figure 7: (a) A portion of JPEG coded Boat image at 0.40 bpp. (b)
The same portion of the Boat image after applying the proposed
method for blockiness reduction.

(a) (b)

Figure 8: (a) A portion of JPEG coded Peppers image at 0.35 bpp.
(b) The same portion of the Peppers image after applying the pro-
posed method from blockiness reduction.

method, showing the JPEG reconstructed magnified por-
tions of Barbara, Boat, Peppers, Crowd, Tower, and Camera-
man images and the corresponding reconstructed portions
of the images processed by the proposed method are shown
in Figures 6, 7, 8, 9, 10, and 11.
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(a) (b)

Figure 9: (a) A portion of JPEG coded Crowd image at 0.45 bpp. (b)
The same portion of the Crowd image after applying the proposed
method from blockiness reduction.

(a) (b)

Figure 10: (a) A portion of JPEG coded Tower image at 0.31 bpp.
(b) The same portion of the Tower image after applying the pro-
posed method from blockiness reduction.

6. CONCLUSIONS

When images are compressed using B-DCT transforms, the
decompressed images often contain bothersome blocking ar-
tifacts which constitute a serious bottleneck for many im-
portant visual communication applications. This paper pre-
sented a novel algorithm applied in both compressed and
spatial domains, in order to reduce these blocking artifacts.
In our approach, the Cauchy statistical model is adopted for
the AC coefficients and a satisfactory estimation of the DCT
reconstructed coefficients is produced. Then, a novel post-
processing procedure consisting of high- and low-detail re-
gions classification and a spatial adaptive filtering is applied
for the removal of blocking artifacts. The type of filtering is
decided based on an estimation of the local characteristics of
the coded image. Experimental results show that the spatial
adaptive filter along with the distribution based DCT coeffi-
cient restoration is efficient in reducing the annoying block-
ing artifacts in B-DCT compressed images. In conclusion, the
proposed processing algorithm is effective and stable across
different images for the reduction of the blocking effects, and
thus, enhances JPEG images without the need for any bit rate
increase.

(a) (b)

Figure 11: (a) A portion of JPEG coded Cameraman image at
0.51 bpp. (b) The same portion of the Cameraman image after ap-
plying the proposed method from blockiness reduction.
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