
EURASIP Journal on Applied Signal Processing 2002:9, 990–1002
c© 2002 Hindawi Publishing Corporation

AVSynDEx: A Rapid Prototyping Process Dedicated
to the Implementation of Digital Image Processing
Applications onMulti-DSP and FPGA Architectures

Virginie Fresse
CNRS UMR IETR (Institut en Electronique et Télécommunications de Rennes), INSA Rennes,
20 avenue des Buttes de Coësmes, CS 14315, 35043 Rennes Cedex, France
Email: vfresse@insa-rennes.fr

Olivier Déforges
CNRS UMR IETR (Institut en Electronique et Télécommunications de Rennes), INSA Rennes,
20 avenue des Buttes de Coësmes, CS 14315, 35043 Rennes Cedex, France
Email: odeforge@insa-rennes.fr

Jean-François Nezan
CNRS UMR IETR (Institut en Electronique et Télécommunications de Rennes), INSA Rennes,
20 avenue des Buttes de Coësmes, CS 14315, 35043 Rennes Cedex, France
Email: jnezan@insa-rennes.fr

Received 31 August 2001 and in revised form 12 May 2002

We present AVSynDEx (concatenation of AVS + SynDEx), a rapid prototyping process aiming to the implementation of digital
signal processing applications on mixed architectures (multi-DSP + FPGA). This process is based on the use of widely available
and efficient CAD tools established along the design process so that most of the implementation tasks become automatic. These
tools and architectures are judiciously selected and integrated during the implementation process to help a signal processing
specialist without relevant hardware experience. We have automated the translation between the different levels of the process to
increase and secure it. One main advantage is that only a signal processing designer is needed, all the other specialized manual
tasks being transparent in this prototyping methodology, hereby reducing the implementation time.

Keywords and phrases: rapid prototyping process, multi-DSP-FPGA architecture, CAD environment, image processing applica-
tions.

1. INTRODUCTION

The prolific evolution of telecommunication, wireless and
multimedia technologies has sustained the requirement for
the development of increasingly complex integrated sys-
tems. Indeed, digital signal processing applications includ-
ing image processing have become more and more com-
plex, thereby demanding much greater computational per-
formances. This aspect is especially crucial for certain real-
time applications. To validate a new technique only func-
tionality is not sufficient, the algorithm has to be executed
in a limited time. Until then the first approach to meet this
aspect was to optimize the algorithm, a digital signal or im-
age designer could do this task. Nevertheless, this solution
was quickly inadequate, and parallel to the algorithm devel-
opment, the implementation aspect must be taken into ac-
count. The use of parallel architectures distributes and then
accelerates the execution time of the application.

Currently, one of the best solutions is mixed platforms in-
tegrating a combination of standard programmable proces-
sors and a hardware part containing components like FPGA,
ASIC, or ASIP. It has been demonstrated in [1, 2, 3] that such
architectures are well suited for complex digital image pro-
cessing applications: the distribution between both parts is
generally done by implementing the elementary and regular
operations in the hardware part, the other processing steps
being processed by the software part. These platforms can
deliver higher performances but this heterogeneous aspect
involves software and hardware engineering skills.

The result is the rapid execution of an application on
such architectures but the implementation process becomes
long and is quite complex: several different specialized engi-
neers are needed for each part of the platform and this sepa-
rate parallel implementation poses the risk that the software
and hardware designs diverge at the end of the process and

mailto:vfresse@insa-rennes.fr
mailto:odeforge@insa-rennes.fr
mailto:jnezan@insa-rennes.fr

Rapid Prototyping Process for Image Processing Application Implementations on Mixed Architectures 991

lose their initial correlation. Moreover, it is difficult to man-
age all the tasks, especially the shared resources and the asso-
ciated synchronizations [4, 5].

The negative side of such implementations on com-
plex and parallel architecture is the long development time
emerging from the number of specialized people involved
in the process. The signal processing designer does not
have any more the sufficient skills to supervise the com-
plete development, the error detection at each level becom-
ing more difficult. The intervention of several engineers in-
volves a task partitioning between the different parts at the
beginning of the process, and a partitioning modification is
very difficult as another complete implementation is often
required.

Most of computer-aided design (CAD) environments
dedicated to the implementation on parallel and mixed ar-
chitectures are called codesign tools [6, 7, 8] and they inte-
grate a manual and arbitrary partitioning based on the de-
signer experience. The present codesign tools can address
the problem of implementation either onmultistandard pro-
cessors, or one processor and a dedicated hardware, but not
both of them, which is the topic of this paper.

An example of codesign tool is POLIS (which is pre-
sented in [9]). This tool is dedicated to embedded systems,
which support the control flow description. The representa-
tion is CSFM, codesign finite state machine and the advan-
tage of this one is its independence with the target architec-
ture. There is also Chinook, which is dedicated to reactive
real-time systems (as explained in [10]).

The objective of this work is to propose a full rapid proto-
typing process (AVSynDEx) by means of existing academic,
commercial CAD tools and platforms. A translator between
the CAD environments allows going automatically through
the process.

The prototyping methodology enables a digital signal or
image-processing designer to create the application with a
usual development environment (advanced visual system)
and then to supervise the implementation on a mixed ar-
chitecture without any other necessary skills. AVSynDEx is
open-ended and can realize the partitioning between soft-
ware/hardware target at the highest level of the application
description.

The approach consists of starting with a customary en-
vironment used by the digital signal processing developer.
Then the integration of a distributed executive generator
SynDEx (synchronised distributed executive) leads to an op-
timized implementation on a parallel and mixed platform.
The target architecture combines a multi-DSP (digital signal
processor) part with an FPGA (field programmable gate ar-
ray) platform. A main characteristic is the presence of check-
ing points at each level of the implementation process ac-
celerating the development time: the designer can check and
correct his design immediately without waiting for the im-
plementation. This aspect gives the designer the possibility
to easily and quickly modify the algorithm or to change its
implementation.

This prototyping process leads to a low production cost:
SynDEx is a free academic CAD tool and the multi-DSP and

FPGA board is profitable compared to the development, time
and cost (including raw material, specialized engineers and
specific equipment) for a new platform. Moreover, this pro-
totyping process can integrate the new versions of the CAD
tools and also can use their new performances.

The remainder of this paper is organized into 5 sections.
Section 2 gives an overview of the prototyping process by
briefly introducing the CAD environments as well as the tar-
get architecture. Section 3 details all these elements. The pro-
totyping methodology is fully described by explaining the
compatibility requirements between the levels of the process,
and introducing the automatic translator. By way of process
illustration, the implementation of an image compression al-
gorithm LAR is given in Section 5. Section 6 concludes the
paper.

2. OVERVIEWOF THE PROTOTYPING PROCESS

The prototyping process (Figure 1) aims to a quasi-auto-
matic implementation of digital signal or image applica-
tions on parallel and mixed platform. The target architec-
ture can be homogeneous (multiprocessor part) or hetero-
geneous (multi-DSP + FPGA). A real-time distributed and
optimized executive is generated according to the target plat-
form.

The digital image designer creates the data flow graph
by means of the graphical development tool AVS. This CAD
software enables the user to achieve a functional validation of
the application. Then, an automatic translator converts this
information into a new data flow graph directly compatible
with the second CAD tool, SynDEx. This last tool schedules
and distributes the data flow graph according to the paral-
lel architecture and generates an optimized and distributed
executive. This executive is loaded onto the platform by us-
ing GODSP, a loader and debugger tool. These tools are quite
simple and the links between them are automatic, accelerat-
ing the prototyping process.

The target applications are complex digital image pro-
cessing algorithms, whose functions possess different gran-
ularity levels. The partitioning consists generally of imple-
menting the regular and elementary operations on the FPGA
part and the higher-level operations on the multi-DSP part.
The prototyping process has the advantage to take this parti-
tioning aspect into account and to ensure an adjustable and
quickly modifiable decision. The image-processing designer
is not restricted to one implementation and the partitioning
modifications are quickly realized.

Three elements are necessary for this prototyping pro-
cess: the CAD tools, the target architecture, and the links for
an automatic process.

3. PRESENTATION OF THE INTEGRATED CAD TOOLS
AND THEMIXED PLATFORM

Several computer-aided design environments are used and
judiciously integrated in the prototyping process. Two main
CAD tools are necessary: AVS for the functional descrip-
tion and validation, and SynDEx for the generation of

992 EURASIP Journal on Applied Signal Processing

Data
flow graph AVS Automatic

translator
SynDEx

Sequential
executive

Workstation
PC

Sequential executive
distributed executive

GODSP Multi-DSP
+

FPGA board

Figure 1: The prototyping process. It consists of one graphical image development tool AVS, SynDEx, which is dedicated to the generation
of parallel and optimized executive and a loader-debugger GODSP. The links between these CAD environments are automatic. The data flow
graph is implemented on a multi-DSP + FPGA board.

a distributed and optimized executive. A third tool, a trans-
lator between AVS and SynDEx realized the automatic link.

The target architecture is a mixed platform with a multi-
DSP part and an FPGA one.

3.1. AVS: advanced visual system

AVS (advanced visual system) is a high-level environment for
the development and the functional validation of graphical
applications [11]. It provides powerful visualization meth-
ods, such as color, shape, and size for accurate informa-
tion about data, as shown in Figure 2. The AVS environment
(Figure 3) contains several module libraries located on top
and a workspace dedicated to the application developments.
These algorithms are constructed by inserting existing mod-
ules or user modules into the workspace. A module is linked
to its input and output images and their corresponding types.
Each module calls a C, C++, or Fortran function and the
associated library files. During a modification of an exist-
ing function, the module is immediately updated and the
algorithm as well. All these modules are connected by in-
put and output ports to constitute the global application in
the form of a static data flow graph. In the following, we
consider that traded data are mainly images represented as
one-dimensional array. AVS includes a subset of visualiza-
tion modules for data visualization, image processing, and
user-interface design.

A main advantage is the automatic visualization of inter-
mediate and resulting images at the input and output of each
module. This characteristic enables the image-processing de-
signer to check and validate the functionality of the applica-
tion before the implementation step.

3.2. SynDEx

SynDEx is an academic system-level CAD tool [13, 14]. This
free tool is an academic environment designed and devel-
oped at INRIA, Rocquencourt France and several national
laboratories take part in this project as we does. SynDEx is
an efficient environment, which uses the AAA methodology
to generate a distributed and optimized executive dedicated
to parallel architectures.

AAA stands for algorithm architecture “adéquation,”
adéquation is a French word meaning an efficient match-
ing (note that it is different from the English word adequacy,

Figure 2: Examples of AVS applications. Above, the TrackingMoney
Launderers and below, Bright Forecast at the National Weather Ser-
vice [12]. These examples use the color, size, and shape for data vi-
sualization.

which involves a sufficient matching) [15]. The purpose of
this methodology is to find the best matching between one
algorithm and a specific architecture while satisfying con-
straints. This methodology is based on graph models to ex-
hibit both the potential parallelism of the algorithm and
the available parallelism of the hardware architecture. This
is formalized in term of graph transformations. Heuristics
take into account execution times, durations of computa-
tions, and intercomponent communications are used to op-
timize real-time performances and resources allocation of
embedded real-time applications. The result of graph trans-
formations is an optimized executive build from a library
of architecture-dependent executive primitives composing
the executive kernel. There is one executive kernel for each

Rapid Prototyping Process for Image Processing Application Implementations on Mixed Architectures 993

Figure 3: The AVS environment. Above, the libraries containing the available modules. A rectangle is a defined module. The designer can
create and insert the modules into those libraries. The red and pink marks represent the input and output; the color indicates the type of
the ports. Below, the workspace for the algorithm creation. The visualization of an image is done by inserting the Uviewer2D module and
connecting to the target module (here, it is the output module OUT).

supported processor. These primitives support boot load-
ing, memory allocation, intercomponent communications,
sequentialisation of user supplied computation functions,
of intercomponent communications and intersequences syn-
chronization.

SynDEx ensures the following tasks [16].
(i) Specification of an application algorithm as a con-

ditioned data flow graph (or interface with the compiler of
one of the Synchronous languages ESTEREL, LUSTRE, SIG-
NAL through the common format DC). The algorithm is de-
scribed as a software graph.

(ii) Specification of the multicomponent architecture as
a hardware graph.

(iii) Heuristic for distributing and scheduling the algo-
rithm on the architecture with response time optimization.

(iv) Visualization of predicted real-time performances
for the multicomponent sizing.

(v) Generation of deadlock-free executives for real-time
execution on the multicomponent with optional real-time
performance measurement. These executives are built from
a processor-dependent executive kernel [17]. SynDEx comes
currently with executives kernels for digital signal proces-
sor and microcontroler: SHARC-ADSP21060, TMS320C4x,
Transputer-T80X, i80386, i8051, i80C96, MC68332, and for
workstations: UNIX/C/TCP/IP (SUN, DEC, SGI, HP, PC
Linux). Executive kernels for other processors can be eas-
ily ported from the existing ones. The shared resources and
the synchronizations are taken into account. SynDEx trans-
fers images by using static memory whose allocation is op-

timized. The current development work with SynDEx is to
refine the communication media and to target the use of
this tool to mixed architectures (including FPGA and other
ASIC). So this evolution will be still coherent for future com-
plex products.

The SynDEx environment is shown in Figure 4. The edi-
tion view contains two graphs: the hardware architecture
above and the software graph below. The hardware graph
represents the target architecture with the hardware compo-
nents and the physical links whereas the software graph is
the data flow graph of the application: the vertex is a “task”
(compiled sequence of instructions), and each edge is data-
dependent between the output of an operation and the input
of another task. The vertex is defined by means of informa-
tion such as the input and output images, the size and type
of these images, the name of the corresponding C-function
and the time execution. If the execution time is not known,
a first random value must be affected for every function. Any
random value can be used but a by default value is chosen to
obtain an automatic translation and generate the executive
by means of SynDEx. Then, SynDEx generates a first sequen-
tial executive on a monoprocessor implementation in order
to determine the real task time.

The granularity level of the graph has an impact on the
final implementation: many vertices lead to more parallelism
but also increase the data communication cost.

SynDEx generates a timing diagram Figure 5, according
to the hardware and software graphs. The schedule view
includes one column for each processor and one line for each

994 EURASIP Journal on Applied Signal Processing

Figure 4: SynDEx CAD software: the workspace. Above, a target
architecture with 4 DSP, C4, C3, C2, and root. Root is the DSP,
which is dedicated to the video (grab and display image): the input
and output functions are processed by this processor. The physical
connections are represented. Below, the software graph (algorithm)
contains processing tasks (edges) and the data dependencies (ver-
tices). Ee and Se are respectively the input and output images.

Figure 5: The SynDEx timing diagram. Each column represents the
task allocation for one DSP (Moy1, Ngr1, and Eros1 are treated by
the DSP C2 and the video modules Ee and Se are effectively imple-
mented on the video DSP root). The size of each rectangle is the
execution time for every task and the lines between the columns
indicate the communication transfers. This diagram shows the par-
allelism of the algorithm and the timing estimation.

communication medium. The timing diagram describes the
distribution (spatial allocation) and the scheduling (tempo-
ral allocation) of tasks on processors, and of interproces-
sor data transfers on communication media. Time is flowing
from top at bottom and the height of each box is propor-
tional to the execution duration of the corresponding opera-
tion.

SynDEx is an efficient tool for the implementation on
parallel architectures but is not an application development
tool environment as it is not able to simulate the software
graph. Without any front-end tool, the signal processing de-
signer has to create a sequential C-application by means of

current C-development tools. Once the functional validation
is done, it has to be split into several functions for the Syn-
DEx data flow graph; each function represents an edge in the
SynDEx data flow graph. The resulting data flow graph can
be checked only after the implementation on the target plat-
form. The manually transformation of the SynDEx data flow
graph can generate somemistakes. Moreover, optimization is
quite long and not automatic: the image processing designer
has to work with the initial algorithm, the SynDEx tool and
the transformations between these two data flow graphs.

3.3. Themulti-DSP-FPGA platform

The development of this own parallel architecture is a very
complex task while suppliers offer powerful solutions. It is
the reason why we have opted for a commercial product. The
choice of the target architecture has been directed by different
motivations. Firstly, the platform had to be generic enough
in order to integrate most of the possible image applications.
Secondly, it had to be modular to be able to evolve with time.
Thirdly, the architecture programming had to be at sufficient
level in order to be interfaced with SynDEx. Fourthly, the cost
had to be reasonable to represent a realistic solution for pro-
cessing speedup.

The experimental target architecture is a multi-DSP and
FPGA platform based on a Sundance PCImotherboard, Sun-
dance Multiprocessor technology Ltd., Chiltern House, Wer-
side, Chesham, UK, whose characteristics enable the user to
obtain a coherent and flexible architecture.

Two Texas Instrument Modules (TIM) constitute the
multi-DSP part [18, 19]. The first one integrates two
TMS320C44 processors to carry out the processing. The sec-
ond module is a frame-grabber containing one TMS320C40
DSP. When it is not used for a video processing, this DSP can
run image as well.

An additional FPGA part (Figure 6) is designed as a
reconfigurable coprocessor for TMS320C4x based-systems
and is associated to this multi-DSP platform. This is a
MIROTECH X-C436 board [19] integrating a XC4036
FPGA, fully compatible with the TIM specifications: this
module can be directly integrated onto the motherboard.

This FPGA is used as two virtual processing elements
called VPE. Each VPE is considered as one FPGA XC4013,
the rest of the full FPGA being used for the communication
port management: all external transfers between the mod-
ules and the multi-DSP architecture are resynchronized by a
communication port manager (CPM). The designers of this
board propose this solution, which will be used for the pro-
totyping process and they give the existing cores (a core is a
processing task for one VPE) for this configuration. Never-
theless, it can be extended to different size of VPE and dif-
ferent number of VPE on the sole condition that the image-
processing designer or a hardware engineer creates the spe-
cific cores.

Each VPE is connected to a C4x processor via direct links
and DMA. The target topology of the platform is shown in
Figure 7. This host processor does the FPGA module config-
uration and the data transfers. Thus, the use of the dedicated
module is straightforward as it consists only in functions calls

Rapid Prototyping Process for Image Processing Application Implementations on Mixed Architectures 995

CSU

CPM

Comms port JTAG

ILINK

VPE1

VPE2

SR
A
M

Figure 6: The X-CIM architecture. The FPGA includes 2 VPE dedi-
cated to achieve the image processing. ILINK is a direct link between
both. The CPM is responsible for the communications betweenDSP
and FPGA. A supervisor, Configuration and Shutdown Unit, con-
trols the clock and the reset.

P2

P1Root
VPE1

VPE2

FPGA

Figure 7: The proposedmulti-DSP FPGA topology. Themulti-DSP
part contains 3 DSP called root, P1, and P2, root being the video
processor. The black squares are the physical links betweenDSP. The
FPGA part is the coprocessor for the root DSP. Each VPE have one
input and one output, which are connected to the root DSP. The
FPGA part (grayed) is fully transparent to the user and the functions
are managed by the root processor.

inside the DSP code. A configuration step is necessary be-
fore the processing step. The configuration step includes the
initialization of the module (link specifications between the
VPE and DSP, license affectation), the parameters for each
core (data size, image size, . . .), core assignations for each
VPE and the module configuration (implementation of all
previous configurations on the board).

Afterwards, the processing can be achieved in 3 possible
ways.

(i) Transparent communication mode. The first solution
consists of using one instruction corresponding to the target
processing. The input and output images are the only nec-
essary parameters: this only instruction ensures to send the
input images to FPGA and then to receive the output images
at the end of the execution. This unique instruction is easy to
use but prevents the processor running a parallel function.

(ii) Low-level communication mode. In a second ap-
proach, the user gives the input and output image by using
some pointers and sends the images pixel per pixel, which
are immediately processed and then sent back. With this
method, a function is time-consuming and the processor
cannot run another function in the same time.

(iii) DMA communication mode. The last way consists of
sending the input image via the DMA. Specific instructions
enable the designer to associate the image, to read and write
in the DMA, and to wait for the end of the processing. The
advantage is that the processor can execute another process
at the same time.

For all these processing possibilities, specific libraries
contain cores and specific instructions for the FPGA config-
uration and use. The library declaration is inserted in these
functions.

The configuration and processing tasks can be separated
and included in different functions. The configuration time
of the dedicated module is long (about 2.6 seconds), limiting
to a static use of the coprocessor to two type of operation.

4. PROTOTYPINGMETHODOLOGY FORMIXED
AND PARALLEL ARCHITECTURES

AVSynDEx is a prototyping process aiming to go automati-
cally from the functional AVS description to the distributed
execution over the multi-DSP or mixed architecture (see
Figure 1). It implies first to guaranty a full compatibility be-
tween the elements throw the process, and then to generate
automatic links. The general requirements for a multi-DSP
implementation are listed first, before the specific ones linked
to the dedicated target.

4.1. Compatibility formulti-DSP architectures

4.1.1 SynDEx-multi-DSP platform

SynDEx can handle the multi-DSP architecture once the syn-
chronization primitives, memory management, and com-
munication schemes have been realized for the type of pro-
cessors involved. Architecture configurations such as frame
grabber initialization are gathered in an INIT file executed
once at the beginning of the application running.

4.1.2 AVS-SynDEx

SynDEx and AVS present a similar semantic in terms of ap-
plication description with the use of static data flow graph.
Nevertheless, some particularities have to be dealt with.

Restrictions in SynDEx description

Only a few data types are defined in SynDEx (Boolean, inte-
ger, real, . . .), and the dimension of the arrays must be fixed.
The same rules have to be applied for the AVS graphs.

C-functions associated to processing vertices

For both graphs, each vertex can be associated to a C-
function. A skeleton of the function is generally created by
AVS when editing a new module, containing specific AVS in-
structions to interface the user code to the global applica-
tion. To be compiled in the SynDEx environments, all these
instructions have to be removed.

Specific vertices

In and Out functions are of course dependent on the plat-
form. In the AVS environment, IN and OUT correspond to

996 EURASIP Journal on Applied Signal Processing

h-files

c-files

AVS data
flow graph

Automatic
translator

SynDEx
software
graph

SynDEx
hardware
graph

DSP
configuration

file

h-files

c-files cores

Configuration
file

Figure 8: Presentation of the automatic translator.

read and write image files, whereas it is linked to video cap-
ture and display for SynDEx.

Besides the processing vertices, SynDEx defines also three
specific ones:

(i) Memory: a storage element acting as a FIFO whose
deep is variable.

(ii) When: allows to build a conditional graph (the follow-
ing of the graph is executed if an input condition is
asserted).

(iii) Default: selects between two inputs the one to be trans-
mitted depending on an input condition.

The corresponding AVS primitives have been designed in
V (the low-level language of AVS) to keep the whole SynDEx
potential of graphs management.

4.2. Compatibility specific to FPGAmodule

4.2.1 SynDEx-Mixed platform

As the FPGA module management is carried out by a host
DSP, the adopted solution consists of representing the use
of a VPE in the data flow graph by a dedicated vertex
linked to the host. The associated function contains only
the reference to the core according to the transparent com-
munication mode. The essential advantage is that the data
flow graph remains unchanged compared to the multi-DSP
case: whatever the target architecture is (software or hard-
ware), a task is specified by its inputs, outputs, and executive
time.

FPGA module configuration is also stored in the global
INIT file.

4.2.2 AVS-SynDEx

In order to get equivalent functional graph, a functional
equivalent C-function has to be developed for each available
core, gathered in a library. It is an easy task as the low-level
treatments corresponds generally to simple algorithms. For
a multi-DSP architecture only, the function can be directly
reused and implemented into a DSP. When using the FPGA
module, it has to be replaced by the call to the core.

4.3. The automatic translator

The fulfillment of the compatibility between the prototyp-
ing process stages allows to go from the functional descrip-
tion to the parallel implementation. By designing a translator

between AVS and SynDEx, the process is performed auto-
matically.

The automatic translator is designed with the Lex and
Yacc tools. The first one filters the necessary parts in a se-
quence whereas the second one transforms an input chain
into another one.

The translator realizes the following tasks, as shown in
Figure 8:

(i) Transforms the AVS data flow graph syntax into a Syn-
DEx one.

(ii) Looks for user c-files and h-files associated to each
module and “cleans” them of specific AVS instruc-
tions.

(iii) Transforms Memory, When, and Default primitives
into SynDEx ones.

(iv) Generates the constraints (e.g., IN and OUT linked to
the host DSP).

(v) Adds automatically the target architecture (hardware
graph).

(vi) Generates the INIT file for the multi-DSP configura-
tion.

Moreover, the translator is a key element in the codesign
process. A flag is associated to each core equivalent AVSmod-
ule that indicates if the target is a DSP or the hardware mod-
ule. In the first case, the c-file and the h-files are fetched and
reused for the generation of the executive. In the second case,
these files are replaced with the corresponding core and the
FPGA configuration is added to the INIT file. Thus, the al-
location/partitioning tasks are easily done in the functional
environment.

Another field of the AVS modules contains the execution
time of the operation if it is known (otherwise a random
value is assigned). The timing information is not needed in
the AVS description and is inserted in the module as a com-
ment. This information is not used to determine the overall
functionality of the AVS description: AVS does not do any
difference between two similar C-functions whose timing
information is different. Nevertheless, the image processing
designer can decide what partitioning (software/hardware
module) is more efficient thanks to this timing information.
Another reason is the use of this information in the SynDEx
data flow graph; the automatic translator needs this informa-
tion to generate the SynDEx data flow graph. This feature has
generally already been determined for the cores. This time is
also copied out on SynDEx.

Rapid Prototyping Process for Image Processing Application Implementations on Mixed Architectures 997

AVS

Specifications

Data flow graph

Data flow graph

SynDEx

Sequential executive

DSP implementations

Timing measurement User

User

Allocation/Partitioning

Data flow graph

Data flow graph

Spatial and temporal scheduling

Distributed executive

FPGA+multi-DSP
implementation

C-
functions

cores

GODSP

Figure 9: The AVSynDEx prototyping methodology for mixed and parallel architecture. The starting point is the specification for a data flow
graph creation. Two runs of the implementation process are necessary: the first one is the chronometrical report by means of a sequential
executive (left part). It is necessary only for new C-functions and is removed in the other case. The second one is the implementation on the
mixed platform. The links between the CAD tools are automatic and the designer supervises all the implementation steps.

4.4. Prototyping process

The implementation process is simple, requiring only a max-
imum of two development presented in Figure 9. For new
user C-modules, their executive time has first to be deter-
mined to get eventually an optimized parallel implementa-
tion. It is done by first considering a mono-DSP target, when
the user constraints all the tasks of the software graph to be
associated to the root processor. The executive generated by
SynDEx is at this step only sequential. The loader GODSP en-
sures the implementation of the application and the report of
the chronological information. Then, the designer has only
to copy out these times on the AVS modules. If the applica-
tion is made of already valued C-modules, this first run of
the process is of course useless.

Once the algorithm is functionally validated and the par-
titioning is decided by the designer, the automatic transla-
tor generates the new SynDEx description associating the C-
functions and the cores. From now on, the hardware graph
is the multi-DSP architecture. SynDEx schedules and dis-
tributes the algorithm and gives the resulting timing dia-
gram. The user can choose to modify the partitioning in AVS
or run the application on the mixed platform.

Themain advantage of this prototyping process is its sim-
plicity, as most of the tasks realized by the users concern the
application description with his conventional environment.
The required knowledge of SynDEx and the loader are lim-
ited to simple operations.

Other front-end development tools can be used in the
process instead of AVS so far as they present a similar seman-
tic for the application description. Ptolemy-related works can

be found in [20, 21]. AVSynDEx can be adapted to other ar-
chitectures as well.

5. IMPLEMENTATION OF AN IMAGE COMPRESSION
ALGORITHM

A new image compression algorithm has been developed in
our laboratory: its implementation on a mixed architecture
provides a validation of our fast prototyping methodology.
This algorithm called LAR, locally adaptive resolution [20],
is an efficient technique well suited for image transmission
via Internet or for embedded systems. Basically, the LAR
method was dedicated to gray levels still image compression,
but extensions have been also proposed for colour images
and videos [22].

5.1. Principle of the compression

The basic idea of the LAR method is that the local resolu-
tion (pixel size) can depend on the activity: when the lu-
minance is locally uniform, the resolution can be low (large
pixel size). When the activity is high, the resolution has to be
finer (smaller pixel size).

A first coder is an original spatial technique and achieves
high compression ratio. It can be used as a stand-alone tech-
nique, or complemented with a second coder allowing to en-
code the error image from the first coder topology descrip-
tion. This second one is based on an optimal block-size DCT-
transform. This study concerns only the first spatial coder.
Figure 10a presents its global process.

The image is first subsampled by 16 × 16 squares rep-

998 EURASIP Journal on Applied Signal Processing

Source image

Nonuniform
subsampling

Grid

Blocks
average

Gray-level blocks

Blocks
quantization

Diferential
entropic
coding

Entropic
code

Compressed image

(a)

Source image

Erosion
3 × 3

Dilation
3 × 3

Erosion
3 × 3

Dilation
3 × 3

Erosion
3 × 3

Dilation
3 × 3

Stationary
within

3 × 3 blocks

Stationary
within

5 × 5 blocks

Stationary
within

17 × 17 blocks

< T

< T

< T

+−

+−

+−

(b)

Figure 10: (a) Global scheme of the spatial LAR coder. (b) Decom-
position of the nonuniform function.

resenting local trees. Then, each one is split according to a
quadtree scheme depending on the local activity (edge pres-
ence). The finest resolution is typically 2 × 2 squares. The
image can be reconstructed by associating to each square the
corresponding average luminance in the source image.

The image contents information given through the
square size is considered advantageous for the luminance
quantization. Large squares require a fine quantization, as
they are located in uniform area (strong sensitivity of human
eye to brightness variations). Small ones support a coarse
quantization as they are upon edges (low sensitivity). Size
and luminance are both encoded by an adaptive arithmetic
entropic encoder. The average cost is less than 4bits per
square.

5.2. Functional description of the application
bymeans of AVS

In order to obtain the best implementation of the data flow
graph on the mixed architecture, the image processing de-
signer has to exhibit both elementary operations available in
the core library and additional data parallelism allowed by
some tasks. All the decisions and modifications are achieved
only at the functional level (AVS data flow representation).

In the LAR method, block stationary property is evalu-
ated by a morphological gradient followed by a threshold. A
morphological gradient is defined as the difference between
the dilated value (maximal value in a predefined neighbour-
hood) and the eroded value (minimal value in the same
neighbourhood). A low resulting value indicates a flat region.
A high ones show off an edge in the neighbourhood. By com-
puting this stationary estimation using growing neighbour-
hood surface (2 × 2, 4 × 4, 8 × 8, and 16 × 16), it is possi-
ble to choose the maximal block size to represent the region
while keeping the stationary property. The major drawback
of this approach is that the morphological operators com-
plexity is proportional to the neighbourhood size, and then
an erosion/dilation upon a 16 × 16 block requires 256 op-
erations per pixel. To reduce the complexity, one uses gen-
erally the Minkowski addition by performing an operation
upon a large neighbourhood as successive operations upon
smaller neighbourhood [23]. As 3 × 3 erosion and dilation
operators are available in the core library, the graph modifi-
cations at this stage have consisted of decomposing the global
morphological operations into iterative elementary ones (see
Figure 10b).

Data parallelism has been also pointed out for a mul-
tiprocessing purpose as most of the other functions are lo-
calised into 16× 16 blocks.

The algorithm development and optimizations are
achieved using the AVS tool. The designer can develop the
application and can easily refine the granularity of several
functions. The data flow graph algorithm of the LAR appli-
cation is developed and the resulting AVS data flow graph is
shown in Figure 11. AVS enables the image processing de-
signer to check the functionality of the new algorithm as
shown in Figure 12.

5.3. Implementation on themulti-C4x-FPGA platform

According to the presented prototyping process, the auto-
matic translator generates the corresponding SynDEx data
flow graph and the associated files. A first monoprocessor
implementation is required for chronological measurements
and the modules are specified to be software modules. Syn-
DEx generates a sequential executive for the implementation
on the root processor. The designer does the chronometrical
reports (Table 1) and inserts these new times in the AVS data
flow.

The time corresponding to a C4x-processor implementa-
tion is 3.21 seconds and represents the reference for the par-
allel one.

The second choice of architecture is to use only three
C4x-DSP as represented in Figure 13. The modification con-

Rapid Prototyping Process for Image Processing Application Implementations on Mixed Architectures 999

Figure 11: Presentation of the LAR algorithm under the AVS en-
vironment. On top, the new modules are inserted into libraries
(right). Below, the data flow graph of the LAR application. The out-
put image is visualized by means of the Uviewer2D module: it is the
Lena image.

sists only of removing the constraint of tasks allocation to
only one DSP in SynDEx.

The best distribution according SynDEx is using only 2
C4x-processors (root and P1). This timing diagram shows
that the global time should be longer or not more efficient in
case of a 3DSP implementation. The resulting time for this
implementation is 1.74 seconds.

As the 3 × 3 erosion and dilation cores are available, the
last solution consists in the use of the FPGA to perform these
operations. A comparison with the software implementa-
tion shows that the hardware one is approximately 100 times
faster. Note that the architecture limits the number of cores
in an application but theses cores can be used several times
(several identical vertices in the graph). Changing the tar-
get flag of the equivalent AVS modules and running again
the translator leads to a new SynDEx input file. The Er3∗3
and Dil3∗3 C-functions are replaced by the call of the cor-
responding cores. The SynDEx data flow graph remains un-
changed except new constraints on the FPGA tasks allocated
to the host (root) processor. Then, SynDEx can schedule and
distribute the application according to the new software and
material graphs. The timing diagram is almost the same than
Figure 14 except erosion and dilation tasks, which are much
smaller. The resulting executive time is 245milliseconds.

5.4. Implementation on amulti-C6x platform:
AVSynDEx version 2

The new Sundance multiprocessor architecture is now avail-
able and an upgrade of AVSynDEx (version 2) to this new ar-

Table 1: Modules execution time (image 120× 120 pixel).

Functions
Time (microsecond)

DSP C4X FPGA DSP C6X

IN 50 648

Er3∗3 371 400 (∗4) 4 176 (∗4) 18 551 (∗4)

Dil3∗3 370 681 (∗4) 4 150 (∗4) 18 410 (∗4)

GrStep4 6 777 562

GrStep8 5 967 636

BlAver 7 558 11 124

DPCM 33 886 14 721

SiZcod 71 586 3 243

GrayCod 64 275 3 193

FilGray 2 816 232

FilSiz 2 859 243

OUT 12 141

(a) Original image
(512∗512, 8 bits per
pixel).

(b) Nonuniform grid.

(c) Reconstructed image. (d) Reconstructed image
after postprocessing
(0.18 bits per pixel, PSNR
28.5dB).

Figure 12: Visualization of images in the AVS environment. Image
display is available via an Uviewer2D module.

chitecture is in progress. The platform consists of a Sundance
SMT320 motherboard with two TIM SMT335. Each module
contains a TMS320C6201 processor (the clock frequency be-
ing 200MHz) and one FPGA dedicated to the communica-
tion management between both processors.

1000 EURASIP Journal on Applied Signal Processing

Table 2: Comparisons of different ameliorations given by the prototyping process. The proposed prototyping process improves the devel-
opment time and is friendlier. The optimizations and functional validation ensure to improve the application description and to obtain a
rapid implementation. The partitioning is easier as the SynDEx tool is not being friendly for such modifications.

Full development Translation AVS-SynDEx Functional validation Partitioning Error detection

Without 3–4 days 60min No SynDEx No

With 1 day 5min Immediate AVS Immediate

Figure 13: The generated SynDEx description. The architecture is
added (3DSP: root, P1, and P2). The software graph is similar to the
AVS data flow graph.

Actually, SynDEx does not completely ensure the gener-
ation of an optimized and distributed executive of the algo-
rithm for this new architecture. Indeed, current works are
performed in our laboratory on the generation of the exec-
utive integrating conventional features, that is, the descrip-
tion of primitives for DSP synchronization, data exchange via
the use of DMA and communication buses. Parallel to this
are added new features such as shared memory, conditional
nodes,

Nevertheless, the prototyping process remains similar
and the development stages as well. The translation between
AVS and SynDEx is identical: the modification lies only in
the generation of the distributed executive by SynDEx for the
target platform.

The LAR application is reimplemented on a one-DSP ar-
chitecture and the chronometrical reports are presented in
the right-hand column of Table 1. The result for a sequential
execution time is 245.331milliseconds on a C6x DSP, that is,
a rough accelerating factor of 13 only by integrating new and
faster processors.

Several observations can be made:
(i) Most of the software functions are faster with the use

of the C6x DSP. So, without changing the rapid prototyping
process, the implementation time will be improved only by
integrating new and efficient components.

(ii) The execution time of initial hardware implemen-
tations (i.e., Er3∗3 and Dil3∗3) is not improved in case
of a software implementation and the hardware integration

Figure 14: The timing diagram generated by SynDEx. The best im-
plementation only uses 2DSPs (root and P1): Er3∗3 are treated by
the P1 processor and Dil3∗3 by the root processor. These functions
are executed at the same time. The root processor executes most of
other functions. SynDEx indicated (on top) that the efficiency is 1.8
compared to a sequential executive.

remains the best solution. A mixed DSP-FPGA architecture
will always be one efficient platform for the implementation
of digital image processing with real-time constraints.

5.5. Results

For this application, the executive time is 3.21 seconds on a
one-DSP implementation, and 245milliseconds for a multi-
DSP architecture (leading to an accelerating factor of about
13).

Ourmethodology ensures a fast and controlled prototyp-
ing process, and a final optimized implementation.

The development time of such applications, Table 2, is
valued to one day (when different scenario are tested) with
AVSynDEx and its automatic translator, and 3–4 days with-
out this one. This estimation is based on the hypothesis that
there is at least one mistake in the development process and
the times integrate the detection and correction of this mis-
take. The estimations are the result of personal implementa-
tions of complex image processing applications combined to
the experience of designers working in the same laboratory.
All of them have a huge experience in the AVS environment.

The main work consists of describing the application un-
der the AVS environment and creating the new C-modules.
The implementation process is very fast and secured: the
time for the chronometrical stage is about 20minutes,

Rapid Prototyping Process for Image Processing Application Implementations on Mixed Architectures 1001

starting from the automatic generation of the sequential ex-
ecutive to the final timing results. Without the automatic
translator, the generation of the SynDEx data flow graph lasts
1 hour. It is an average time so far as it depends on the appli-
cation size (number of vertices). The remaining of the imple-
mentation process is very fast (15minutes).

6. CONCLUSION AND PERSPECTIVES

We have presented AVSynDEx, a rapid prototyping process
able to implement complex signal/image applications on a
multi-DSP+FPGA platform. AVSynDEx is currently the only
environment able to target this kind of architecture from
a high-level functional description. The methodology inte-
grates two CAD tools: AVS for the functional development of
the application described as a static data flow graph, and Syn-
DEx as generator of optimized distributed executive. SynDEx
is a powerful tool to find the best matching between an ap-
plication and a specific architecture, but does not constitute a
development environment of algorithms. Adding a front-end
one and developing an automatic link between them intro-
duce a higher level of abstraction in the process. Moreover,
SynDEx can only handle processors but not dedicated hard-
ware (even if some works in this sense are in progress). By
selecting a suitable FPGA-based target and adapting its man-
agement to the SynDEx description type, we have removed
this limitation. The result is a fast and easy-to-use process.
The image designer can develop and supervise the whole im-
plementation process without any pre-requirement as differ-
ent complex and specific stages become transparent.

A main characteristic is the opening of this process. It be-
comes very easy to use other CAD tools or to update the used
environments. The structure of the methodology ensures to
replace the AVS environment with other graphical applica-
tion development tools such as Ptolemy. The application de-
scription of this new tool should just present a similar seman-
tic with SynDEx (static data flow graph). The target platform
itself can integrate the components and the number of FPGA
and DSP is not set.

We offer a low-cost solution considering that the front-
end environment is necessary for a high-level perfecting of
image applications, and that SynDEx is a free academic tool.
Moreover, the prototyping targets relatively cheap platforms
among existing multicomponents architectures.

Works in progress concern the integration of the new
versions of AVS and SynDEx (introducing the notion of dy-
namic data flow graph) as well as the interface to a new ar-
chitecture based on several TI C6x and FPGA Virtex. In par-
ticular, we are developing a new SynDEx executive kernel for
these DSPs. On the same time, we are developing an Mpeg-
4 coder with AVS, which should be integrated into the new
platform thanks to AVSynDEx, in order to reach real-time
performances. An Mpeg-2 coder has already been developed
and implemented on the multi-C4x-FPGA platform [24].

Another perspective is the integration of new tools such
ArtBuilder [25] or DK1 Design Suite [26] to facilitate the
creation of new cores for the FPGA by nonspecialists in
hardware. These tools can generate VHDL code or the target

core starting from a C description, or a similar c-description,
such as Handle-C for the DK1 Design Suite.

REFERENCES

[1] A. Downton and D. Crookes, “Parallel architecture for image
processing,” Electronics & communications Engineering Jour-
nal, vol. 10, no. 3, pp. 139–151, June 1998.

[2] N. M. Allinson, N. J. Howard, A. R. Kolcz, et al., “Image pro-
cessing applications using a novel parallel computingmachine
based on reconfigurable logic,” in IEE Colloquium on Parallel
Architectures for Image Processing, pp. 2/1–2/7, 1994.

[3] G. Quénot, C. Coutelle, J. Sérot, and B. Zavidovique, “Imple-
menting image processing applications on a real-time archi-
tecture,” in Proc. Computer Architectures for Machine Percep-
tion, pp. 34–42, New Orleans, La, USA, December 1993.

[4] Q. Wang and S. G. Ziavras, “Powerful and feasible proces-
sor interconnections with an evaluation of their communi-
cations capabilities,” in Proc. 4th International Symposium on
Algorithms and Networks, pp. 222– 227, Freemantle, Australia,
June 1999.

[5] M.Makhaniok and R.Manner, “Hardware synchronization of
massively parallel processes in distributed systems,” in Proc.
3rd International Symposium on Parallel Architectures, Algo-
rithms and Networks, pp. 157–164, Taipei, Taiwan, December
1997.

[6] G. Koch, U. Kebschull, and W. Rosenstiel, “A proto-
typing environment for hardware/software codesign in the
COBRA project,” in Proc. 3rd International Workshop on
Hardware/Software Codesign, pp. 10–16, Grenoble, France,
September 1994.

[7] B. K. Seljak, “Hardware-software co-design for a real-time ex-
ecutive,” in Proc. IEEE International Symposium on Industrial
Electronics, vol. 1, pp. 55– 58, Bled, Slovenia, 1999.

[8] R. K. Gupta, “Hardware-software co-design: Tools for archi-
tecting systems-on-a-chip,” in Proc. Design Automation Con-
ference, pp. 285– 289, Makuhari, Japan, January 1997.

[9] F. Balarin, D. Chiodo, M. and Engels, et al., “POLIS a De-
sign Environment for Controldominated Embedded Systems,
version 3.0,” User’s manual, December 1997.

[10] Department of Computer Science and Engineering, “The
Chinook project,” Tech. Rep., University of Washington, Seat-
tle,Wash, USA,May 1998, http://cs.washington.edu/research/
chinook/.

[11] Advanced Visual Systems Inc., “Introduction to AVS/Express,”
Official site http://www.avs.com, 1996.

[12] R. O. Cleaver and S. F. Midkiff, “Visualization of network
performance using the AVS visualization system,” in Proc.
2nd International Workshop on Modeling, Analysis, and Sim-
ulation of Computer and Telecommunication Systems, pp. 407–
408, Durham, NC, USA, 31 January–2 February 1994.

[13] C. Lavarenne, O. Seghrouchni, Y. Sorel, and M. Sorine, “The
SynDEx software environment for real-time distributed sys-
tems design and implementation,” in Proc. European Control
Conference, pp. 1684–1689, Grenoble, France, July 1991.

[14] C. Lavarenne and Y. Sorel, “Specification, performance op-
timization and executive generation for real-time embedded
multiprocessor applications with SynDEx,” in CNES Sympo-
sium on Real-Time Embedded Processing for Space Applications,
Les Saintes Maries de la Mer, France, November 1992.

[15] C. Lavarenne and Y. Sorel, “Real time embedded image pro-
cessing applications using the A3 methodology,” in Proc.
IEEE International Conference on Image Processing, pp. 145–
148, Lausanne, Switzerland, November 1996.

[16] T. Grandpierre, C. Lavarenne, and Y. Sorel, “Optimized rapid
prototyping for real-time embedded heterogeneous multi-

http://cs.washington.edu/research/chinook/
http://cs.washington.edu/research/chinook/
http://www.avs.com

1002 EURASIP Journal on Applied Signal Processing

processors,” in Proc. 7th International Workshop on Hard-
ware/Software Co-Design, pp. 74–78, Rome, Italy, May 1999.

[17] A. Vicard and Y. Sorel, “Formalization and static optimization
of parallel implementations,” inWorkshop on Distributed and
Parallel Systems, Budapest, Hungary, September 1998.

[18] Sundance Inc., “SMT20 4 slots TIM,” http://www.sundance.
com/s320.htm, 2000.

[19] Sundance Inc., “SMT314 video grab and display TMS320C40
TIM,” http://www.sundance.com/s314.htm, 2000.

[20] J. Lienard and G. Lejeune, “Mustig: a simulation tool
in front of the SynDEx software,” in Thematically Days
University-Industry, GRAISyHM-AAA-99, pp. 34–39, Lille,
France, March 1999.

[21] V. Fresse, R. Berbain, and O. Déforges, “Ptolemy as front end
tool for fast prototyping into parallel and mixed architecture,”
in International Conference on Signal Processing Applications
Technology, Dallas, Tex, USA, October 2000.

[22] O. Déforges and J. Ronsin, “Nonuniform sub-sampling using
square elements: a fast still image coding at low bit rate,” in
International Picture Coding Symposium, Portland, Ore, USA,
April 1999.

[23] H. Minkowski, “Volumen und Oberflache,” Math. Ann., vol.
57, pp. 447–495, 1903.

[24] J. F. Nezan, V. Fresse, and O. Déforges, “Fast prototyping
of parallel architectures: an Mpeg-2 coding application,” in
The 2001 International Conference on Imaging Science, Sys-
tems, and Technology, Las Vegas, Nev, USA, June 2001.

[25] M. Fleury, R. P. Self, and A. C. Downton, “Hardware compi-
lation for software engineers: an ATM example,” IEE Proceed-
ings Software, vol. 148, no. 1, pp. 31– 42, 2001.

[26] T. Stockein and J. Basig, “Handel-C: an effective method for
designing FPGA (and ASIC),” Academic paper, University of
Applied Science, Nuremberg, 2001, http://www.celoxica.com/
products/technical papers/index.htm.

Virginie Fresse received the Ph.D. degree in
electronics from the Institut of Applied Sci-
ences of Rennes, INSA, France in 2001. She
is currently a postdoctoral researcher in the
Department of Electrical Engineering in the
University of Strathclyde, Glasgow, Scot-
land. Her research interests include the im-
plementation of real-time image-processing
applications on parallel and mixed architec-
tures, the development of rapid prototyping
processes and the codesign methodologies.

Olivier Déforges graduated in electronic
engineering in 1992, from the Polytech-
nique University of Nantes, France, where
he also received in 1995 a Ph.D. degree in
image processing. Since September 1996, he
has been a lecturer in the Department of
Electronic Engineering at the INSA Rennes
Scientific and Technical University. He is a
member of the UMR CNRS 6164 IETR lab-
oratory in Rennes. His principal research
interests are parallel architectures, image understanding and com-
pression.

Jean-François Nezan received his postgrad-
uate certificate in Signal, Telecommuni-
cations, Images and Radar Sciences from
Rennes University in 1999, and his MSI in
electronic and computer engineering from
INSA-Rennes Scientific and Technical Uni-
versity in 1999, where he is currently work-
ing toward a Ph.D. Research interests in-
clude image compression algorithms and
rapid prototyping.

http://www.sundance.com/s320.htm
http://www.sundance.com/s320.htm
http://www.sundance.com/s314.htm
http://www.celoxica.com/products/technical_papers/index.htm
http://www.celoxica.com/products/technical_papers/index.htm

	1. INTRODUCTION
	2. OVERVIEW OF THE PROTOTYPING PROCESS
	3. PRESENTATION OF THE INTEGRATED CAD TOOLS AND THE MIXED PLATFORM
	3.1. AVS: advanced visual system
	3.2. SynDEx
	3.3. The multi-DSP-FPGA platform

	4. PROTOTYPING METHODOLOGY FOR MIXED AND PARALLEL ARCHITECTURES
	4.1. Compatibility for multi-DSP architectures
	4.1.1 SynDEx-multi-DSP platform
	4.1.2 AVS-SynDEx

	4.2. Compatibility specific to FPGA module
	4.2.1 SynDEx-Mixed platform
	4.2.2 AVS-SynDEx

	4.3. The automatic translator
	4.4. Prototyping process

	5. IMPLEMENTATION OF AN IMAGE COMPRESSION ALGORITHM
	5.1. Principle of the compression
	5.2. Functional description of the application by means of AVS
	5.3. Implementation on the multi-C4x-FPGA platform
	5.4. Implementation on a multi-C6x platform: AVSynDEx version 2
	5.5. Results

	6. CONCLUSION AND PERSPECTIVES
	REFERENCES

