EURASIP Journal on Applied Signal Processing 2002:8, 771-786
(© 2002 Hindawi Publishing Corporation

Reduced-Rank Chip-Level MMSE Equalization for the 3G
CDMA Forward Link with Code-Multiplexed Pilot

Samina Chowdhury

School of Electrical Engineering, Purdue University, West Lafayette, IN 47907-1285, USA

Email: samina@ecn.purdue.edu

Michael D. Zoltowski

School of Electrical Engineering, Purdue University, West Lafayette, IN 47907-1285, USA

Email: mikedz@ecn.purdue.edu

J. Scott Goldstein

SAIC 4001 N. Fairfax Drive, Suite 400, Arlington, VA 22203, USA

Email: sgoldstein@trgl.saic.com

Received 31 July 2001 and in revised form 15 March 2002

INTRODUCTION

This paper deals with synchronous direct-sequence code-division multiple access (CDMA) transmission using orthogonal channel
codes in frequency selective multipath, motivated by the forward link in 3G CDMA systems. The chip-level minimum mean square
error (MMSE) estimate of the (multiuser) synchronous sum signal transmitted by the base, followed by a correlate and sum, has
been shown to perform very well in saturated systems compared to a Rake receiver. In this paper, we present the reduced-rank,
chip-level MMSE estimation based on the multistage nested Wiener filter (MSNWF). We show that, for the case of a known
channel, only a small number of stages of the MSNWF is needed to achieve near full-rank MSE performance over a practical
single-to-noise ratio (SNR) range. This holds true even for an edge-of-cell scenario, where two base stations are contributing
near equal-power signals, as well as for the single base station case. We then utilize the code-multiplexed pilot channel to train the
MSNWE coefficients and show that adaptive MSNWF operating in a very low rank subspace performs slightly better than full-rank
recursive least square (RLS) and significantly better than least mean square (LMS). An important advantage of the MSNWF is that
it can be implemented in a lattice structure, which involves significantly less computation than RLS. We also present structured
MMSE equalizers that exploit the estimate of the multipath arrival times and the underlying channel structure to project the data
vector onto a much lower dimensional subspace. Specifically, due to the sparseness of high-speed CDMA multipath channels, the
channel vector lies in the subspace spanned by a small number of columns of the pulse shaping filter convolution matrix. We
demonstrate that the performance of these structured low-rank equalizers is much superior to unstructured equalizers in terms of
convergence speed and error rates.

Keywords and phrases: CDMA forward link, minimum mean square error equalization, pilot code.

base station long code and then decorrelated with the desired
user’s spreading code. In a flat fading environment, this will

Mobile units in current code-division multiple access
(CDMA) cellular systems use a Rake receiver, which is a
maximal-ratio combiner and can be interpreted as a bank
of filters matched to the channel that combine the energy
from multiple paths [1]. The Rake filter is the optimum
(maximum likelihood) demodulator when there is no in-
terference from other users [1]. In 1S-95 and the proposed
third-generation (3G) systems, orthogonal Walsh-Hadamard
codes are used to spread the different users’ data symbols on
the forward link. At the downlink receiver, after removing the
coherent carrier, the signal is multiplied by the synchronized

ensure that any interference due to other users in the same
cell is eliminated.

However, in urban wireless systems, the fading is of-
ten not flat and the orthogonality of the underlying Walsh-
Hadamard codes is destroyed at the receiver, resulting in
multiple-access interference (MAI) at the receiver. Further-
more, if the multipath delay spread is a significant portion
of the symbol period, there will be considerable intersym-
bol interference (ISI) in addition to the MAI. There are also
major interference issues if the mobile unit is near the edge
of a cell and is receiving significant out-of-cell transmission,
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regardless of whether the fading is flat or not. In such en-
vironments, the Rake receiver is suboptimal, because it in-
herently treats MAI as uncorrelated noise. The multipath in-
duced MAI also necessitates very tight power control. When
many or all users are active in the cell, the bit error rate (BER)
curve of the standard Rake receiver flattens out at higher
signal-to-noise ratio (SNR) [2]. Thus, in situations where the
number of active users approaches the spreading gain, the
Rake receiver does not provide adequate performance.

The maximum likelihood multiuser detector was derived
in [3] for the general case, and was shown to have com-
putational complexity that increases exponentially with the
number of users. This makes the optimal receiver practi-
cally infeasible. Recently, chip-level downlink equalizers have
been proposed to significantly increase the capacity of 3G
CDMA based high-speed wireless communication links. In
the CDMA downlink, for a given user, the signals from all
users in the same cell propagate through the same multi-
path channel, so the multiple-access and interchip interfer-
ence can be suppressed by linear channel equalization at
the chip-level [4]. One advantage of chip-level equalization
is that the equalizer coefficients depend only on the down-
link multipath channel. In contrast, due to the base station
dependent pseudorandom scrambling code, the optimum
symbol-level equalizer varies from symbol to symbol, regard-
less of whether the multipath channel changes or not. Also,
the chip-level equalizer is valid for all users, as the coeffi-
cients do not depend on the channel short code [5]. Down-
link equalization prior to despreading to restore the orthog-
onality of the different users’ signals and hence suppress MAI
has been suggested in [2, 4, 5, 6, 7, 8, 9]. Of these, linear
zero-forcing (ZF) and minimum mean square error (MMSE)
equalizers (proposed by Ghauri and Slock [7] and indepen-
dently by Krauss et al. [2] and Zoltowski and Krauss [9]) em-
phasized the multichannel aspect by means of oversampling
and/or multiple antennas at the mobile station.

Given a perfect estimate of the common downlink chan-
nel, zero-forcing equalization is possible in the noiseless case,
regardless of the number of users, provided that sufficient
spatio-temporal diversity is available [7]. But in the practical
situation of noise in the received signal, the ZF equalizer may
suffer from significant noise enhancement. In [2], the sum of
the chip sequences from all the users is modeled as an i.i.d.
random sequence, resulting in a “simple” chip-level equal-
izer that does not depend on the (Walsh-Hadamard) channel
code, or the base station dependent long code. The equalizer
is followed by correlation with the desired user’s spreading
code and the output, downsampled by the spreading factor,
gives the symbol estimate. The resulting chip-level MMSE es-
timators with perfect channel estimation were shown to out-
perform both ZF and Rake [2].

References [2, 4, 5, 6, 7, 8, 9] all assumed that the chan-
nel statistics and noise power are known at the receiver,
hence the performances presented therein represent “upper-
bounds” achievable with perfect channel estimation. A blind
linear equalization algorithm which equalizes for the com-
mon downlink channel was proposed in [10], based on max-
imizing signal-to-interference plus noise ratio (SINR). Sev-

eral adaptive versions of chip-level equalizers have been pro-
posed, such as in [11, 12, 13]. In [11], the matched filter for
the chip sequence was followed by an adaptive chip decorre-
lator based on blind linear decorrelation. In [12], the Grif-
fith algorithm was used to update the multiuser chip esti-
mator. However, both receivers were assumed to have perfect
channel knowledge. A channel-response minimum-output
energy equalizer was proposed in [14], which outperforms
Rake for large number of users, provided that the channel es-
timation error is not significant. Adaptive equalization which
requires no knowledge of the channel or the other users’
codes was proposed by Frank and Visotsky in [5], where they
assumed synchronization with the base station long code and
suggested training at chip-level using the code-multiplexed
common pilot channel as reference, but no simulation re-
sults were presented. This straightforward adaptation does
not exploit the orthogonality of the channel codes, and can-
not suppress the intracell users due to pseudorandomness of
the long code. Hence the SNR in the adaptation is low and
the pilot-chip trained equalizer performs as poorly as Rake
except at high SNR [13].

For high data rate applications, the multipath delay
spread may span numerous chips so that the MMSE equalizer
requires computation of a large number of coefficients, and
may thus take an unacceptably long time to converge in adap-
tive implementations. As a result, application of reduced-
rank filtering methods in the context of equalization in
CDMA has been an active topic of research in recent years.
Goldstein et al. [15, 16, 17] first formulated the multistage
nested reduced-rank technique for approximating the classi-
cal Wiener filter. Their approach uses information from both
the covariance matrix and the cross-correlation vector to de-
termine the basis of a lower-dimension subspace that the
Wiener filter is constrained to lie within. This method does
not require any knowledge of the eigenvectors of the chan-
nel covariance matrix, and so involves much less computa-
tion than either the principal components (PC) [18] or the
cross-spectral components (CS) [19] methods, the two most
widely known reduced-rank techniques. A similar approach
was developed in [20, 21, 22] where they used an orthonor-
mal auxiliary vector (AV) in conjunction with the matched
filter (Rake) to maximize the SINR subject to constraints.

The authors of [23, 24], applied adaptive multistage
nested Wiener filter (MSNWEF) to the reverse link with asyn-
chronous users, flat fading, and no long code. An important
result from their analysis is that the rank D needed to achieve
a desired SINR does not scale with system size. Indeed,
through extensive supporting simulations, the MSNWF was
shown to achieve near optimal SINR performance with a
subspace of dimension roughly equal to D = 8 or less where
the full-rank space was of dimension 128. Another known
application of the MSN'WF is the cancellation of narrowband
and wideband jammers for global positioning system (GPS)
employing a power minimization based space-time prepro-
cessor [25, 26].

In this paper, we present reduced-rank, chip-level MMSE
estimators based on the MSNWEF algorithm. The main goal
of this paper is to demonstrate the superior performance
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of reduced-rank MMSE equalization for the CDMA down-
link. We show that, with perfect knowledge of the chan-
nel statistics, the MSNWEF requires only a small number of
stages to achieve near full-rank MMSE performance over
a wide range of SNR. We then use a training-based block
adaptive algorithm whereby the filter coefficients are adapted
on the symbol-level using the code-multiplexed pilot channel
that carries known symbols, to analyze the performance of
the MSNWF when the channel is unknown. The SINR plot
shows a convergence speed comparable to full-rank recursive
lease square (RLS) and much faster than full-rank least mean
square (LMS). Simulated bit error rate curves further illus-
trate the excellent performance of the MSNWE.

We also present a reduced-rank MMSE equalizer that ex-
ploits the structure and sparseness of the multipath chan-
nel under high-speed, wideband conditions. In this case, the
channel coefficients lie approximately in a subspace associ-
ated with only a few columns of the pulse shaping filter con-
volution matrix. We project the full-rank chip-level MMSE
equalizer onto this much lower-rank subspace and illustrate
a much better convergence rate than that achieved with an
unstructured MMSE equalizer of similar rank.

The results in this paper are for the CDMA forward link
with synchronous users, saturated loading, frequency selec-
tive fading, long code scrambling and employing two an-
tennas at the mobile receiver. The channel is assumed to be
unvarying with time, which is generally true over a short
time interval. We also assume that synchronization with the
base station long code has been achieved. The rest of the
paper is organized as follows. After describing the channel
and data models in Section 2, Section 3 derives the chip-
level MMSE estimator. Reduced-rank filtering based on the
MSNWEF is discussed in Section 4, and simulation results ob-
tained for the CDMA downlink is presented in Section 5.
Adaptive equalization based on the MSNWF is described in
Section 6 along with simulation results. We present the new
structured equalizer based on sparse multipath channel in
Section 7 and corresponding simulation results in Section 8.
Our conclusions are drawn in Section 9.

2. DATA AND CHANNEL MODEL

The channel model is shown in Figure 1. If the transmission
is from only one base station, the impulse response for the ith
antenna channel between the transmitter and receiver (mo-
bile station) is given by

Np—1

h (t) = Z hc, prc );

i=12 (1)

where h,[k] is the time-invariant complex gain associated
with the kth multipath at the ith antenna; p,.(t) is the com-
posite chip waveform (including the matched low-pass filters
on the transmit and receive end). The chip waveform is as-
sumed to have a raised cosine spectrum. And N,, is the total
number of delayed paths, that is, multipath arrivals, some of
which may have zero or negligible power, so that the channel
impulse response is sparse.

The transmitted “sum” signal may be described as
N —
s[n] = cpsln z Z i[m]cj[n — Nem], (2)

where cs[n] is the base station dependent long code, b;[m] is
the bit/symbol sequence of the jth user, ¢;[#n] is the jth user’s
channel (short) code of length N,, N, is the total number
of active users, N; is the number of bit/symbols transmitted
during a given time window.

The signal received at the ith antenna (after convolving
with a matched filter having a square-root raised cosine im-
pulse response) is given by

xi(t) = > s[nlhi(t — nT.) +ni(t),

n

i=12 (3)

where T, is the duration of one chip and #;(t) is a noise pro-
cess assumed white and Gaussian prior to coloration by the
receiver chip-pulse matched filter.

2.1. Edge of cell/soft handoff

We consider the interference problem when the desired user
is at the edge of a cell so that the total received signal at the
mobile station is the sum of the contributions from two base
stations, plus noise

i = 1, 2 antennas at receiver,

(4)

where x,(l)(t) denotes the signal received at the ith antenna
due to transmission from the /th base station, and x;(t) de-
notes the total received signal at the ith antenna.

At each antenna, we oversample the signal x;(¢) to obtain
riln] = x;(nT,) and r;[n] = x;(T./2 + nT,).

In the soft handoff mode, the desired user’s data is trans-
mitted simultaneously from the two base stations. At the re-
ceiver, two equalizers are designed, one for each base station.
The output of each of the two chip-level equalizers is cor-
related with the desired user’s channel code times the cor-
responding base station’s long code. These two symbol es-
timates are averaged to get the symbol estimate for the soft
handoff mode. The block-diagram for the chip-level MMSE
equalizer employing soft handoff is shown in Figure 2. In the
normal mode, the second base station is treated as interfer-
ence.

xi(1) = x V() +x2 (1) + :(8),

3. CHIP-LEVEL MMSE ESTIMATOR

The chip-level MMSE equalizer is designed to minimize the
MSE between the multiuser synchronous sum signal, s[#],
and the sum of the equalizer outputs, as depicted in Figures
1 and 2. Given the orthogonality of the channel codes, an
estimate of the symbol, b ;[m], can be obtained via a correlate
and sum with ¢; and ¢y, at the output of the chip-level MMSE
equalizer.

Equation (4) can be written more compactly in vector
form as
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Figure 1: Chip-level MMSE equalization for CDMA downlink with one base station.
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FiGURE 2: Chip-level MMSE equalization for CDMA downlink, two base stations, soft handoff.

x[n] = HYsW [n] + HYs@[n] + y[n]

— Jts[n] + nln), ®)

where H? is the 2N, x (L + N; — 1) channel convolution
matrix (N is the length of the equalizer, and L is the length
of the channel in chips.), comprised of

O]
H|

HO - [ (D] : ©)
H}

where

L -1) BPIL - 2] 7

0 0 Wir-1y -
J€ is the composite channel convolution matrix # =
[HD H@]. And s”[n] isan (L+ N, — 1) vector of the trans-
mitted signal, with the superscript denoting the correspond-
ing base station.

The corresponding formulae for only one transmitting

base station can be found by simply removing the term in-
volving H? from (5).

Krauss et al. [2] made some simplifying assumptions to
derive a chip-level MMSE equalizer that can be easily im-
plemented. The sequence values for the multiuser sum sig-
nal are assumed to be i.i.d. random variables. Otherwise,
the covariance matrix of the sum signal s[n] is a compli-
cated expression involving the Walsh-Hadamard spreading
codes that vary from index to index. The i.i.d. assumption
is valid if the (long) scrambling code is viewed as a random
i.i.d. sequence and/or all users are active with equal power.
With this assumption, the covariance matrix of the signal is
E{s[n]"s[n]} = 621, and the MMSE equalizer was shown
to be

-1
gl = o293t + R} HDOp, (8)

where 8p, is a column vector of all zeros except 1 in the (D, +
1)th position, D, is the combined delay of the equalizer and
channel, o? is the signal power, and R,, = EqH [nln[n]].
In [2] and Section 5 of this paper, the delay D, 0 < D, <
(Ng + L — 2), that yields the smallest MMSE is calculated us-
ing the actual channel statistics and that D, is used in the
simulations.

Equation (8) has the form of the well-known Wiener-
Hopf solution,

w =Ry, (9)
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FIGURE 3: Structure of successive stages of the multistage nested Weiner filter.

where R,, is the channel covariance matrix and rgy is the
cross-correlation vector.

In [2, 27], the authors showed that the MMSE signifi-
cantly outperforms the Rake receiver, especially when a large
number of channel codes are active relative to the spreading
factor. The difference is more pronounced when soft handoff
is unavailable.

4. REDUCED RANK FILTERING

In general, the length of an MMSE equalizer should be at
least equal to the channel length to achieve the desired per-
formance, and longer equalizers yield better error rates [28].
Hence equalizers in the high-speed CDMA downlink will by
necessity span many chips in length with a corresponding
large number of degrees of freedom. In order to reduce the
number of filter coefficients to be estimated, the received sig-
nal vector may be projected onto a lower dimensional sub-
space, and the Wiener filter given by (9) constrained to lie
in this subspace. This increases the speed of convergence
dramatically for adaptive methods, if the subspace is cho-
sen properly. But the overall MMSE for the reduced-rank
filter may be higher than the MMSE for the full-rank fil-
ter. The most widely known reduced rank techniques in sig-
nal processing are the principal components method [18]
and the cross-spectral methods [19], both based on eigen-
decomposition of the channel covariance matrix.

4.1. Multistage nested Wiener filter

Goldstein et al. [15, 16, 17] first formulated the MSNWE,
which uses information from the channel covariance matrix,
R, and cross-correlation vector, gy, to determine the bases
of the lower-dimension that w is constrained to lie within.
The structure of the MSNWEF is depicted in Figure 3. At each
stage, a rank-one basis is selected based on maximal correla-
tion between the desired signal, dy, and the observed signal
Xo[n]. The observed vector process is decomposed by a se-
quence of nested filters py, p2, - - ., pp, where D is the order of
the filter,

E[Xk—l dlzk—l]

Pk = E[xe, g, 11T (10)

and di = py'xi-1.

o Initialization:
¢ = ra = E[Xodg ], & = \riiras,
o Forward recursion:
Fork=1,2,...N —1Do
(1) px = cx/b,
(2) By = null(py),
(3) dx = pfxk-1,
(4) xx = Brxy1,
(5) ckn = Elxdf],
(6) Oke1 = 4 CﬁlckH)
e End
Xy_1 = dy = €N,
e Backward recursion:
én = Ellxn-11%], On = Elxn—1 d5 1], wy = 6n/8y,
e Fork=N-1,...,2,1 Do
(1) €k = dx — Wis1€ks15
(2) & = 02, — 8 /Been,
(3) wi = O/,
e End

ALGORITHM 1: Basic MSNWF algorithm.

The input process to the (k + 1)th stage is xx[n] =
Bixx—1[n], where By is a blocking matrix such that Bxpy = 0.

The outputs of the various stages are linearly combined
via the scalar weights, wi, wa,..., wp_1, chosen so that the
mean square error at each stage is minimized. If the decom-
position is carried out for the full N stages, then the multi-
stage nested filter is exactly equivalent to the full-rank clas-
sical Wiener filter [15]. The filter-bank structure whitens the
error residue at each stage, and compresses the colored por-
tion of the observed data subspace and hence, it is optimal
in terms of reducing the MSE for a given rank. The MSNWF
does not require any eigen decomposition or inversion of the
covariance matrix, and so represents a significant reduction
in complexity over the full-rank Wiener solution and other
reduced-rank techniques. This is very important for practical
implementations, particularly if the rank one decomposition
can be stopped after a few stages. The basic algorithm, based
on [15] is listed in Algorithm 1.

It is straightforward to see that the “desired” signal at
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do(k)

Modular structure

The filter can be
truncated at any
stage

D<N-1.

FiGure 4: MSNWEF as a lattice filter.

each stage, di[n] is the output of a length N filter,

k-1
= (]_[ B,.H>pk. (11)

i=1

A notable feature is that the first filter is orthogonal to
filters of all the following stages, that is,

cei =6, k=12...,N, (12)

Oxi denotes the Kronecker delta function, which is 1 for k =

i, and 0 otherwise. However, the filters hy, k = 2,3,..., N,

are not mutually orthogonal in general. The operation of the

analysis filter-bank can be combined into a D X N transfer
matrix, given by

I .
HB 1
P2 bi cgl

Tp = = 1. (13)

The orthogonal decomposition ensures that the reduced di-
mension D X D correlation matrix TDRxng is tridiagonal
[15].

Honig and Xiao [24] first proposed choosing a projec-
tion matrix on to the subspace orthogonal to pi as the block-
ing matrix at each stage, hence retaining the length N of the
filter and the “observed signal” x,[n]. With this choice for
the blocking matrix, Tp = [p1 p2 - pp] forms an or-
thonormal basis for the reduced dimension subspace. More-
over, w is constrained to lie in the Krylov subspace spanned
by {rix Ruxlax R2Tax, ... R271rg.} [24]. In this case,

(I - prpy! ) Re—1px
(I - pepg ) Re— 1|’

Pk+1 = (14)

where

Ri = (I-pipl )Reo1 (I-pipl), fork=1,2,...,D, (15)
P1 = Tix, Ro = Ry

Joham and Zoltowski [29] proved that this choice of
the blocking matrix, that is, By = I — pxpk, is optimum
in terms of maximizing the correlation between the scalar
signals di[n] and di_1[n] at each stage. They developed a
covariance-level order recursive form of the MSNWF working
within the Krylov subspace, in which the backwards recur-
sion coefficients and hence the weight vector and the mean
square error, may be updated at each stage via a simple re-
cursion.

4.2. Lattice structure of the MSNWF

The blocking matrix is a very useful concept to develop and
analyze the performance of the MSNWE, but in practice,
there is no need to calculate or store these N X N matrices. A
new reduced-complexity implementation was presented by
Ricks and Goldstein in [30] based on the following substitu-
tion: at the kth stage

di[n] = pixr_1[n],

xi[n] = Bixp_1[#n]
= [1- p{pr]xk-1[n]
= X¢_1[n] — dx[n]pk.

(16)

This leads to the “lattice-type” structure for a D-stage
MSNWE as shown in Figure 4. This architecture has the ben-
efit of being modular and scalable for hardware implementa-
tion, as well as being computationally more efficient than the
structure depicted in Figure 3.

5. APPLICATION OF MSNWF TO CDMA DOWNLINK

Our first set of results solves for chip-level MMSE equaliza-
tion based on (8) when only one base station is transmitting
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FIGURE 5: Typical channel impulse response for simulated model.

and finds the “ideal” MSNWF solution after various stages,
assuming that Ry, and ry, are known (perfect channel esti-
mation). The same simulations are also done for the edge of
cell situation, when two base stations of equal power are re-
ceived at the mobile-station and the receiver uses soft hand-
off.

A wideband CDMA forward link was simulated similar
to one of the options in the US CDMA2000 proposal. The
chip rate was 3.6864 MHz (T, = 0.27 us), 3 times that of IS-
95. Simulations were performed for a saturated cell, that is, all
possible 64-channel codes are active, and all users have equal
power. The spreading factor was N, = 64 chips per bit. The
data symbols were BPSK, and spread with one of 64 Walsh-
Hadamard codes. The signals were summed synchronously
and then multiplied with a QPSK scrambling code of length
32678, similar to the IS-95 standard.

The channels were modeled to have four equal-power
multipaths, uniformly distributed within a delay spread of
10 microseconds (corresponding to about 37 chips). The
multipath coefficients are complex normal, independent ran-
dom variables. The arrival times at antenna 1 and 2 are
the same, but the multipath coefficients are independent.
Figure 5 shows a typical channel’s impulse response with
tails, sampled at the chip rate.

In the two-base station case, the maximum delay spread
of the downlink channel from the second base station is
also 10 microseconds, with 4 dominant multipaths arrivals
at random. The channels are scaled so that the total energy
from each of the two base stations is equal at the receiver.
Specifically,

M M
> E{xPial*t = Y E{ 221 ()
m=1 m=1

SNR is defined to be the ratio of the sum of the average power
of the received signals over all the channels, to the average

noise power, after chip-matched filtering. Since the spread-
ing factor (number of chips per symbol) is equal to the num-
ber of users, and each user contributes the same amount of
power, this chip signal SNR is equal to the postcorrelation (or
despread) SNR per user per symbol. The curves were gener-
ated by averaging 100 or more different channels. Note that
the abscissa in the graphs is the postcorrelation SNR for each
user, which includes a processing gain of 10log(64) ~ 18 dB.

Figure 6 plots the mean square error for the different
reduced-rank methods as a function of the subspace dimen-
sion, D. The channel statistics and noise power are assumed
to be known. In the single base station case, Figure 6a, the di-
mension of the full space is 114 (the equalizer length is 57 at
each of the 2 antennas, as multipath delay spread is 37 chips
and the chip pulse waveform is cut off after 5 chips at both
ends). The MSE for MSNWF is seen to drop dramatically
with D, and achieves the performance of the full-rank Wiener
filter at dimension approximately 7! In contrast, the prin-
cipal components method takes longer than twice the de-
lay spread, and the cross-spectral method does only slightly
better.

Figure 7a displays the BER curves obtained with the
MSNWEFE for different sizes of the reduced-dimension sub-
space. For comparison, the BER for a conventional Rake and
full-rank chip-level MMSE equalizer are also shown. The
channel statistics are assumed to be known perfectly, so these
curves serve as an informative upper bound on the perfor-
mance. It is observed that even a 2-stage reduced-rank filter
outperforms the Rake at all SNRs and only a small number
of stages of the MSNWF are needed in order to achieve near
full-rank MMSE performance over a practical range of SNRs.

Figures 6b and 7b display similar plots, but for the edge
of cell scenario. In this case, there are 4 effective channels at
the receiver, because we sampled the received signal at twice
the chip-rate at each antenna. It can be shown that the two-
polyphase channels created from either antenna are nearly
linearly dependent in the case of a sparse multipath chan-
nel as in our simulations. The dimension of the full space
is 228, which makes the full rank calculations very cumber-
some. Amazingly, the MSE for MSNWEFE still goes down very
steeply with rank and achieves the full-rank value for sub-
space dimension of only 8 or so. Compared to the PC and
CS methods, this is a huge difference in effective rank reduc-
tion. In the BER plots of Figure 7b, the bit error is calculated
for the soft handoff mode. With perfect channel estimation,
the MSNWF can achieve error rates similar to the full-rank
MMSE over practical SNR range after stopping at stage as low
as 5!

6. ADAPTIVE EQUALIZATION

Next, we use the class of training-based adaptive algorithms
presented by Honig and Goldstein in [23] to simulate the
performance of MSNWF when the channel is unknown. Al-
though the MMSE equalizer described in this paper estimates
the chip-rate multiuser synchronous sum signal, it is not pos-
sible to train the equalizer on this signal as that would require
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Normal handoff
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&

-6 . . .
0 50 100 150 200 250
Dimension of reduced rank subspace for g,
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-« - Principal components
—— Cross-spectral components

(b) Two base stations.

FiGure 6: MSE versus rank of reduced dimension subspace, known
channels, SNR = 10 dB.

the knowledge of number of active users, all of the active
channel codes and the transmitted symbols. Instead, we use
the pilot channel of CDMA downlink, which has a known
code and known symbols. For DS-CDMA with orthogonal
spreading codes, the chip-level MMSE equalizer restores the
synchronous sum signal transmitted by the base station, so
the MMSE equalizer is identical for all channels within a
multiplicative constant and the common pilot code can be
used to train for any other channel code [5]. Our approach is
to train off the pilot symbols by using directly the following

107!
1072
1073
~
-4
2 10
(9]
& 5
g 10~
=
1076
1077
1078
SNR in dB
-»- RAKE —— MSNWE, stage 10
—o— MSNWE, stage 2 - o~ Exact MMSE, rank 114
—=— MSNWE stage 5
(a) One base station.
0 Soft handoff
10 T T T
107!+
1072

Average BER
32

107*
107 £ 1
1076 L L L
0 5 10 15 20
SNR in dB
—— RAKE —— MSNWE stage 20

—— MSNWE, stage 5
-+ MSNWE stage 10

—+— MMSE, rank 4 % 57
(b) Two base stations.

Figure 7: BER for different chip-level equalizers for CDMA down-
link, known channels.

relations (cf. Figure 1):

(i) Chip-level equalization

z[n] = g?x[n], x[n] = . . (18)
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(ii) Despreading

N.—1
biiml = > zln+ilcf[n+ilcflil, n=mN,+D,
i=0
N.—1
= > {gl'x[n+il} cfln+i]
=0 (19)
N
= g?{ Zx[n +ilcin+ i]}
i=1
= gl Cll[m]x[m] = gly[ml],
where
x[n+ N, —1]
x[m] = x[n] ,
x[n— Ny +1]
Ci[m]
cps[mMN+N;—1] 0
= cps[mNc] cos[MN+1] -+ cp[mNA+Ng—1]
0 0 cos[mN,]
(20)

assuming that N, < N..

Thus we convolve the received chip-sequence with the
pilot channel code (which is all 1’s) times the appropriate
portion of the base station scrambling code, and then train
the equalizer on the pilot symbols. This is equivalent to first
equalizing and then despreading due to the commutativity
of convolution. We use a block-adaptive training-based algo-
rithm that implements the lattice-type MSNWF of Figure 4.
The algorithm is given in Algorithm 2. We also find the full-
rank Wiener solutions, using least mean squares and recur-
sive least squares algorithms for purposes of comparison in
the simulations.

First, we simulate the single base station scenario, where
the dimension of the full-rank solution is 114 as described
before. Figure 8 plots the output SINR for different chip-level
equalizers versus time in symbols, at a fixed SNR. The out-
put SINR is calculated using the formula derived by Krauss
in [27]. The MSNWF after stages 5 and 10 yields very good
performance with low sample-support. The convergence rate
is similar to that of a full-rank RLS, which even asymptoti-
cally, does not beat the MSNWF of rank only 10! The LMS
algorithm converges much slower and to a lower SINR. For
the two-base station case, we implement soft handoff. The
asymptotic SINR is almost 3 dB lower for all the equalizers
due to the added interference from the MAI of the second
base station. But the convergence speed of low-rank MSNWF
is still impressive.

Block size = N; symbols.
o [nitialization:
do = b where b is the length N; vector of the pilot
symbols, and Yo = [y[1],...,y[N:]], ylm] = Cl{m)x[m].
e Forward recursion:
Fork=1,2,...,D,

H
o = Yeadi_,

Ok = llell,
Pk = /6%,
di = pifYi_y,

Yi = Yi1 — prds,
e Backward recursion:
€p =dp,
Fork=D,D-1,...,1Do
wi = (exdf )/l €cll* = S/ ll€xll?,

€1 = di_ — W€

ALGorITHM 2: Structured lattice MSN'WF algorithm for the CDMA
forward link.

The output SINR is plotted versus the rank of the reduced
dimension subspace, D, in Figure 9 at two different SNRs.
For comparison, the SINR output for an “ideal” MSNWE,
that is, with perfect channel estimation, is included. At a low
SNR of 0dB, the SINR after 200 symbols for the adaptive
MSNWFE shows a distinct peak at a dimension of only 3! At
10 dB SNR, the peak is less prominent, but the SINR output
goes down after stage 8 or so. This can be explained as the
“penalty” for learning the channels, that is, in the presence
of significant noise, the lower rank MSNWF trades off a bias
in the symbol estimate for a lower variance by working in a
lower dimensional space so as to pass less noise. As the signal
power increases, the higher-dimensional filters yield better
approximation to the full-rank solution, as the lower rank
filters do not have adequate degrees of freedom to suppress
MAI and ISL

The BER curves in Figure 10 illustrate the performance
of these equalizers after training with 200 symbols in the sin-
gle base station case, and 300 symbols in the multiple base
stations case. At low SNRs, the BER for MSN'WEF stage 5 is
actually slightly lower than the BER for stage 10 or 15, as ex-
pected from the SINR graphs of Figure 9.

It is noteworthy that over a practical SNR range, in this
adaptive implementation, the stage 5 MSNWEF does better or
almost as good as full-rank RLS! Another remarkable fact is
that the pilot channel had the same power as all the traffic
channels, implying that the MSNWF reduced-rank adapta-
tion does not require a strong pilot signal for fast conver-
gence. Obviously, the rate of convergence would increase if
the amplitude of the pilot channel was made higher than the
traffic channels, and the BER floor would improve for the
adaptive equalizers.
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FiGgure 8: Output SINR versus time for adaptive chip-level equaliz-
ers for CDMA downlink.

7. STRUCTURED EQUALIZER IN SPARSE MULTIPATH

For high-speed CDMA, typically the vector of multipath
channel coefficients is sparse, but the chip-rate linear equal-
izers will not be sparse in general. Under certain conditions,
the overall channel coefficients lie in a subspace associated
with the pulse shaping filter convolution matrix. A semi-
blind direct equalization approach that utilizes this structure
to impose a penalty on nonblind equalizers was presented
in [31], and compared to nonblind MMSE equalizers for
indoor channels. For wideband CDMA, additional benefits

0 5 10 15 20 25 30
Dimension of reduced-rank subspace

—-e— Known channels
—— Training with 200 symbols

(b) SNR = 10dB.

F1GURE 9: SINR of MSNWF versus dimension of reduced-rank sub-
space, 1 base station.

may be obtained by realizing that, due to the sparse nature of
the multipath arrivals, the total channel vector lies in a sub-
space spanned by only a few columns of the pulse shaping
convolution matrix [10]. If we project the full-rank chip-level
MMSE equalizer onto this much lower-rank subspace, the
equalizer should converge much faster.

It was shown in Section3 that the channel cross-
correlation vector is given by

Tix = HOp.,. (21)
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Figure 10: BER for adaptive chip-level equalizers for CDMA down-
link.

If we restrict ourselves to the following two conditions:

(1) Ny = L,and
() Ng-1=D,>L-1,

then it can be easily seen that rj, now contains all the ele-
ments of the channel impulse response. In particular, if we
choose N, = Land D, = L — 1, we get

0 --- 1
rdx:[i I} [l}ﬂ i= o ) (22)

The impulse response for the channel between the trans-
mitter and the ith antenna at the receiver is given by (cf. (1))

hi(t) = th k]pre(t — 1), i=1,2. (23)

If we sample at chip rate and assume a high enough chip
rate so that the multipath delays are integer multiples of the
chip period T, (we will relax this assumption shortly), we can
write the channel vectors in (22) as

h;=Gh,, i=12, (24)
where G is the convolution matrix corresponding to the chip
pulse waveform, and h,, is a sparse vector containing the
multipath coefficients. In this case, the vector channel h; lies
in a subspace spanned by only a few columns of G and we
can simplify (21) as

G, | | hy,
o ]

where G,, contains only the L. columns of IG corresponding
to the L, dominant multipath arrivals, and h,, is the vector
of corresponding complex gains, that is, h, consists of only
nonzero elements of h,.
Thus the chip-level MMSE equalizer has the form
g = R/rse = R} Gh,. (26)
This structure due to the sparse multipath channel can be
utilized to increase the convergence speed of adaptive MMSE
equalizers, if an estimate of the multipath arrival times 7y,
k =1,..., L. is available at the receiver. We can then project
the observed data vector onto a rank 2L, < 2L subspace
by taking
=gHR | 1CH m]x[m]. (27)
This would also require estimation of the chip-level covari-
ance matrix. We refer to the MMSE equalizer residing in this
low-rank subspace as the “structured projected” equalizer,
denoted by g,. Then the estimate of the desired user’s symbol
is given by
bj[m]

= gly,[m] = hily,[m]. (28)

7.1. Chip-level whitening with multistage nested
Wiener filter

Direct inversion of Ry, in (27) can be avoided using the
MSNWE to obtain a reduced-rank solution to
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The efficacy of the MSNWEF is illustrated in Figure 11, 6l
which plots the output SINRs of 3 structured equalizers, the g
only difference is the use of 5 or 10 stages of the MSNWF &
to get approximate solution ¥, [m] or direct inversion of Ry, @ 2
to obtain exact solution y,[m]. The dimension of Ry is
114 % 114, so its inversion is prohibitively expensive, but only
10 stages of MSNWFE is sufficient to give the same SINR over- -2r
all.
-6

7.2. Generalized arrival times

When the multipath arrival times are not exact multiples of
the chip period, (24) is only an approximate relation. In this
case we form the basis vector matrix G by sampling the
chip-pulse shaping filter at rate T./v. The approximation er-
ror can be made arbitrarily small by increasing v.

The basis matrix G, is now formed by taking (v + 1) con-
secutive columns of IG") for each multipath arrival, corre-
sponding to v| 7/ T¢ ], ..., v[ 1/ T, |. Maximum rank of struc-
tured projected equalizer is now 2L.(v + 1). Note that our
scheme does not require any increase in the sampling rate of
the received signal.

7.3. Delay estimation

The structured projected equalizer requires estimate of the
multipath delays, but no knowledge of the multipath coeffi-
cients is needed. The multipath delays will change relatively
slowly as compared to the complex gains even in a time-
varying situation. The use of multiple antennas at the re-
ceiver enhances the quality of the delay estimates since the
arrival times are the same at both antennas (the propagation

0 100 200 300 400 500
Number of training symbols

—— MSNWE stage 5
—— MSNWE, stage 8

(b) Comparison of structured projected and unstructured
equalizers.

Ficure 12: SINR convergence for chip-level equalizers using
MSNWE, arrivals at exact chip-periods, SNR = 10dB.

delay between two antennas at the mobile is negligible for
a given multipath). Typically in CDMA mobile receivers, a
serial or block serial search is performed over a very short
interval where the channels are assumed to be unchanging
(perhaps over 512 chips), where the received sequence is cor-
related with the base station long code. These short coherent
correlations are combined in energy to obtain the delay es-
timates. This approach yields fast, accurate delay estimates.
If the estimate is deemed to be not enough reliable, 2 or
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3 columns of IG centered on the doubtful estimate may be
taken to form G,.

8. RESULTS

Figure 12a shows the output SINR vs. time (in symbols) at
a fixed SNR of 10dB for “structured projected” chip-level
equalizers, for channels simulated as described in Section 5,
that is, the arrival times are at exact multiples of the chip-
period T.. We assume that the receiver has already formed
estimates of the multipath arrival times. After the projection
via (27), we use different stages of the MSNWEF algorithm.
The stage 2 MSNWF does not perform very well, but the con-
vergence rate for stages 5 and 8 (maximum) is very good, as
expected.

Figure 12b compares the SINR convergence speed of
training-based unstructured chip-level equalizers and the
structured projected equalizers, all of which use a MSNWF
solution. It is clear that the structured projected equaliz-
ers exploit the structure in the sparse channels to yield a
much superior performance. The structured projected equal-
izer is compared to full-rank RLS and LMS convergence in
Figure 13. After training with 100 symbols there is approxi-
mately 5 dB difference in output SINRs of the structured pro-
jected MMSE equalizer and an unstructured MSNWF solu-
tion of rank 10 and full-rank RLS.

Next, we simulate frequency-selective channels where the
first multipath arrival is at 0, and the other three are uni-
formly distributed within 10 ps, with the only constraint be-
ing that the multipath delays are spaced at least one chip-
period apart. Figure 14a shows the SINR plot after various
stages of the MSNWF where the basis vectors are formed
by sampling the pulse-shaping filter at rate T,. In this case
the structured projected equalizers are of dimension 14, as

15 T T T T
=
=
a4
Z
w
~10}
~15 . . . .
100 200 300 400 500
Number of training symbols
—— Stage 14 —— Stage 5
—o— Stage 8 —— Stage 2
(a) Basis vectors formed by sampling at T.
15
10 +
5t
=
=
~z 0
Z
wv
_5 F
~10 }
-15 : : : :
0 100 200 300 400 500

Number of training symbols

—e— v =1, stage 8
—— v =2, stage 8

—— v = 4, stage 8
—— v = 4, stage 32
—— v = 2, stage 20

(b) Basis vectors formed by sampling at T;/v.

FiGure 14: SINR convergence for chip-level equalizers using
MSNWE random arrivals, SNR = 10dB.

we form G, by taking two consecutive columns of IG cor-
responding to each multipath arrival that is in between two
chip-periods. We see that 8 stages of the MSNWF are suf-
ficient but there is a loss of about 2 dB in asymptotic SINR
compared to Figure 12a due to the arrival times not being at
exact chip periods.

Figure 14b shows the SINR plot where the basis vec-
tors are formed by sampling the pulse-shaping filter at rate
T., Tc/2, and T./4. The SINR loss compared to Figure 12a is
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recouped if we oversample by a factor of 2 and perform full-
rank equalization (which is now rank 20). At T./4 the conver-
gence goes down due to the increased dimension of the filter
(which is now 32) but there is no improvement in asymptotic
SINR.

We plot the bit error rate graphs of the structured pro-
jected equalizer where the pulse-shaping filter is sampled at
rate T./2, compare it with the full-rank RLS, and reduced-
rank unstructured equalizer curves in Figure 15. The multi-
path delays are randomly distributed within 10 ys. The struc-
tured projected equalizer (of rank 20) exhibits significantly
lower bit errors for all SNRs.

9. CONCLUSIONS

We presented reduced-rank chip-level MMSE equalizers for
the CDMA downlink with frequency-selective multipath
based on the multistage nested Wiener filter, for known
channel case and also for training-based adaptation. The per-
formance for the single base station case, and for the edge-of-
cell scenario with soft handoff are very satisfactory. The con-
vergence rate for MSNWF operating in a very low-rank sub-
space was significantly better than LMS, and somewhat better
than RLS. The BER performance showed improvement over
the full-rank methods for practical SNR range. This excel-
lent performance is achieved at a computational complexity
in between LMS and RLS due to lattice-type structure that
allows block-adaptive implementation through simple filter-
ing operations.

We also developed a structured MMSE equalizer that uti-
lizes the estimate of the multipath arrival times and sparse
nature of the multipath channel to substantially reduce the
number of parameters that need to be adapted. The con-
vergence rate for this projected MMSE equalizer was sig-

nificantly better than unstructured MSNWF operating in a
subspace of similar rank. The bit error rate performance of
this structured MMSE equalizer was shown to be superior to
full-rank RLS and reduced-rank unstructured MMSE equal-
izer over a wide SNR range.
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