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We develop wavelet engines on a digital signal processors (DSP) platform, the target application being image and intraframe video
compression by means of the forthcoming JPEG2000 and Motion-JPEG2000 standards. We describe two implementations, based
on the lifting scheme and the filter bank scheme, respectively, and we present experimental results on code profiling. In particular,
we address the following problems: (1) evaluating the execution speed of a wavelet engine on a modern DSP; (2) comparing the
actual execution speed of the lifting scheme and the filter bank scheme with the theoretical results; (3) using the on-board direct
memory access (DMA) to possibly optimize the execution speed. The results allow to assess the performance of a modern DSP
in the image coding task, as well as to compare the lifting and filter bank performance in a realistic application scenario. Finally,
guidelines for optimizing the code efficiency are provided by investigating the possible use of the on-board DMA.
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1. INTRODUCTION

A huge number of applications use the discrete wavelet trans-
form (DWT) [1] as a means to extract relevant features from
signals. Examples are reported in the fields of mathemat-
ics, physics, numerical computing, and engineering, includ-
ing image classification, feature detection, image denoising,
image registration, and image compression, just tomention a
few. Especially in the engineering field, there has been a con-

siderable interest in using wavelet transforms for image and
video coding applications [2, 3]. As a result, the ISO/ITU-T
has selected the DWT as the transform coding kernel for
the new image compression standard, namely JPEG2000 [4],
which will be released during 2001. Consequently, fast and
cost-effective implementations of DWT kernels, compliant
with JPEG2000 specifications, are called for in order to make
its diffusion as widespread as possible.

While the wavelet transform of an image can be fairly
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easily computed by means of a general-purpose personal
computer, there obviously exist contexts where more com-
pact, light-weight and less power-demanding computing de-
vices are required. A recent trend [5] fosters the design of
reconfigurable systems that make use of digital signal pro-
cessors (DSPs) and field-programmable gate array (FPGA).
An example is given by the transmission of images from sci-
entific space missions, where the images collected by the on-
board sensors may undergo wavelet-based compression (e.g.,
Rosetta Osiris [6]), with a DSP-based system being used as
computational core. DSPs are also very often used to han-
dle image and video processing tasks in consumer electron-
ics [7]. The importance of wavelets on a DSP is witnessed by
the number of implementations proposed in the literature
(cf. [8, 9]). In this paper, we focus on the study of the DSP-
based implementation of a wavelet kernel; the target appli-
cation is image coding with JPEG2000, with its extension to
intraframe video coding (Motion-JPEG2000).

Until recently, DWT implementations were based on the
so-called filter bank scheme [1], which computes the DWT
of a signal by iterating a sequence of highpass and lowpass
filtering steps, followed by downsampling. In 1997 Sweldens
proposed a new scheme, called lifting scheme (LS), as an al-
ternative way to compute the DWT [10]. The LS has immedi-
ately obtained a noteworthy success, as it provides several ad-
vantages with respect to the filter bank scheme. The most in-
teresting ones from the implementation standpoint are that

(i) the LS requires less operations than the filter bank
scheme, with a saving of up to one half for very long
filters;

(ii) the LS allows to compute an integer wavelet transform
(IWT), that is, a wavelet transform that maps integers
to integers [11], thus enabling the design of embedded
lossless and lossy image encoders [12, 13].

This paper is focused on the development of a wavelet
kernel based on the LS, and using a DSP as the computa-
tional core. The interest of this work is manifold. Firstly, from
a pure implementation perspective, the performance evalu-
ation of an optimized implementation of such a kernel on a
modern DSP indicates the maximum sustainable processing
rate. This can be used to estimate the number of images per
second that can be processed by, for example, a compression
engine such as JPEG2000, or the video frame rate that can be
sustained by a Motion-JPEG2000 encoder/decoder in DSP-
based applications, for example, videoconferencing bymeans
of a PC card. Secondly, since the LS can be used to design a
progressive lossy-to-lossless compression algorithm [13], it
is important to evaluate the execution speed of the IWT with
respect to the DWT. Thirdly, and distinctively novel in this
paper, from a signal processing point of view, there is a strong
interest in finding out to which degree the theoretically lower
complexity of the LS translates into reduced execution speed;
in fact, it is likely that the DSP architecture affects the per-
formance of lifting and filter bank wavelet cores in a differ-
ent fashion. In this work all aspects are considered, that is,
an optimized DSP implementation of the LS is presented,
and its performance is then compared with that of the fil-
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Figure 1: Block diagram of the filter bank scheme.

ter bank scheme; both DWT and IWT are considered. The
results allow to assess the impact of the DSP architecture on
the performance of both algorithms, thus providing useful
guidelines for the architectural design and implementation
of a wavelet-based processing system.

This paper is organized as follows. In Section 2, we briefly
review the wavelet transform, focusing on the filter bank
scheme and the LS in Sections 2.1 and 2.2, respectively. The
DSP implementations of both algorithms are described in
Section 3. In Section 4, a performance evaluation of such
implementations is proposed; in particular, results related
to the execution speed are reported in Section 4.1, and a
comparison between LS and filter bank scheme is presented
in Section 4.2. The possibility of improving performance
by means of direct memory access (DMA) is discussed in
Section 4.3. Finally, in Section 5 conclusions are drawn.

2. WAVELET TRANSFORM

As already stated, the two main algorithms used to compute
the DWT are the filter bank scheme and the LS, which are
briefly reviewed in Sections 2.1 and 2.2, respectively.

2.1. Filter bank scheme

The filter bank scheme (see [1]) is sketched in Figure 1,
where the operations needed to compute the DWT of a one-
dimensional signal are depicted. One level of decomposition
involves that the input sequence is highpass and lowpass fil-
tered by the analysis filters H̃(z) and G̃(z); the two resulting
sequences are then downsampled by a factor two. More de-
composition levels can be obtained by iterating this proce-
dure on the lowpass branch, as shown in Figure 1. The two-
dimensional extension is achieved by filtering and downsam-
pling first along the rows, and then along the columns. The
inverse transform is achieved performing a similar sequence
of filtering and upsampling operations (see [1]).

2.2. Lifting scheme

As well known [1], a discrete-time filter can be represented
by its polyphase matrix, which is built from the � transforms
of the even and odd samples of its impulse response. The LS
stems from the observation [14] that the polyphase matrix
can be factorized, leading to the implementation of one step
of the filter bank scheme as a cascade of shorter filters, which
act on the even and odd signal samples, followed by a nor-
malization. In particular, the LS performs a sequence of pri-
mal and dual lifting steps, as described in the following and
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Figure 2: Block diagram of the LS.

reported in the block diagram of Figure 2. The inverse trans-
form is achieved performing the same steps in reversed order
[14].

The polyphase representation of a discrete-time filter
H(z) is defined as

H(z) = He
(
z2
)
+ z−1Ho

(
z2
)
, (1)

where He(z) and Ho(z) are respectively obtained from the
even and odd coefficients of h[n] = �−1{H(z)}, where � de-
notes the zeta transform. The synthesis filters H(z) and G(z)
(lowpass and highpass, respectively) can thus be expressed in
terms of their polyphase matrix

P(z) =
[
He(z) Ge(z)

Ho(z) Go(z)

]
(2)

and P̃(z) can be analogously defined for the analysis filters.
The Euclidean algorithm [14] can be used to decompose
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P(z) =
m∏
i=1

[
1 si(z)

0 1

][
1 0

ti(z) 1

]
K 0

0
1
K


 ,

P̃(z) =
m∏
i=1

[
1 0

−si
(
z−1
)

1

][
1 −ti

(
z−1
)

0 1

] 1
K

0

0 K


 .

(3)

This factorization leads to the sequence of primal and dual
lifting steps shown in Figure 2.

The filters He(z), Ho(z), Ge(z), and Go(z), along with
their analysis counterparts, are Laurent polynomials [14].
Since the set of all Laurent polynomials exhibits a commu-
tative ring structure, within which polynomial division with
remainder is possible, long division between two Laurent
polynomials is not a unique operation [14]. Therefore, sev-
eral different factorizations (i.e., pairs of {si(z)} and {ti(z)}
filters) may exist for each wavelet. However, in case of DWT
implementation, all possible choices are equivalent.

An IWT,mapping integers onto integers, can be very sim-
ply achieved rounding off the output of the si(z) and ti(z)
filters right before adding or subtracting [11]; the rounding
operation introduces a nonlinearity in each filter operation.
As a consequence, in the IWT the choice of the factorization
impacts on both lossless and lossy compression, so making
the transition from the DWT to the IWT not straightforward
[15].

Table 1: Computational cost (number of multiplications plus ad-
ditions) of lifting versus filter banks.

Filter Standard algorithm Lifting scheme

LEG(5, 3) 4(N +M) + 2 2(N +M + 2)

DB(9, 7) 4(N +M) + 2 2(N +M + 2)

SWE(13, 7) 3(N + Ñ)− 2 3/2(N + Ñ)

As already stated, the LS requires fewer operations than
the filter bank scheme. The latter algorithm corresponds to
merely applying the polyphase matrix: only the samples that
are not discarded by the subsequent downsampling opera-
tion are actually filtered. In order to compare the two algo-
rithms, one can use the number of multiplications and addi-
tions required to output a pair of samples, one on the lowpass
and one on the highpass branch. As shown in [14], the cost of
lifting tends, asymptotically for long filters, to one-half of the
cost of the standard algorithm. Table 1 reports the formulas,
presented in [14], to compute the cost of the two algorithms
for the filters used in this work (see also Section 3). Here |h|
and |g| are the degree of the highpass and lowpass filter (i.e.,
the number of coefficients minus one); in the case that |h|
and |g| are even, we set |h| = 2N and |g| = 2M. Note that
the filter SWE(13,7), being an interpolating filter, has a dif-
ferent formula, which also involves the number of vanishing
moments Ñ .

3. IMPLEMENTATION

The LS and filter bank scheme have been implemented on the
floating-point Texas Instruments TMS320C6711 DSP board.
The board comprises a 150MHz floating-point processor,
two memory regions, namely on-chip and off-chip, a direct
memory access (DMA) controller, and some peripherals in-
terfaces. The CPU core includes two sets of 16 registers (reg-
ister file A, register file B), the on-chip memory divided into
two cache memories (L1, L2), and the arithmetic and logical
units (see [16]). Figure 3 shows the block diagram of the DSP
architecture.

In the following, we outline some features of our imple-
mentation of the two algorithms, including the filters and
types of boundary extensions used. The LS implementation
is compliant with the specifications of the Final Committee
Draft of JPEG2000 Part I (core coding systems) [4], which is,
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Figure 3: Block diagram of the DSP architecture.

at the time of this writing, the latest publicly available docu-
ment describing the standard.

The code profiling results for the two algorithms, re-
ported in Section 4, have been obtained demanding the op-
timization of the assembler code to the C compiler, which is
known to nearly achieve the same efficiency as an expert pro-
grammer. For this reason, the code has been written in a sim-
ple and plain style, so as to facilitate compiler optimization.
Therefore, in this section we only give an overview of the im-
plementations of the two algorithms, whereas we rather con-
centrate on the profiling results (Section 4), which represent
the main contribution of this article. Of course, one could
achieve some performance improvement by constraining the
implementations, for example, to support a limited number
of filters (even only one); nevertheless, this approach would
negatively impact on generality of application, which in this
work has been preserved as far as possible.

As for boundary extension at the borders of the input sig-
nal, which is necessary because the wavelet filters are non-
causal, two possible extensions are considered.

(i) Symmetric extension: it performsmirroring of the sig-
nal samples outside the signal support. If used with biorthog-
onal symmetric filters, it allows to achieve perfect reconstruc-
tion also at the image borders.

(ii) Zero padding: it consists in adding zeros before and
after the signal. This extension is not supported by the
JPEG2000 standard, but is very simple, and hence sometimes
used.

The filters supported by this implementation have been
selected according to the JPEG2000 standard:

• LeGall I(5,3) (LEG(5,3) in the following);
• Daubechies (9,7) (DB(9,7) in the following);
• Sweldens (13,7) (SWE(13,7) in the following).

The first two filters are explicitly embodied in JPEG2000,
for the reversible and nonreversible transform, respectively.

Table 2: Factorization of LEG(5,3).

si(z), ti(z) = a0zdM + a1zdM−1 + a2zdM−2 + · · ·
Filter: LEG(5,3)

dM a0 a1 a2 a3 K

s1(z) 0 0 0 0 0 1

t1(z) 1 0.5 0.5 0 0

s2(z) 0 −0.25 −0.25 0 0

Table 3: Factorization of DB(9,7).

si(z), ti(z) = a0zdM + a1zdM−1 + a2zdM−2 + · · ·
Filter: DB(9,7)

dM a0 a1 a2 a3 K

s1(z) 0 0 0 0 0 1.2302

t1(z) 1 −1.5861 −1.5861 0 0

s2(z) 0 −0.0530 −0.0530 0 0

t2(z) 1 0.8829 0.8829 0 0

s3(z) 0 0.4436 0.4436 0 0

Table 4: Factorization of SWE(13,7).

si(z), ti(z) = a0zdM + a1zdM−1 + a2zdM−2 + · · ·
Filter: SWE(13,7)

dM a0 a1 a2 a3 K

s1(z) 0 0 0 0 0 1

t1(z) 2 0.0625 −0.5625 −0.5625 0.0625

s2(z) 1 −0.03125 0.28125 0.28125 −0.3125

Note that the last filter is not supported by JPEG2000 Part I.
However, it has been considered because, being a long filter,
it allows to verify the asymptotic complexity of the LS.

The selection of the factorization of the wavelet filters,
to be used in the LS, has been made following the direc-
tives of the JPEG2000 standard, and is reported in Tables 2,
3, and 4. The filter length, deducible from the acronym, al-
lows to easily identify the N and M parameters previously
defined.

As for the filter bank scheme, the input signal is filtered
by the same kernels listed above, but using the expanded
rather than the factorized representation. Notice that, while
performing the convolution between the signal and the fil-
ter impulse response, the samples that would be discarded
by downsampling are not computed at all. For completeness,
Tables 5, 6, and 7 report the coefficients of the filters em-
ployed, up to the fourth decimal digit.

4. EXPERIMENTAL RESULTS

As stated in Section 1, the objective of this work is manifold;
in particular, experimental tests have been carried out with
the following goals.

(1) To evaluate the absolute running time of an LS-based
wavelet kernel on a modern DSP; in particular, in view of
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Table 5: LEG(5,3) filter.

i h0 h1
0 0.75 1

±1 0.25 −0.5
±2 −0.125 0

Table 6: DB(9,7) filter.

i h0 h1
0 0.6029 1.1151

±1 0.2669 −0.5913
±2 −0.0782 −0.0575
±3 −0.0169 0.0913

±4 0.0267 0

Table 7: SWE(13,7) filter.

i h0 h1
0 0.6797 1

±1 0.2813 −0.5625
±2 −0.1230 0

±3 −0.0313 0.0625

±4 0.0352 0

±5 0 0

±6 −0.0020 0

the implementation of an embedded lossy-to-lossless image
compression system, to understand to which degree embody-
ing an IWT capability may penalize the execution speed. This
matter is discussed in Section 4.1.

(2) To find out how close to the theoretical value is the
actual performance gain of the LS with respect to the filter
bank scheme, in terms of execution speed. This matter is dis-
cussed in Section 4.2.

(3) To study the possibility of exploiting an available on-
board DMA, in order to speed up code execution. This mat-
ter is discussed in Section 4.3.

The results shown in the following, and the compari-
son between LS and filter bank scheme, have been reported
(see Sections 4.1 and 4.2) in terms of the time needed to
perform one level of transform on one image row; this has
been done so as to facilitate the interpretation of results. The
results have been parameterized on the length of the input
data vector, and execution times for dyadic lengths are re-
ported. It has been found that the sum of such dyadic values
yields a very accurate estimate of the multilevel transform.
Of course, computing the wavelet transform of an image re-
quires to perform both rowwise and columnwise filtering.
However, it has been found that the time needed to compute
a columnwise filtering is the same as for rowwise filtering.
Even though this behavior might seem surprising at a first
glance, it can be reasonably justified by the efficient manage-
ment of memory accesses performed by the cache memory;
a more detailed explanation is given in Section 4.3.

4.1. Absolute running times

The graphs in Figures 4, 5, and 6 report the absolute run-
ning times achieved by the LS (in the DWT and IWT mode,
respectively) and the filter bank scheme, in order to com-
pute the one-level wavelet transform of a one-dimensional
data vector, contiguously stored in the external memory. The
boundary extension used is the symmetric one.

The results reported on the graphs can be used to esti-
mate the number of images per second that can be processed
by these algorithms. Employing the LEG(5,3) filter and the
symmetric extension for a complete 2D one-level decompo-
sition on a 256× 256 grey-scale image, the LS allows to pro-
cess between 7 and 8 images per second, whereas the filter
bank scheme only sustains between 4 and 5 images per sec-
ond. Note that computing the IWT, rounding off the filtered
coefficients in the LS, leads to slower operation. The running
times of the IWT are from 10% to 25% larger than the DWT
using the LS.

If the wavelet kernel is thought of as the core of a
JPEG2000 encoder, it is worth recalling that the wavelet
transform is responsible for a significant part of the total en-
coder and decoder running time. Some figures have been ob-
tained by profiling the Jasper reference JPEG2000 implemen-
tation, and have been reported in [17]. It turns out that, for
progressive lossless coding, the wavelet transform is responsi-
ble of about 30% of the overall encoder and decoder running
time. In the progressive lossy case this percentage is increased
to about 50% at the encoder, and 70% at the decoder. This
implies that it should be possible to encode/decode, with a
single DSP, about 2 256× 256 images per second in the inte-
ger lossless mode (using the LEG(5,3) filter), and encode and
decode about 2 images per second in the lossy mode using
the DB(9,7) filter. While this figures are suitable for an im-
age coding application, it turns out that more powerful hard-
ware, such as a multi-DSP system or an FPGA, is required to
sustain real-time Motion-JPEG2000 video.

4.2. Comparison between lifting and filter bank

As stated, in [14] it is claimed that the LS requires asymptot-
ically half the number of operations with respect to the filter
bank scheme. We have compared the running time of our
LS and filter bank implementations, in order to understand
how the DSP architecture impacts on the performance gain.
In particular, Table 8 reports the ratios between the running
time of the filter bank scheme and the LS. Comparing these
figures with the theoretical results, it can be noticed that these
ratios are different from the theoretical values.

This behavior can be explained considering the archi-
tectural features of the processor employed. The DSP used
in this work has an efficient pipeline, which can dispatch 8
parallel instructions per cycle. Parallel instructions proceed
simultaneously through each pipeline phase, whereas serial
instructions proceed through the pipeline with a fixed rela-
tive phase difference between instructions. Every time a jump
to an instruction not belonging to the pipeline occurs, the
pipeline must be emptied and reloaded. Thus, in this case,
the filtering operations that frequently update the pipeline
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Figure 6: SWE(13,7): absolute running times.

contents, turn out to be disadvantaged. The effect on the
computation of the wavelet transform is that, in general, the
convolution with a long kernel can be optimized more effi-
ciently than several convolutions with short kernels. There-
fore there is a trade-off, in that the filter bank must perform

Table 8: Ratios between the running times of filter bank scheme
and LS.

Filter bank running time/LS running time

Samples LEG(5,3) DB(9,7) SWE(13,7)

256 1.650 1.069 1.969

512 1.678 1.077 1.937

1024 1.657 1.058 1.929

2048 1.679 1.062 1.917

4096 1.607 1.080 1.982

Theoretical value

1.4 1.666 1.833

twice as many operations as the LS with long filters; on the
other hand, the use of the pipeline tampers with the LS op-
eration, since the factorizations of long filters may consist of
numerous short filters. The best results, with regard to the
gain, are obtained with the SWE(13,7) filter: even though the
filter is long, its factorization consists of only 2 filters, with
4 coefficients each.1 The opposite occurs with the DB(9,7)
filter, whose factorization consists of 4 filters with 2 coeffi-
cients each. The gain that comes from the inferior number
of operations in LS is thus lost in emptying and reloading
the pipeline. The LEG(5,3) filter has an intermediate behav-
ior. Note that, for an increasing number of samples, the ratio
between the running times of the two algorithms is not con-
stant, nor it increases linearly. This behavior is due to the way
the processor manages the cache memory and the data trans-
fer from external to internal memory.

4.3. Optimizationwith DMA

The results in Section 4.2 have shown that the LS is faster
than the filter bank scheme as for the computation of the
wavelet transform. These results have been obtained using
implementations which demand to the CPU the data trans-
fer from the external memory to the CPU itself for perform-
ing the convolutions. In the following, we focus on the archi-
tectural features of the DSP employed, investigating the pos-
sibility of improving the LS performance by exploiting the
properties of the DMA, typically available on a DSP board.

The LS program previously described filters a vector of
coefficients allocated on a region of external (off-chip) mem-
ory. On the other hand, the DSP has a two-level internal (on-
chip) cache, with significantly lower access time than the ex-
ternal one. The second-level cache (L2) can be configured as
internal memory, and can be used to store and filter the im-
age pixels values, with an expected speedup due to the re-
duced memory access time.

Since the size of an image is usually larger than the L2
size, it is necessary to transfer the data in small blocks from

1It is worth noticing that even higher gains (nearly 3) have been found
with the SWE(13,7) filter, using a fixed-point implementation that is not
addressed in this paper. This is not surprising, for the upper bound of 2 on
the LS gain [14] is computed in the case of worst case factorization, while
the SWE(13,7) filter also admits shorter factorizations.
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Figure 7: Ping-pong buffering.

the external to the internal memory. The device used to this
purpose is the DMA controller. In this work, the DMA has
been configured so as to transfer a row (or column) of the
image into the on-chip memory, while at the same time the
CPU filters the data transferred at the previous step. In this
way, the CPU never accesses the off-chip memory, since both
the stack and the temporary variables are allocated in L2.

The use of L2 as a shared resource between DMA and
CPU involves the need of synchronizing these devices. The
data can be corrupted if the accesses to L2 do not take place in
the correct order. To avoid this problem, we have employed
four software interrupts to regulate the sequence of opera-
tions.Moreover, the two concurrent devices are set to operate
on two different buffers, which are swapped at each filtering
cycle with a ping-pong buffering mechanism (see Figure 7).

We have run this version of the LS on a 512 × 512 grey-
scale image, performing one complete 2D decomposition
level with the DB(9,7) filter. This has led to the results shown
in Table 9, where the running time of the standard LS algo-
rithm is also reported for comparison. It can be noticed that
the synchronization of the devices and the reconfiguration of
the DMA after each transfer leads to a higher running time.
In order to make the employment of DMA and L2 advanta-
geous, it is necessary to reduce the number of DMA reconfig-
urations. This can be done by transferringmore than one row
or column at one time. Table 10 shows that transferring, for
example, 2 or 4 rows simultaneously yields an improvement
of the LS performance. However, the gain is not as high as
expected, and hardly pays back for the additional complex-
ity. The reason for such low gain using the DMA lies in the
efficiency of the DSP cache memory.

In fact, every time the CPU needs a datum stored in
the external memory, 32 consecutive bytes are transferred
from the memory to L1. If the offset between two data pro-
cessed sequentially by the CPU is fewer than 32 bytes (i.e.,
8 floating-point coefficients), the CPU accesses the memory
only once, since the second datum will be already cached in
L1. The advantage of accessing a faster memory is apparent
only when the weight of the memory accesses is high overall.
We assume that the image pixel values are stored in the ex-

Table 9: Comparison between the running times of the LS without
and with using the DMA.

Absolute running times [in seconds]

Standard LS LS with DMA

1.222 1.651

Table 10: Comparison between the running times of the LS without
and with using the DMA: transfer of several rows simultaneously.

Absolute running times [in seconds]

Standard LS LS with DMA

2 rows 1.222 1.174

4 rows 1.222 1.166

ternal memory as floating-point values in row major order.
As for rowwise filtering, one access to the external memory is
sufficient to retrieve eight samples of the to-be-filtered data.
As far as columnwise filtering is concerned, once a complete
image column has been retrieved from the external memory,
the subsequent seven columns are also placed in the cache.2

Moreover, in the specific case of the wavelet transform, most
of the time is spent by the processor in computing the con-
volution, that is, sums and products between the filter co-
efficients and the image pixel values; the filtering routine is
computationally heavy, so that the weight of the access op-
erations is not very high. Therefore the actual number of
accesses to the external memory turns out to be quite lim-
ited, and their weight on the program running time accord-
ingly low. In summary, the performance improvement in the
wavelet transform computation, which can be obtained by
employing the DMA, is limited because of the efficiency of
the on-chip cache.

5. CONCLUSIONS

In this paper, we have addressed the development of wavelet
cores on a DSP, compatible with the JPEG2000 specifications.
The wavelet transform has been implemented according to
the filter bank scheme and the lifting scheme; in this latter
case the integer-transform option has also been considered.
The code has been profiled so as to evaluate the efficiency of
the implementation and, more interestingly, to allow a com-
parison between the LS and the filter bank scheme.Moreover,
the use of the DMA has also been considered as a possible
way to improve data throughput.

The results have highlighted some aspects of DSP-based
implementations of the wavelet transform, which are dis-
cussed in the following.

(1) The DSP considered in this work is able to compute
up to 8 complete 2D one-level wavelet transforms per second
on a grey-scale 256 × 256 image. This figure can be used to

2This holds provided that the cache memory is large enough to store
eight columns, as usually happens in practice.
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evaluate the number of JPEG2000 frames that a single DSP
is able to code or decode, for example, using the JPEG2000
profiling results reported in [17].

(2) A performance comparison between lifting and filter
banks has been carried out. We have found that the LS al-
ways runs faster than the filter bank scheme. However, the
performance gain differs from the theoretical results in [14],
because the DSP architecture has a different impact on code
optimization for the two algorithms. In particular, convo-
lutions with long filters, which are typical of the filter bank
scheme, tend to benefit from the DSP pipelined architecture.
On the other hand, the LS gain is higher for long filters. In
the end, the actual gain heavily depends on the number and
length of the factorized filters used in the LS.

(3) It has turned out that employing the DMA to trans-
fer data from the external to the internal memory (and vice
versa), while the CPU concurrently filters the previously
transferred data, may provide very little advantage, if any at
all, in terms of execution speed. This is due to the fact that the
on-chip cache memory is able to very efficiently manage the
data transfer operations, for both rowwise and columnwise
filtering.

ACKNOWLEDGMENT

This work was partially developed under the Texas Instru-
ments Elite program.

REFERENCES
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[6] B. Fiethe, P. Rüffer, and F. Gliem, “Image processing for
rosetta osiris,” in 6th International Workshop on Digital Signal
Processing Techniques for Space Applications, vol. 144, ESTEC,
Noordwijk, The Netherlands, September 1998.

[7] J. Eyre, “The digital signal processor derby,” IEEE Spectrum,
vol. 38, no. 6, pp. 62–68, 2001.

[8] K. Haapala, P. Kolinummi, T. Hamalainen, and J. Saarinen,
“Parallel DSP implementation of wavelet transform in image
compression,” in Proc. IEEE International Symposium on Cir-
cuits and Systems, pp. 89–92, Geneva, Switzerland, May 2000.

[9] B. Yiliang, W. Houng-Jyh, C.-C. J. Kuo, and R. Chung,
“Design of a memory-scalable wavelet-based image codec,”
in Proc. IEEE International Conference on Image Processing,
Chicago, Ill, USA, October 1998.

[10] W. Sweldens, “The lifting scheme: A construction of second
generation wavelets,” Siam J. Math. Anal, vol. 29, no. 2, pp.
511–546, 1997.

[11] R. C. Calderbank, I. Daubechies, W. Sweldens, and B. Yeo,
“Wavelet transforms that map integers to integers,” Applied

and Computational Harmonic Analysis, vol. 5, no. 3, pp. 332–
369, 1998.

[12] A. Bilgin, P. Sementilli, F. Sheng, and M. Marcellin, “Scalable
image coding using reversible integer wavelet transforms,”
IEEE Trans. Image Processing, vol. 9, no. 11, pp. 1972–1977,
2000.

[13] M. Grangetto, E. Magli, and G. Olmo, “Efficient common-
core lossless and lossy image coder based on integer wavelets,”
Signal Processing, vol. 81, no. 2, pp. 403–408, 2001.

[14] I. Daubechies and W. Sweldens, “Factoring wavelet trans-
forms into lifting steps,” J. Fourier Anal. Appl., vol. 4, no. 3,
pp. 247–269, 1998.

[15] M. Grangetto, E. Magli, and G. Olmo, “Minimally non-
linear integer wavelets for image coding,” in Proc. IEEE
Int. Conf. Acoustics, Speech, Signal Processing, Istanbul, Turkey,
June 2000.

[16] Document SPRU189F, “TMS320C6000 CPU and instructions
set reference guide,” October 2000, www.ti.com.

[17] M. D. Adams and F. Kossentini, “JasPer: A software-based
JPEG-2000 codec implementation,” in Proc. of IEEE Interna-
tional Conference on Image Processing, vol. 2, pp. 53–56, Van-
couver, BC, Canada, October 2000.

Stefano Gnavi was born in Biella, Italy, in
March 1976. He received the degree in elec-
trical engineering at Politecnico di Torino,
Italy, in July 2001. Since March 2002 he is
a researcher under grant with the Center
for Wireless Multimedia Communications
(CERCOM), at the Department of Elec-
tronics, Politecnico di Torino. His research
interests are in the field of image communi-
cation, video processing and compression,
as well as hardware implementation. Currently he is working on
very low bit rate video coding techniques.

Barbara Penna was born in Castellamonte,
Italy, in May 1976. She received the degree
in electrical engineering at Politecnico di
Torino, Italy, in July 2001. Since September
2001 she is a researcher under grant with
the Signal Analysis and Simulation (SAS)
group, at the Department of Electronics,
Politecnico di Torino. Her research interests
are in the field of data compression. Cur-
rently she is working on novel SAR raw data
compression algorithms based on wavelet transforms.

Marco Grangetto received the “summa
cum laude” degree in electrical engineering
at Politecnico di Torino in 1999, where he
is currently pursuing a Ph.D. degree. His re-
search interests are in the field of digital sig-
nal processing and multimedia communi-
cations. In particular, he is working at the
development of efficient and low complex-
ity lossy and lossless image encoders based
on wavelet transforms.Moreover, he is chal-
lenging the design of reliable multimedia delivery systems for teth-
erless lossy packet networking. He was awarded the Premio Optime
by “Unione industriale di Torino” in September 2000, and a Ful-
bright grant in 2001 for a research period at the Center for Wireless
Communications (CWC) at UCSD.

file:www.ti.com


Wavelet Kernels on a DSP: A Comparison Between Lifting and Filter Banks for Image Coding 989

Enrico Magli received the degree in elec-
tronics engineering in 1997, and the Ph.D.
degree in electrical and communications
engineering in 2001, from Politecnico di
Torino, Turin, Italy. He is currently a Post-
Doctoral researcher at the same university.
His research interests are in the field of
robust wireless communications, compres-
sion of remote sensing images, superreso-
lution imaging, and pattern detection and
recognition. In particular, he is involved in the study of compres-
sion and detection algorithms for aerial and satellite images, and of
signal processing techniques for environmental surveillance from
unmanned aerial vehicles. From March to August 2000 he was a
visiting researcher at the Signal Processing Laboratory of the Swiss
Federal Institute of Technology (EPFL), Lausanne, Switzerland.

Gabriella Olmo received the Laurea Degree
(cum laude) and the Ph.D. in electronic en-
gineering at Politecnico di Torino in 1986
and 1992, respectively. From 1986 to 1988
she was researcher with CSELT (Centro
Studi e Laboratori in Telecomunicazioni),
Turin, working on network management,
non hierarchical models and dynamic rout-
ing. From 1991, she has been Assistant Pro-
fessor at Politecnico di Torino, where she is
member of the Telecommunications group and the Image Process-
ing Lab. Her main recent interests are in the field of wavelets, re-
mote sensing, image and video coding, resilient multimedia trans-
mission, joint source-channel coding, stratospheric platforms. She
has joined several national and international research programs
under contracts by Inmarsat, ESA (European Space Agency), ASI
(Italian Space Agency), European Community. She has coauthored
more than 80 papers in international scientific journals and confer-
ence proceedings.


	1. INTRODUCTION
	2. WAVELET TRANSFORM
	2.1. Filter bank scheme
	2.2. Lifting scheme

	3. IMPLEMENTATION
	4. EXPERIMENTAL RESULTS
	4.1. Absolute running times
	4.2. Comparison between lifting and filter bank
	4.3. Optimization with DMA

	5. CONCLUSIONS
	ACKNOWLEDGMENT
	REFERENCES

