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Defect Detection on Inclined Textured Planes Using
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We present one method for detecting defects on an inclined textured plane. This method uses a combination of a shape from
texture (SFT) method with the Delaunay triangulation technique. The SFT method provides the theoretical equation of the plane
orientation in two steps. First, a wavelet decomposition allows us to build an image of the inverse of the local frequency, that is
the scale, that we call the local scales map. Then we perform an interpolation of this map using the equation of the theoretical
variation of the scales. With the interpolation parameters it is possible to extract the texels by the use of an adaptive thresholding
for each pixel of this map. Then we compute the centers of each texel in order to match a mesh on it after processing a Delaunay
triangulation. When there is a defect, the regularity of the triangulation is disturbed, so one hole appears in the mesh.
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1. INTRODUCTION

It is not easy to detect defects on an inclined plane because
the relations between the different points are modified ac-
cording to the orientation of the plane. In this paper, we
present one way to detect defects on an inclined plane which
is covered by a regular macrotexture. Two steps are neces-
sary for this method. First, we compute the local scale of each
pixel of the image by a wavelet decomposition. An interpo-
lation of the local scales map gives the equation of the plane
orientation. Then we threshold the local scales map in order
to extract the texels of the original image. With the previous
equation it is possible to obtain a threshold value for each
pixel. After that, we compute the gravity centers of the texels
and map a mesh on it using a Delaunay triangulation. The
triangulation is regular when there is no defect. When there
is a defect, the regularity of the triangulation is disturbed and
it is not possible to build the mesh. Then, to look for defects
is the same as looking for holes in the mesh. Some results of

this fully automatic method, obtained on synthetic and real
textures, will be shown.

Much work has been performed with the aim to analyze
textures [1]. Since Haralick’s work with the co-occurrence
matrix which allows classification of microtextures [2], sev-
eral authors have proposed methods for texture segmenta-
tion [1, 3, 4, 5]. In our application, we want to detect defects
on inclined textured planes. Previous techniques of texture
analysis and segmentation are not useful because the orien-
tation of the plane and the defects modify the texture param-
eters. We have to find a method which takes the variations
tied to the orientation into account, so we use a shape from
texture (SFT) method followed by a Delaunay triangulation
in order to perform defect detection. This technique allows
us to find defects on regular macroscopic texture (Figure 1).

Defect detection on inclined textured planes poses a dif-
ficult problem because of the texture distortion induced by
its projection on the plane image. In this article, a perspec-
tive projection model is used. This hypothesis takes the three
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Figure 1: Two examples of regular macroscopic textures.
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Figure 2: The three cues of deformation.

different types of distortions undergone by the texture into
account. These three cues are defined by Knill [6] as

• the scaling (the size of the texels increases when they
are near the camera);

• the texel position (distortion caused by the slant an-
gle);

• the foreshortening (distortion of the texels’ shape
caused by the slant angle).

These three cues, shown on Figure 2, will allow us to
recover the orientation of a surface. Before looking for de-
fects, it is necessary to obtain the theoretical equation of
the inclined textured plane. Actually, this equation gives us
a threshold value for extracting the texels. This is very close
to computing the orientation of the plane. The problem of
computing the orientation of a planar surface can be solved
in several different ways [1, 7, 8, 9, 10]. These methods can
be classified according to the description of the texture of the
plane and the way of using this description to recover the ori-
entation of the surface. In this work, we choose to describe
the texture by local frequencies [11, 12, 13, 14]. The advan-
tage of this method is to have a very large quantity of usable
data to recover the orientation of the plane.

In the following, first we describe our method to recover
the equation of the plane. This method uses a wavelet decom-
position, a computation of local scales for each pixel, and an
interpolation of the local scales map. To perform the inter-
polation, we use an improvement of a method developed by
Lu et al. [12]. Then we explain how it is possible to build a
mesh which will be used as a model of the texture. Finally, we
present the performance of our method on different kinds of
defects.

2. EQUATIONS OF THE INCLINED PLANE

The texture can be characterized by its spatial frequencies.
This description allows us to find the orientation of the pla-
nar surface from the variation of the local frequencies in the
image. The local frequency of a point can be defined as the
most important frequency around this point. This feature is
obtained from a wavelet decomposition of the image. In fact,
the convolution of the image and a wavelet gives the spatial
representation of the frequency filtered by the wavelet (the
value given by the convolution is greater when the frequency
around a point is near the frequency of the wavelet). So we
can split all the frequencies present in the image with a set of
wavelets which covers the whole spectrum. In our study, the
images will be decomposed with DOG (difference of Gaus-
sians) functions.

So we can define the local frequency of a pixel as the fre-
quency of the wavelet that yields the maximum value at this
point [15]. If we use this definition, a problem called step ef-
fect appears in the resulting image. In fact the number of dif-
ferent frequencies in the resultant image is less than or equal
to the number of wavelets used for the decomposition. To re-
move this phenomenon, we must find the real value of the
local frequency from the sampling given by the decomposi-
tion. So we must perform, for each point of the image, an in-
terpolation of the discrete curve given by the wavelets, giving
the frequencies around the studied point. With this method,
we obtain an image which is the map of the local scale for
each pixel [16], the local scale being defined as the inverse
of the local frequency. Figure 3 shows the local scales map
(Figure 3b), which we call EL(x, y), obtained from an origi-
nal image (Figure 3a).

The computation of the orientation of a textured tilt
plane from an image requires us to know theoretically the fre-
quency variation. Consequently, the opposite problem of our
study must be analyzed, that is, the local spatial frequency
variation must be known for a given set of incline param-
eters. With this knowledge, the inclination parameters of a
plane can be computed from the variation of the local spatial
frequency in the image [12].

To recover the orientation of an inclined textured plane
from one image, we must study the deformation of the tex-
ture caused by the projection. It is possible to describe the
incline of a plane in the 3D space by the use of a normal
vector of this plane, with two rotations. We have chosen a
representation by the tilt and the slant angles as shown on
Figure 4. The tilt angle (τ) is the angle between the projection
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Figure 3: An original image (a) and its local scales map (b). On
Figure 3b white represents the high scales and black the low scales.
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Figure 4: Slant and tilt representation.

of the normal vector (Z′p) of the textured plane (π) and the
horizontal axis (X). This angle gives the direction of the in-
cline of the plane (π). The slant angle (θ) is the angle between
the normal vector to the textured plane (Z′) and the optical
axis (Z). This angle gives the importance of the incline of the
plane (π). In order to find the tilt and the slant angles, we
define three reference marks:

• the first is the object reference mark; the people who
calibrate the camera choose this reference mark. It is
made up of the plane (π) and the axis (Z′) (Figure 4);

• the second is the camera reference mark; this reference
mark is fixed with respect to the camera. Its center is at
the intersection of the optical axis and the lens of the
camera. One of its axes is the optical axis and the two
others are parallel to the sensor matrix. It is the XYZ
space of Figure 4;

• the third is the image plane reference mark. It is a bidi-
mensional reference mark where point coordinates are
given in pixels. The origin of this reference mark is the
optical center of the camera. Its two axes are parallel
with the X and Y axes of the previous reference mark.

The matrix Ω is the rotation matrix which allows us to
transform a point from the object reference mark in a point
in the camera reference mark, on the condition that the two
reference mark centers are the same

Ω =

Ω11 Ω12 Ω13

Ω21 Ω22 Ω23

Ω31 Ω32 Ω33


 , (1)

whereΩ11 = sin2 τ+cos2 τ cos θ,Ω12 = sin τ cos τ(cos θ−1),
Ω13 = cos τ sin θ,Ω21 = sin τ cos τ(cos θ− 1),Ω22 = cos2 τ +
sin2 τ cos θ, Ω23 = sin τ sin θ, Ω31 = − cos τ sin θ, Ω32 =
− sin τ sin θ, and Ω33 = cos θ.

A theoretical study using this representation by the tilt
and slant angles allows us to obtain the equation that links
the orientation with the local frequencies. To find these equa-
tions [16], we begin with a simple case, that is, an orientation
where the tilt angle is equal to zero. Let Pπ = (xπ, yπ , 0)

t be
one point of the texture plane. The point Pc = (xc, yc, zc)

t

is the same point in the camera mark and P = (x, y) is the
projection of Pc in the image mark. It is possible to write

Pc = Ω · Pπ =


xπ cos θ

yπ
−xπ sin θ


 , (2a)

P =




xπ cos θ
( f + Z) + xπ sin θ

· f
yπ

( f + Z) + xπ sin θ
· f


 , (2b)

where f is the focal length of the camera and Z is the distance
between the center of the object mark and the optical center
of the camera. With (2b), we obtain

x = xπ cos θ
( f + Z) + xπ sin θ

· f . (3)

So

xπ = ( f + Z)
f

· 1
cos θ

· x

1− (x/ f ) tan θ
. (4)

Let S(xπ, yπ) be a perfect sinusoidal texture in the
plane π. With the perspective projection hypothesis, the
equation of the texture in the image coordinates in the plane
XY becomes

S(x, y) = cos
(
γ
(
xπ
))
, (5)

where

γ
(
xπ
) = ω · xπ = ω

[
( f + Z)

f
· 1
cos θ

· x

1− (x/ f ) tan θ

]
.

(6)

The local frequency is defined by the following equation:

F(x, y) = 1
2π

dγ
(
xπ
)

dx

= k1 · ω

2π
· ( f , Z)

f
· 1
cos θ

· 1

(1− (x/ f ) tan θ)2
.

(7)

It is possible to change this expression to have the local scale
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in each point of the image. The local scales will be privileged
in this study because the interpolation of a second degree
polynomial is easier than the interpolation of a hyperbola

E(x, y) = 1
F(x, y)

= β2x
2 + β1x + β0 (8)

with

β0 = 2π
ω

(
f

f + Z

)
cos θ, (9a)

β1 = β0

(
− 2

f

)
tan θ, (9b)

β2 = β0

(
1
f 2

)
tan2 θ. (9c)

We can find the slant angle with the following equation:

θ = ± arctan

(√√√
f 2
β2
β0

)
. (10)

To generalize for all tilt angles, we rotate the image coordi-
nates with the tilt angle. Equation (8) becomes

E(x, y) = a1x
2 + a2xy + a3y

2 + a4x + a5y + a6, (11)

with

a1 = β2 cos2 τ; a3 = β2 sin
2 τ, a5 = β1 sin τ;

a2 = 2β2 cos τ sin τ; a4 = β1 cos τ; a6 = β0.
(12)

To obtain E(x, y), we have to know the six parameters ai.
We must interpolate the map of the local scales, EL(x, y),
with (11). In the following work, which has the aim to de-
tect defects, only the six coefficients from (11) are necessary.
The knowledge of the tilt and slant angles is not important
in this way, but in another work we studied the accuracy of
the method for these angles [17]. With these six values ai we
obtain the theoretical value of the local scale for each pixel:
E(x, y). This equation, which uses a sinusoidal model, can be
used for textures with one main frequency. This is the limi-
tation of the method.

3. MESH COMPUTATION

Now that we have the theoretical value of the local scale for
each pixel, we want to map a mesh on the texels which form
the textures. First we have to extract the texels. Then we per-
form a Delaunay triangulation and we create the mesh.

To extract texels from the local scales map, we have to
use a method adapting locally to the size of the texels. This
problem is present for the inclined planes, because the per-
spective projection introduces a variation of the texel size
due to the scaling cue [18]. In order to separate the points
belonging to the texels from these of the remainder of the
image, we have to threshold the local scales map, EL(x, y),
in two classes. This task can be done if we have a thresh-
old value T(x, y) for each point of the image, because this

value depends on the local size of the texels. Thanks to the
interpolation of the local scales map by a paraboloid, by our
SFT method, we know the size, that is the scale, of the tex-
els in each pixel. The texels are represented by high scales
in the local scales map, because they have relatively impor-
tant surfaces in the image. Besides, the edges of texels intro-
duce low scales in the map. Thanks to these observations, we
can say that a point, in the local scales image, belongs to a
texel if its scale is greater or equal to the theoretical scale of
the texel. Figure 5 illustrates this principle. In Figure 5b, we
present a local scales map obtained from the original image
(Figure 5a). Figure 5c shows the scales from a line drawn in
Figure 5b. To find the resulting image, we use the following
algorithm:

Resulting image =


0 if EL(x, y) ≥ T(x, y),

1 if EL(x, y) < T(x, y),
(13)

with T(x, y) = E(x, y)P. In this equation, EL(x, y) represents
the local scales map obtained after the wavelet decomposi-
tion, and E(x, y) the interpolated scales computed with (11)
using the six ai parameters. The factor P is the margin al-
lowed to account for the lack of precision of the interpola-
tion, P is experimentally fixed at 130% for all the images we
have tested.

In Figure 6c, we show the texels extracted from the origi-
nal image (Figure 6a) with this method. When we have a bi-
nary image with all the texels, we compute for each of them
the coordinates of their gravity center.

With these centers of texels, it is possible to create a mesh
using a Delaunay triangulation [19]. This triangulation de-
scribes the spatial organization of the texture. In Figure 6, we
illustrate the main steps which allow us to obtain this trian-
gulation from a textured image (Figure 6a). These steps are
the following:

• to initialize the process, we build one triangle in the
original image from three texels centers. It is the first
triangulation (Figure 6d);

• then we integrate a new texel center into the triangu-
lation by using the incremental method, so we obtain
another triangulation;

• the last step is repeated for all the centers of the texels
of the image (Figure 6e).

After these three steps, we have a Delaunay triangula-
tion of the texels’ centers (Figure 6f). Now, we have to create
a regular mesh from this triangulation. First we remove all
the triangles which are created in order to obtain a convex
set, because they do not have to belong to the final mesh.
Then we arrange triangles, two by two, in order to create
“quasi-parallelograms” whose sides are the axes of the mesh
(Figure 6g).

4. DEFECTS EXTRACTION AND RESULTS

As we explained in the introduction, this method is ap-
plied to regularmacroscopic textures (see Figure 1). For these
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Figure 5: Principle of adaptive thresholding. (a) Original image; (b) local scales map from (a); (c) values of the local scales on line 128 of
(b) and threshold value for each pixel.

(a) Original texture. (b) Local scales from
Figure 6a.

(c) Texels obtained after
thresholding.

(d) First triangulation.

(e) Triangulation N . (f) Final triangulation. (g) Final mesh.

Figure 6: Different steps in order to obtain a regular mesh from a natural texture.

textures we obtain a regular mesh at the end of the previous
step. When there is a defect, the regularity of the triangu-
lation is disturbed. We show this phenomenon in Figure 7.
Figure 7a presents a regular synthetic texture. We disturb
the regularity of this texture by shifting a set of texels. In
Figure 7b, we see how this defect modifies the local scales
map. If there is a defect in the texture, some texels dis-
appear during the texels extraction stage because the local
scales map is modified around the defect. In this area, the
adaptive threshold is not suitable for these corrupted tex-
els. Some other texels are detected, but their centers are
not in line with their neighbors. So, the corrupted texels
are eliminated when we build the mesh, because the De-
launay triangulation is not regular in the area of the de-

fect (Figure 7c). To finish, there is a hole on the final mesh
(Figure 7d). So, to detect possible defects, we look for holes
in the mesh. All these areas with holes are considered as
defect areas.

This method has been tested on synthetic and real tex-
tures. We have created different kinds of defects: a spot made
by a uniform area, a piece of tissue of the same or different
texture, a ball dressed with the same texture put on the plane.
Figure 8 shows a result for a synthetic texture (Figure 8a)
where the defect is a missing texel which is replaced by a set
of high frequencies. In Figure 8b, there is a magnification of
the defect area. We can see that only one texel is corrupted.
The hole in the mesh is shown in Figure 8c and the defect
position in Figure 8d. In Figures 9, 10, and 11, we present
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(a) Image with defect. (b) Local scales map. (c) Final triangulation. (d) Final mesh.

Figure 7: Principle of defect detection.

(a) (b) (c) (d)

Figure 8: (a) A synthetic texture with a defect; (b) magnification of the area of the defect; (c) the mesh obtained is shown on the binary
texels image; (d) defect localization.

(a) (b) (c)

Figure 9: (a) Original image; (b) mesh obtained; (c) defect localization.

defect detections in real images. In Figures 9a and 10a, the
defect is a piece of the same tissue as the background. Even
if the texels of the defect are in line with the ones of the tex-
tured plane, we see the hole in themesh (Figures 9b and 10b).
The localization of the defect is very good as it is possible
to observe in Figures 9c and 10c. In these two examples, the
main frequency of the texture (background and defect) are
very different: medium frequency for Figure 9 and high fre-
quency for Figure 10. Even if a part of the defect is not de-
tected (Figure 10), we can see the efficiency of the method.
Figure 11a presents two defects simultaneously, a uniform
spot and a pleat in the tissue dressing on the plane. The spot
is a low frequency area, so there is a zone of high scales (white
pixels in Figure 11b) in the local scales map. The pleat is very

difficult to see. Figure 11c shows a zoom of this defect zone.
Texels which are on the pleat are smaller than the others and
the intertexel distance is slightly modified, so the threshold
value was not good for these corrupted texels. Figure 11d
shows the mesh obtained with the extracted centers of tex-
els. Two holes are clearly present. We can see in Figure 11e
that the two defects are perfectly detected and localized on
the original image.

In these four examples, the frequencies of the defects are
very different: high frequencies in Figure 8, the same fre-
quencies as the background in Figures 9 and 10, and low
frequencies in Figure 11. In these four cases, it is always
possible to build the mesh and to automatically find the
defect.



Defect detection on inclined textured planes 665

(a) (b) (c)

Figure 10: (a) Original image; (b) mesh obtained; (c) defect localization.

(a) (b) (c)

(d) (e)

Figure 11: (a) Original image with two defects; (b) local scales map (after a histogram equalization); (c) magnification of the pleat; (d) mesh
obtained; (e) defects localized on the original image.

5. CONCLUSION

In this paper, we have shown the interest of the combina-
tion of a shape from texture (SFT) method with the Delau-
nay triangulation technique in order to detect defects on in-
clined textured planes. The accuracy of this method, which
is fully automatic, is very good for defects having different
frequencies and different sizes. In all the examples we have
used to test this method, the defects are always detected. If
only one texel is corrupted, it is possible to detect it. If the
defect is smaller than the texels or the inter-texels distance,
it is not possible to detect it. In addition to the detection,
we obtain the position and the area of the defect. All these
features allow us to take a decision about the importance
of the defect and the processing. One of the applications of
such a method is to perform textile control quality, but the
tissue to be controlled has to show a regular macroscopic
texture.

The position of the camera has no importance with re-
spect to the tissue position. It is not necessary to calibrate
the camera. When we interpolate the local scales map, we
use (11), and we obtain for each pixel the interpolated value
E(x, y). If we do not compute the slant angle, camera param-
eters are not necessary.

This method assumes no knowledge about the tissue and
its orientation. But, sometimes, it is difficult to detect the de-
fect, when the defect area is too large. In order to solve this
problem, it is possible to think of a processing which will in-
clude knowledge about:

• the six interpolation parameters of (11) will be ob-
tained by using an image without a defect and will give
a fixed threshold value for each pixel;

• it is also possible to compute the orientation of the tis-
sue. Then we are able to compute the theoretical posi-
tion of all the texels and to interpolate the whole mesh.
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This method is not fast because of the computation of
the local scales map. The computation time is related to the
number of scales used in this step. With knowledge about
texture, it is possible to use less scales. Then the computation
time would be reduced.
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