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We propose a 3-step algorithm for the automatic detection of moving objects in video sequences using region-based active con-
tours. First, we introduce a very full general framework for region-based active contours with a new Eulerian method to compute
the evolution equation of the active contour from a criterion including both region-based and boundary-based terms. This frame-
work can be easily adapted to various applications, thanks to the introduction of functions named descriptors of the different
regions. With this new Eulerian method based on shape optimization principles, we can easily take into account the case of de-
scriptors depending upon features globally attached to the regions. Second, we propose a 3-step algorithm for detection of moving
objects, with a static or a mobile camera, using region-based active contours. The basic idea is to hierarchically associate temporal
and spatial information. The active contour evolves with successively three sets of descriptors: a temporal one, and then two spa-
tial ones. The third spatial descriptor takes advantage of the segmentation of the image in intensity homogeneous regions. User
interaction is reduced to the choice of a few parameters at the beginning of the process. Some experimental results are supplied.

Keywords and phrases: detection of moving objects, video sequences analysis, region-based active contours, level-set method.

1. INTRODUCTION

Automatic segmentation of video objects is still a matter
of intensive research and is a crucial issue for the develop-
ment of the new video coding standards MPEG-4 [1, 2] and
MPEG-7 [3]. Indeed, object-based coding attracts now a
considerable attention. Actually, it will open new areas of ap-
plications in the field of video production and multimedia
interface.

Generally speaking, two classes of approaches may be
considered for segmentation: region-based approaches such
as Markov random fields [4], and boundary-based ap-
proaches. Originally, active contours were boundary-based
methods. Indeed, snakes [5], balloons [6], or geodesic ac-
tive contours [7] are driven by the minimization of energy
towards the edges of an image. However, for video objects
detection, it is interesting to incorporate region-based infor-
mation in the evolution equation of the active contour.

In this context, we propose a generalized Eulerian frame-
work for region-based active contours. This general frame-

work is then applied to the detection of moving objects from
video sequences acquired with either a moving or a static
camera.

First, a general framework for region-based active con-
tours is introduced. Starting from a criterion including both
region-based and boundary-based terms, we build a new
efficient method, based on shape optimization principles, to
compute the evolution equation of an active contour. This
method ensures the fastest decrease of the active contour
towards a minimum of the criterion. In this criterion, each
region is described by a function named descriptor. For a par-
ticular application, the user only has to choose well-adapted
descriptors.

The second contribution of this paper is to propose a
3-step algorithm for detection of moving objects using the
previous general framework. In this algorithm, the active
contour evolves with successively three sets of descriptors.
The first set is motion-based while the two others use spatial
information, namely, edges and partition of the image into
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intensity homogeneous regions. The first stage enables to
detect moving objects while the two others refine the result.
In our method, the user does not have to select the object.
User interaction is thus reduced to the choice of a few param-
eters at the beginning of the segmentation process. As far as
sequences with mobile cameras are concerned, camera mo-
tion compensation and segmentation are jointly performed.
The camera motion model is directly included in the crite-
rion to minimize. It is estimated from frame to frame using
potential functions. We take advantage of the half quadratic
theorem [8] for robust estimation with the strategy based on
alternate minimizations [9].

The general framework for region-based active contours
is detailed in Section 2, the 3-step algorithm for video ob-
jects detection is explained in Section 3. Section 4 illus-
trates the potential of our approach by applying it to real
sequences.

2. REGION-BASED ACTIVE CONTOURS

Themain idea of this part lies in the development of a general
framework for the segmentation of an image in two different
regions using region-based active contours. We want to find
the image partition that minimizes a criterion including both
region-based and boundary-based terms. In this framework,
each region is described using a function that we name de-
scriptor of the region. The introduction of such descriptors
is interesting for two reasons. First, for a given application
like detection of moving objects, various descriptors can be
easily tested inside the same theoretical framework or hierar-
chically combined as in Section 3.

Some authors [10, 11, 12, 13, 14, 15, 16, 17] have pro-
posed a way of adding region-based terms in the evolu-
tion equation of an active contour. These pioneer works
are complementary and show the potential of region-
based approaches. Some works suggest to choose the dis-
placement of the active contour that will make the cri-
terion decrease at each step. Some other works pro-
pose to compute the evolution equation of the active
contour using Euler-Lagrange equations. With this last
method of computation, the case of descriptors depend-
ing upon features globally attached to the region (region-
dependent descriptors as the mean or the variance of a
region) cannot readily be taken into account.

In this paper, we introduce a general framework and
propose a new Eulerian method for the computation of
the evolution equation of the active contour. The veloc-
ity vector of the active contour is computed by introduc-
ing a dynamical scheme directly in the criterion to min-
imize as in [18, 19]. However, we propose here a new
formulation of the derivation using shape optimization
tools. We compute the theoretical expression of the ve-
locity vector that will make the active contour evolve as
fast as possible towards a minimum of a criterion includ-
ing both region-based and boundary-based terms. More-
over, this theoretical expression is computed for both region-
dependent and region-independent descriptors. In the case
of region-dependent descriptors, some additional terms

appear in the evolution equation that have not been com-
puted so far.

2.1. Introduction of a general criterion

Let In be the intensity of image number n in the sequence and
Ωn the image domain of frame number n. The image domain
is considered to be made up of two parts: the foreground
part, containing the objects to segment, denoted by Ωn,in,
and the background part denoted by Ωn,out. The discontinu-
ities set is a curve denoted by Γn that defines the boundary
between the two domains.

We search for the two domains Ωn,in and Ωn,out which
minimize the following criterion Jn:

Jn
(
Ωn,out,Ωn,in, Γn

)
=
∫∫

Ωn,out

k(n,out)
(
Ωn,out, x, y

)
dx dy

+
∫∫

Ωn,in

k(n,in)
(
Ωn,in, x, y

)
dx dy +

∫
Γn

k(n,b)(x, y)ds.

(1)

The first two terms are region-based while the third term
is boundary-based. The functions k(n,out)(·), k(n,in)(·), and
k(n,b)(·) are, respectively, called descriptor of the background
region, descriptor of the objects, and descriptor of the
boundary. The region descriptors may be globally attached
to their respective regions, Ωn,in or Ωn,out, and so depend on
them. It happens when statistical features of a region like, for
example, the mean or the variance, are selected as descrip-
tors.

To compute an optimal solution, a dynamical scheme is
introduced where the unknown regions become a function
of an evolving parameter τ:

Jn
(
Ωn,out(τ),Ωn,in(τ), Γn(τ)

)
=
∫∫

Ωn,out(τ)
k(n,out)

(
Ωn,out(τ), x, y

)
dx dy

+
∫∫

Ωn,in(τ)
k(n,in)

(
Ωn,in(τ), x, y

)
dx dy

+
∫
Γn(τ)

k(n,b)(x, y)ds.

(2)

The functional Jn(Ωn,out(τ),Ωn,in(τ), Γ(τ)) is thereafter de-
noted by Jn(τ), and the descriptors k(n,out)(Ωn,out(τ), x, y)
and k(n,in)(Ωn,in(τ), x, y) are, respectively, denoted by
k(n,out)(τ, x, y) and k(n,in)(τ, x, y), which gives

Jn(τ) =
∫∫

Ωn,out(τ)
k(n,out)(τ, x, y)dx dy

+
∫∫

Ωn,in(τ)
k(n,in)(τ, x, y)dx dy

+
∫
Γn(τ)

k(n,b)(x, y)ds.

(3)

Here Γn(τ) is modeled as an active contour that converges
towards the final expected segmentation. Let Γn0 be the initial
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curve, recall that we search for Γn(τ) as a curve evolving ac-
cording to the following partial differential equation (PDE):

∂Γn(τ)
∂τ

= vn, (4)

where vn is the velocity of the active contour for frame num-
ber n. The main problem lies in finding the velocity vn from
criterion (3) to get the fastest curve evolution towards the fi-
nal segmentation.

2.2. Computation of the derivative

In order to obtain the evolution equation, the criterion Jn(τ)
must be differentiated with respect to τ. Define the func-
tional kn(x, y, τ) such that

kn(x, y, τ) =

{
k(n,out)(x, y, τ), if (x, y) ∈ Ωn,out(τ),

k(n,in)(x, y, τ), if (x, y) ∈ Ωn,in(τ).
(5)

The criterion Jn(τ) writes as

Jn(τ) =
∫∫

Ωn

kn(x, y, τ)dx dy +
∫
Γn(τ)

k(n,b)(x, y)ds

= J1(τ) + J2(τ),

(6)

where the image domain Ωn = Ωn,out(τ) ∪ Ωn,in(τ) ∪ Γn(τ)
and

J1(τ) =
∫∫

Ωn

kn(x, y, τ)dx dy,

J2(τ) =
∫
Γn(τ)

k(n,b)(x, y)ds.
(7)

In order to compute the derivative of the criterion J1, dis-
continuities must explicitly be taken into account. We first
remind a general theorem concerning the Eulerian derivative
of a time-dependent criterion. We define Ω(τ) as a region
included into Ωn.

Theorem 1. Let k be a smooth function on Ω × (0, T), and let
J(τ) =

∫∫
Ω(τ) k(x, y, τ)dx dy, then

dJ

dτ
= J ′(τ) =

∫∫
Ω(τ)

∂k

∂τ
dx dy −

∫
∂Ω(τ)

k
(
w ·N∂Ω

)
ds, (8)

where w is the velocity of ∂Ω(τ) and N∂Ω is the unit inward
normal to ∂Ω(τ).

For details of the proof see [20]. The variation of J is due
to the variation of the functional k(x, y, τ) and to the motion
of the integral domainΩ(τ). As a corollary of Theorem 1, we
get the following.

Corollary 2. Suppose that the domain Ω(τ) is made up of two
parts,Ωin(τ) andΩout(τ) separated by a moving interface Γ(τ)
whose velocity is v. The function k(x, y, τ) is supposed to be sep-
arately continuous inΩin(τ) andΩout(τ) but can be discontin-
uous across Γ(τ). Denote by k(in) and k(out) the value of k in

Ωin(τ) and Ωout(τ), respectively. Thus the derivative of J(τ) is
written as

J ′(τ) =
∫∫

Ω(τ)

∂k

∂τ
dx dy −

∫
∂Ω(τ)

k
(
w ·N∂Ω

)
ds

+
∫
Γ(τ)

[[k]](v ·N)ds,
(9)

where [[k]] represents the jump of k across Γ(τ), [[k]] =
k(out) − k(in), and N the unit normal to Γ(τ) directed from
Ωout(τ) to Ωin(τ).

It is now straightforward to get the derivative of the cri-
terion J1(τ): we take Ω(τ) = Ωn the image domain, k = kn,
Ωout(τ) = Ωn,out(τ), Ωin(τ) = Ωn,in(τ), and Γ(τ) = Γn(τ).
The boundary of the image domain Ωn is fixed and so, by
explicitly taking the discontinuities into account, thanks to
the corollary, we get the following expression:

J ′1(τ) =
∫∫

Ωn,in(τ)

∂k(n,in)

∂τ
dx dy +

∫∫
Ωn,out(τ)

∂k(n,out)

∂τ
dx dy

+
∫
Γn(τ)

(
k(n,out) − k(n,in)

)(
vn ·N

)
ds.

(10)

The derivative of J2 is classical [7] and so, the derivative of
the whole criterion is the following:

J ′n(τ) =
∫∫

Ωn,in(τ)

∂k(n,in)

∂τ
dx dy +

∫∫
Ωn,out(τ)

∂k(n,out)

∂τ
dx dy

+
∫
Γn(τ)

( − k(n,b) · κ +∇k(n,b) ·N)(
vn ·N

)
ds

+
∫
Γn(τ)

(
k(n,out) − k(n,in)

)(
vn ·N

)
ds,

(11)

where κn(x, y, τ) is the curvature of Γn(x, y, τ).
For descriptors that do not depend on τ, the first two

integrals are null. In this article, we express the derivative in
the general case where descriptors may depend on τ. We take
k(n,in) and k(n,out) as a combination of functions depending
upon features globally attached to the regions. We have

k(n,in)(x, y, τ) = g(in)
(
x, y, G(in)

1 (τ), . . . , G(in)
p (τ)

)
,

k(n,out)(x, y, τ) = g(out)
(
x, y, G(out)

1 (τ), . . . , G(out)
m (τ)

)
,

(12)

where

G(·)
j (τ) =

∫∫
Ωn,·(τ)

ψ(·)
j (x, y, τ)dx dy (13)

with (·) = (in) or (out). As an example, if the descriptor k(n,in)

is chosen to be the mean of the region, we have

k(n,in) =

∫∫
Ωn,in(τ)

In(x, y)dx dy∫∫
Ωn,in(τ)

dx dy
. (14)



A 3-Step Algorithm Using Region-Based Active Contours for Video Objects Detection 575

And so it can be expressed as a combination of features de-
pending on the region as

k(n,in)(x, y, τ) = g(in)
(
x, y, G(in)

1 (τ), G(in)
2 (τ)

)
, (15)

where

g(in) =
G(in)
1 (τ)

G(in)
2 (τ)

,

G(in)
1 (τ) =

∫∫
Ωn,in(τ)

ψ(in)
1 , ψ(in)

1 (x, y) = In(x, y),

G(in)
2 (τ) =

∫∫
Ωn,in(τ)

ψ(in)
2 , ψ(in)

2 (x, y) = 1.

(16)

Now we first compute the derivative of k(n,in) in the general
case using Theorem 1, we obtain that

∫∫
Ωn,in(τ)

∂k(n,in)

∂τ
dx dy =

p∑
j=1

A(in)
j

∫∫
Ωn,in(τ)

∂ψ(in)
j

∂τ
dx dy

−
p∑
j=1

A(in)
j

∫
Γn(τ)

ψ(in)
j

(
vn ·N

)
ds,

(17)

where

A(in)
j =

∫∫
Ωn,in(τ)

∂g(in)

∂G(in)
j

(
x, y, G(in)

1 (τ), . . . , G(in)
p (τ)

)
dx dy.

(18)
The expression for (·) = (out) is computed in the same man-
ner while paying attention to the direction of the normal vec-
tor, and we thus obtain the general expression for the deriva-
tive of J(τ)

J ′n(τ) =
∫
Γn(τ)

(
k(n,out) − k(n,in)

)(
vn ·N

)
ds

+
∫
Γn(τ)

( − k(n,b) · κ +∇k(n,b) ·N)(
vn ·N

)
ds

−
p∑
j=1

A(in)
j

∫
Γn(τ)

ψ(in)
j

(
vn ·N

)
ds

+
m∑
j=1

A(out)
j

∫
Γn(τ)

ψ(out)
j

(
vn ·N

)
ds

+
p∑
j=1

A(in)
j

∫∫
Ωn,in(τ)

∂ψ(in)
j

∂τ
dx dy

+
m∑
j=1

A(out)
j

∫∫
Ωn,out(τ)

∂ψ(out)
j

∂τ
dx dy.

(19)

2.3. From the derivative towards the evolution
equation of the active contour

The goal of this part is to compute the expression of the
velocity vector vn, which makes the curve evolve as fast as
possible towards a minimum of the criterion Jn. In order to

deduce the velocity vector of the active contour from the
derivative of the criterion, we have to make the velocity vec-
tor appear in the last two domain integrals by expressing
them as boundary integrals. This can easily be done using
Theorem 1, since domain integrals can always be expressed
as boundary integrals. However, for simplicity, consider the
cases where these the last two integrals are equal to zero,
which happens for most region-dependent descriptors [20].
In that case, according to the inequality of Cauchy-Schwartz,
the fastest decrease of Jn(τ) is obtained from (19) by choosing
vn = FnN which leads to the following evolution equation:

∂Γn(τ)
∂τ

=
[
k(n,in) − k(n,out) + k(n,b) · κ − ∇k(n,b) ·N

+
p∑
j=1

A(in)
j ψ(in)

j −
m∑
j=1

A(out)
j ψ(out)

j

]
N .

(20)

We may note that this expression is computed for different
examples of region-dependent descriptors in [20, 21]. In that
case, the additional terms have to be considered in order to
get the fastest decrease of the active contour towards a mini-
mum of the criterion.

If the descriptors do not depend on τ (region-indepen-
dent descriptors), the PDE is then reduced to the following
expression:

∂Γn(τ)
∂τ

=
[
k(n,in) − k(n,out) + k(n,b) · κ − ∇k(n,b) ·N

]
N . (21)

2.4. Implementationwith the level-set method
In a video sequence, several objects may appear in a scene. So
segmentation of video objects requires amethod where topo-
logical changes are well handled in order to detect several
objects from the same initial curve. On that account we
use the level-set method, proposed by Osher and Sethian
[22, 23], in order to implement the PDE (20). The key idea
is to introduce an auxiliary image Un(x, y, τ) such that Γn(τ)
is the zero level set of Un, Γn(τ) = {(x, y)/Un(x, y, τ) = 0}.
The function Un is often chosen to be the signed distance
function of Γn, and is then characterized by |∇Un| = 1.
This Eulerian formulation presents several advantages [23].
Firstly, the curve Γn(τ) may break or merge as the function
Un evolves, and topological changes are thus easily handled.
Secondly, the function Un(x, y, τ) always remains a function
allowing efficient numerical schemes. Thirdly, the geometric
properties of the curve, like the curvature and the normal
vector field N , can be estimated directly from the level-set
function:

κn = div

(
∇Un∣∣∇Un

∣∣
)
, N =

∇Un∣∣∇Un

∣∣ . (22)

The evolution equation then becomes

∂Un(τ)
∂τ

= Fn
∣∣∇Un

∣∣. (23)

The force Fn is computed only on the curve Γn(τ) but we
can extend its expression to the whole image domain Ωn. To
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implement the level-set method, solutions must be found to
circumvent problems coming from the fact that the signed
distance function Un is not a solution of the PDE (23) (see
[24]). In this work, the function Un is reinitialized so that it
remains a distance function, see [25] for details.

3. VIDEO OBJECT SEGMENTATIONWITH A 3-STEP
ALGORITHM

The main goal of this part is to describe an algorithm to seg-
ment moving objects in video sequences without any user
interaction during the segmentation. The user only has to
choose a set of parameters at the beginning of the segmenta-
tion process.

Our 3-step algorithm successively operates a motion-
based segmentation and two spatial-based segmentations, all
of them using region-based active contours. Three sets of
time-independent descriptors {k(n,out)(·), k(n,in)(·), k(n,b)(·)}
are used for each segmentation step. Obviously, the first set
is motion-based while the two others are spatial-based.

As far as the motion-based step is concerned, we propose
two options. The first one (a) is dedicated to video sequences
with a static camera whereas the second one (b) is dedicated
to sequences with a mobile camera.

The algorithm does not require initial object selection by
the user. Indeed the initial contour is choosen to be a rect-
angle near the borders of the first image (see Figure 1). The
contour is then driven by the first set of motion-based de-
scriptors, which allows us to detect moving objects more or
less precisely. We then use the final contour of this first detec-
tion as an initial curve for the second step. The second stage
drives the active contour towards the nearest edges of the
image. The resulting contour is then taken as initial condi-
tions for the third step which refines the detection by us-
ing segmentation of the image in intensity homogeneous
regions. For each step, the active contour is driven by the
PDE (21) by replacing the descriptors by their appropri-
ate values.

Note that the color space used is (Y,Cb, Cr). The lumi-
nance Y of the image In is designated by In(x, y, Y) while the
two chrominances Cb and Cr are designated by In(x, y, Cb)
and In(x, y, Cr), respectively. In this article In(x, y) designates
In(x, y, Y).

3.1. First step

Option a: motion-based descriptors for a static camera

For a static camera, motion may be detected by comparing
the current frame with a background frame Bn.

(a1) Computation of the background frame

In this paper, Bn is computed with a robust estimation on
a group of frames including the current frame. This frame is
not necessarily the real background of the sequence. We then
search for the frame Bn which minimizes,

∑
i∈[ j, j+nl]

∫
Ωn

ϕ
(∣∣Bn − Ii

∣∣), (24)

Step 1: Motion-based descriptors

Step 2: Descriptors using edges

Step 3: Descriptors using region partitions

Initial contour

Final contour

Figure 1:Mother and Daughter, the 3-step algorithm.

where nl is the number of frames chosen by the user to
compute Bn and j is a number of frame chosen such that
n ∈ [ j, j + nl].

In the Bayesian framework, ϕ is known as the potential
function and is introduced to eliminate outliers. Here, we
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choose the Geman and McClure estimator [26]:

ϕ(t) =
t2

1 + t2
. (25)

The minimization of (24) is done using the half qua-
dratic theorem with the strategy based on alternate mini-
mizations [9]. The background may also be computed as
in [27].

(a2) Motion-based descriptors for a static camera

The motion-based descriptors are thus the following:

k(n,out) =
∑
�

∣∣Bn − In
∣∣,

k(n,in) = α1,

k(n,b) = λ1,

(26)

where α1 and λ1 are two positive constants. The term � des-
ignates a neighbourhood of (x, y).

Option b: motion-based descriptors for amobile camera

For a mobile camera, the idea is to assume that the apparent
motion of the background can be modeled by a 6-parameter
affine motion model. These parameters are computed with
a robust estimation using motion vectors evaluated by a clas-
sical block matching. The moving objects are supposed to
be the pixels that are not compensated by the affine motion
model. In this part, we first explain how the six parameters
of the affine motion model are computed and then we detail
the descriptors used.

(b1) Cameramodel

The camera motion can be modeled by a 6-parameter affine
motion model, which is a good tradeoff between complexity
and representativity [28]. So the apparent motion wn(p) of
a point (x, y) of the static background, between frames In−1
and In, is modeled by

wn(p) = Anp + tn =

[
an11x + an12y + tn1

an21x + an22y + tn2

]
, (27)

with p = (x, y).
We search for the six parameters of the camera model

(27) which minimize the following criterion:∑
p∈Ωn

ϕ
(∣∣un − Anp − tn

∣∣). (28)

The function ϕ is introduced to eliminate outliers due to the
motion of moving video objects. We choose the Geman and
McClure estimator (25).

The motion field un is classically computed using a block
matching algorithm between frames In−1 and In.

In order to minimize criterion (28), we use the properties
of half quadratic regularization with the strategy based on al-
ternate minimizations [9]. The initial minimization problem

is in fact substituted for the equivalent problem:

(
An, tn

)
= argmin

(An,tn)

∑
Ωn

br2, (29)

where r = |un − Anp − tn| and b = ϕ′(r)/2r.
The algorithm based on alternate minimizations is then

the following, with k as the number of iteration:

Initialization
(
A0
n, t

0
n

)
Repeat

bk+1 =
ϕ′(rk)
2rk(

Ak+1
n , tk+1n

)
= argmin

(An,tn)

∑
Ωn

bk
(
rk+1

)2
Until convergence

The minimization of
∑

Ω bk(rk+1)2 is performed using
a gradient descent method. We thus obtain the six param-
eters of the affine motion model.

At convergence of the algorithm, the image b = ϕ′(r)/2r
gives a representation of the outliers due to the motion of
moving video objects.

(b2) Motion-based descriptors for amobile camera

Descriptors are then the following:

k(n,out)(p) =
∑
pi∈�

∣∣In(pi) − Proj
(
In−1

)(
pi
)∣∣,

k(n,in)(p) = ρ1,

k(n,b)(p) = λ1,

(30)

where λ1 and ρ1 are two positive constants.
The term Proj(In−1) designates the projection of the im-

age In−1 in the referential of image In:

Proj
(
In−1

)(
p + wn(p)

)
= In−1(p). (31)

3.2. Second step: edge-based descriptors

Let Γ1n be the final contour of step 1 (option a or b) andΩ1
n,in,

Ω1
n,out the two resulting domains. The region Ω1

n,in contains
pixels that are considered to belong to moving objects after
step 1.

In this step, we want to make the active contour evolve
towards the nearest edges in the image, and so, we choose the
following descriptors:

k(n,out) = c
(∣∣∇In∣∣), k(n,in) = α2, k(n,b) = λ2, (32)

where λ2 and α2 are two positive constants.
The function c is defined as follows:

c
(∣∣∇In∣∣) =



∣∣∇In∣∣, if (x, y) ∈ Ω1

n,in,

0, otherwise.
(33)
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This function allows to reach the nearest edge inside the first
segmented region and not outside.

3.3. Third step: descriptors using regions partition

Let Γ2n be the final contour of step 2, Ω2
n,in contains the pixels

of the image that are considered to belong to moving objects
after step 2.

In this third step, we first make a partition of the im-
age in intensity homogeneous regions using a region grow-
ing algorithm. We assume that a moving object is made
with the union of several regions. We consider that if a re-
gion is mostly included in the final moving object of step
2, Ω2

n,in, then the active contour will be driven in order to
include the whole region in the final moving object. On the
contrary, if the region is mostly included in the background
part, Ω2

n,out, then this region will be removed from the final
segmentation.

3.3.1 Region growingmethod

Frames are segmented into intensity homogeneous regions.
The pixel (x, y) belongs to the region Ri if it satisfies the fol-
lowing decision criterion:

∣∣In(x, y, Y) − µY
∣∣ ≤ σ,∣∣In(x, y, Cb

) − µCb

∣∣ ≤ σ,∣∣In(x, y, Cr
) − µCr

∣∣ ≤ σ,

(34)

where µY , µCb , µCr are the average intensity values of the
region Ri for, respectively, the luminance Y and the two
chrominances Cb and Cr . The parameter σ is the variance,
we take σ = 8.

We start from a pixel (x, y), and we check all the neigh-
borhood points. Points that verify the criterion are inserted
into the region. The region will expand until no more
neighborhood points can be added. The algorithm may be
improved by using much more efficient methods such as
binary partition trees [29].

3.3.2 Descriptors

The decision criterion used is based on the percentage of pix-
els included in Ω2

n,in as in [30] where it has been successfully
applied. The new idea here is to apply this decision criterion
directly in the criterion to minimize and so to embed the
decision criterion in the velocity vector of the active contour.
We call Ni the number of pixels of region Ri, and Ni,seg the
number of pixels of region Ri ∩ Ω2

n,in, that is, the pixels of Ri

that are inside the segmented region after step 2.
Descriptors are defined as follows:

k(n,out) = dout, k(n,in) = din, k(n,b) = λ3, (35)

where λ3 is a positive constant.
The functions din and dout are chosen to be

din(x, y) =


0, if

∣∣Ni−Ni,seg

∣∣
Ni ≤ 0.02,

1, otherwise,
(36)

with (x, y) ∈ Ri,

dout(x, y) =


1, if

∣∣Ni−Ni,seg

∣∣
Ni ≤ 0.02,

0, otherwise,
(37)

with (x, y) ∈ Ri.

3.4. Remarks
The parameters αi and ρi interact as threshold parameters,
see [31, 32] for detailed explanations. The parameter λi is
a regularization parameter that smoothes the curve [33]. In
order to reduce the number of parameters to choose, we take
λ1 = λ2 = λ3 = λ.

The final contour of frame number n is used as an ini-
tial contour for frame number n + 1. The initial contour is
reinitialized as a rectangle near the borders of every nbreinit
images, where nbreinit is specified by the user (usually we take
4 ≤ nbreinit ≤ 10).

4. EXPERIMENTAL RESULTS

The algorithm has been tested on three real sequences from
the research group COST 211 [34]: Coastguard, Mother and
Daughter, and Highway, and on the sequence Akiyo from
MPEG. ForCoastguardwe take ρ1 = 9, λ = 20, and α2 = 7000;
for Mother and Daughter we take α1 = 2.5, λ = 15, nl = 60,
and α2 = 1000; for Highway we take α1 = 16, λ = 15, nl = 30,
and α2 = 1000; and for Akiyo we take α1 = 0.8, λ = 25,
nl = 20, and α2 = 500.

In Figure 1, each step of the segmentation process is
detailed. After the first stage, moving objects are roughly
detected. The last two stages refine the result allowing an
accurate detection of moving objects.

In Figures 2, 3, 4, and 5, the final active contour is shown
with a white envelop. Moving objects are well detected in
all sequences either with camera motion or not, which illus-
trates the potential of our approach.

4.1. Evaluation of segmentation results

In order to evaluate the quality of segmentation results, the
European group COST 211 highlights some measurements
based on the comparison to a reference segmentation. Three
criteria are suggested [30], two for the evaluation of the spa-
tial accuracy of the result and one for that of the temporal co-
herency of the shape along the sequence. The term VOP des-
ignates a video object plan as it has been defined in MPEG-4
[2]. The segmentation result for frame number n is denoted
by Aest

n while the reference object is denoted by Aori
n . We re-

mind here these three criteria:

(1) Absolute VOP shape distorsion:

dabs
(
Aest
n , Aori

n

)
=

Nerr

Nframe
. (38)

(2) Relative VOP shape distorsion:

drel
(
Aest
n , Aori

n

)
=
Nerr

Nori
. (39)



A 3-Step Algorithm Using Region-Based Active Contours for Video Objects Detection 579

Figure 2: Mother and Daughter: final contours in white and ex-
tracted video objects.

Figure 3: Highway: final contours in white.

(3) Temporal coherency:

Test(n) = drel
(
Aest
n , Aest

n−1
)
, (40)

where Nerr designates the number of deviating pixels of the
segmented object compared to the reference mask, Nframe

designates the number of pixels of a frame, and Nori the
number of pixels of the reference object. The temporal
coherency Test(n) measures the average number of devi-
ating pixels of the segmented object between two frames
leading to an activity measure. This value may be com-
pared to the activity measure of the reference object Tori(n).

Figure 4: Akiyo: final contours in white.

Figure 5: Coastguard: final contours in white.

Reference segmentation results are available for sequences
Coastguard and Akiyo. The three criteria have been com-
puted for these two sequences. The results are given in
Figures 6 and 7.

In Figure 6, we can remark that the distorsion results
for Akiyo are very low, proving the accuracy of the segmen-
tation results. The temporal coherency results show a low
activity measure between two frames since the object does
not move a lot from frame to frame. The object is well
tracked over the sequence.

Coastguard has been acquired by a mobile camera and so
segmentation is much more difficult since the moving object
has to be extracted from a moving background. Moreover,
the reference segmentation takes into account a large part
of the moving water behind the boat while our algorithm
detects only the water under the boat, as it can be seen in
Figure 5. Despite all these difficulties, distorsion results in
Figure 7 show a good accuracy of the segmentation and tem-
poral coherency results show that the boat is well tracked
over the sequence without being lost.
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Figure 6: Evaluation results for Akiyo.
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Figure 7: Evaluation results for Coastguard.

5. CONCLUSION

We propose a 3-step algorithm to segment moving ob-
jects using region-based active contours. Three hierarchi-
cal stages make the initial active contour evolve towards
moving objects. The first step takes advantage of motion
information, while the two others take advantage of spa-
tial information, namely, edges and intensity homogeneous
regions of the image. This algorithm can be easily extended
by adding complementary steps and information as, for
example, the temporal coherency of the video object.
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