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This paper presents a CORDIC (coordinate rotation digital computer) algorithm and architecture for the rotation mode in which
the directions of all micro-rotations are precomputed while maintaining a constant scale factor. Thus, an examination of the sign
of the angle after each iteration is no longer required. The algorithm is capable to perform the CORDIC computation for an
operand word-length of 54 bits. Additionally, there is a higher degree of freedom in choosing the pipeline cutsets due to the novel
feature of independence of the iterations i and i− 1 in the CORDIC rotation.
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1. INTRODUCTION

CORDIC (coordinate rotation digital computer) [1, 2] is an
iterative algorithm for the calculation of the rotation of a 2-
dimensional vector, in linear, circular, or hyperbolic coor-
dinate systems, using only add and shift operations. It has
a wide range of applications including discrete transforma-
tions such as Hartley transform [3], discrete cosine trans-
form [4], fast Fourier transform (FFT) [5], chirp Z trans-
form (CZT) [6], solving eigenvalue and singular value prob-
lems [7], digital filters [8], Toeplitz system and linear system
solvers [9], and Kalman filters [10]. It is also able to detect
multiuser in code division multiple access (CDMA) wireless
systems [11].

The CORDIC algorithm consists of two operating
modes, the rotation mode and the vectoring mode, respec-
tively. In the rotation mode, a vector (x, y) is rotated by an
angle θ to obtain the new vector (x∗, y∗) (see Figure 1). In
every micro-rotation i, fixed angles of the value arctan(2−i)
are subtracted or added from/to the angle remainder θi, so
that the angle remainder approaches zero. In the vectoring
mode, the length R and the angle towards the x-axis α of a
vector (x, y) are computed. For this purpose, the vector is ro-
tated towards the x-axis so that the y-component approaches
zero. The sum of all angle rotations is equal to the value of
α, while the value of the x-component corresponds to the
length R of the vector (x, y). The mathematical relations for

y∗

y

θ
α

x∗ x R

Figure 1: The rotation and vectoring mode of the CORDIC algo-
rithm.

the CORDIC rotations are as follows:

xi+1 = xi +m · σi · 2−i · yi,
yi+1 = yi − σi · 2−i · xi,

zi+1 = zi − 1
m
· σi · arctan

(√
m2−i

)
,

(1)

where σi is the weight of each micro-rotation and m steers
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the choice of rectangular (m = 0), circular (m = 1), or hy-
perbolic (m = −1) coordinate systems. The required micro-
rotations are not perfect rotations, they increase the length of
the vector. In order to maintain a constant vector length, the
obtained results have to be scaled by a scale factor K . Nev-
ertheless, assuming consecutive rotations in positive and/or
negative directions, the scale factor is constant and can be
precomputed according to

K =
n−1∏
i=0

ki =
n−1∏
i=0

(
1 + σ2i · 2−2i

)1/2
. (2)

The computation of the scale factor can be truncated after
n/2 iterations because the multiplicands in the last n/2 itera-
tions are 1 due to the finite word-length and do not affect the
final value of K1,

K1 =
n/2∏
i=0

(
1 + σ2i · 2−2i

)1/2
. (3)

There are two different approaches for the computation
of the CORDIC algorithm. The first one uses consecutive
rotations in positive and/or negative direction, where the
weight of each rotation is 1. Hence, σi is either −1 or 1, de-
pending on the sign of the angle remainder z(i). In every it-
eration a significant amount of time is used to examine the
most significant bit in case of a binary architecture or the
most significant three digits of a redundant architecture to
predict the sign of z(i) and hence the rotation direction σi. In
comparison to the CORDIC implementations with constant
scale factor, other implementations use a minimally redun-
dant radix-4 or an even higher radix number representation
[12, 13, 14]. These architectures make use of a wider range
of σi. In case of a minimally redundant radix-4 architecture,
σi ∈ {−2,−1, 0, 1, 2}. By using this numbering system, the
number of iterations can be reduced. However, the compu-
tation time per iteration increases, since it takes more time to
differentiate between five different rotation direction values
and to generate five different multiples of arctan(2−i). The
scale factor also becomes variable and has to be computed
every time, due to the absence of consecutive rotations lead-
ing to an increase in area.

To speed up the computation time of the CORDIC algo-
rithm, either the number of iterations or the delay of each it-
eration have to beminimized. The proposed algorithm intro-
duces a novel approach, in which the rotation direction can
be precomputed by adding the rotation angle θ, a constant
and a variable adjustment which is stored in a table. Hence,
a significant speedup of the delay per iteration is obtained.
Since all rotation directions are known before the actual rota-
tion begins, more than one rotation can also be performed in
one iteration leading to a reduction in latency. The proposed
architecture also eliminates the z-datapath and reduces the
area of the implementation.

This paper is organized as follows. Section 2 presents the
theoretical background for the novel CORDIC algorithm for
rotation mode and Section 3 presents the novel architecture.

Section 4 performs an evaluation of different CORDIC ar-
chitectures while Section 5 concludes the paper.

2. THE NOVEL CORDIC ALGORITHM

2.1. Mathematical derivation using Taylor series

The summation of all micro-rotation with their correspond-
ing weight σi is equivalent to the rotation angle θ

θ =
n∑
i=0

σi · arctan
(
2−i
)
, (4)

where σi ∈ {−1, 1}, corresponding to the addition and sub-
traction of the micro-angles θi. Since consecutive rotations
are employed, the scale factor is constant. The value of σ can
be interpreted as a number in radix-2 representation. The
goal of the proposed method is to compute the sequence of
the micro-rotation without performing any iteration. To ac-
complish this, σi is recoding as 2di − 1 leading to a binary
representation in which a zero corresponds to the addition
of a micro-angle [15, 16]. This allows the use of simple bi-
nary adders. Adding and subtracting 2−i to (4) results in

θ =
∞∑
i=0

(
2di − 1

) · (2−i − 2−i + arctan
(
2−i
))

(5)

=
∞∑
i=0

(
2di − 1

) · 2−i − ∞∑
i=0

(
2di − 1

) · (2−i − arctan
(
2−i
))
(6)

=2d−2+
∞∑
i=0

(
2−i−arctan (2−i))− ∞∑

i=0
2di
(
2−i−arctan (2−i))

(7)

= 2d − c1 − sign(θ) · 2(1− arctan(1)
)

−
∞∑
i=1

2di
(
2−i − arctan

(
2−i
))
,

(8)

where c1 corresponds to c1 = 2−∑∞
i=0(2−i − arctan(2−i)).

Solving (8) for d results in

d = 0.5θ + 0.5c1 + sign(θ) · (1− arctan(1)
)

−
∞∑
i=1

di ·
(
2−i − arctan

(
2−i
))

= 0.5θ + c + sign(θ) · ε0 −
∞∑
i=1

di · εi,

(9)

where c corresponds to 0.5c1. Table 1 shows the values of the
partial offsets εi for the first 10 values of i and indicates that
the value of εi decreases approximately by a factor of 8 with
increasing i. Hence, the summation of diεi can be limited to

d = 0.5θ + c − sign(θ) · ε0 −
n/3∑
i=1

di · εi,

d = 0.5θ + c − sign(θ) · ε0 − δ.

(10)
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Table 1: The values of εi of the first 10 values of i.

Iteration i Partial offset εi
0 0.214601836602551690

1 3.635239099919176e-02

2 5.021336873135844e-03

3 6.450054532385649e-04

4 8.119000404265152e-05

5 1.016656973172375e-05

6 1.271379523169197e-06

7 1.589398988887035e-07

8 1.986803302817237e-08

9 2.483521181314878e-09

Rather than storing the partial offsets εi and computing
the sum over all i of the product diεi, δ =

∑n/3
i=1 diεi can be

precomputed and stored. Hence, the only difficulty consists
of determining which offset corresponds to the input θ. This
can be achieved by comparing the input θ with a reference
angle θref. The reference angles θref correspond to the sum-
mation of the first n/3micro-rotation. To be certain to obtain
the correct offset, θ has to be larger than the reference angle
θref. All reference angles are stored in a ROM and are accessed
by the most significant n/3 bits of θ. In addition to the refer-
ence angles, the values of δ are stored. In case of a negative
difference θref − θ, the corresponding δ is selected, otherwise
the next smaller value of δ is chosen to be subtracted from
θ + c − sign(θ) · ε0.

Example 1. Assuming we have a word-length of 16 bits and
θ = 0.9773844. According to Table 2, θref corresponds to
0.97337076 and δ = 0.03644375. Hence, d is computed as

d = 0.5 · θ + 1− 0.5 · c +
n/3∑
i=0

diεi

= 0.5 · 0.9773844 + 1.08624513 + 0.03644375

= 1.6113811 = 1.10011100100000112,

σ = 111̄1̄1111̄1̄11̄1̄1̄1̄1̄11.

(11)

2.2. High precision

By using a mantissa of n = 54 bits (corresponding to the
floating point precision), the ROM for storing all offsets
would require 218 entries. This is rather impractical since the
required area to implement the ROM will exceed by far the
area for the CORDIC implementation. To reduce the area for
the ROM, δ can be split into two parts,

δ = δROM + δr , (12)

where δROM is stored in a ROM while δr is computed. By
examining the Taylor series expansion of arctan(2−i), it be-
comes obvious that the partial offset ε for iteration i and i+1

Table 2: The reference angles of the rotation mode and their corre-
sponding values of δ for an operand word-length of 16 bits.

θref δ

−0.01640412 0.00008119

0.04607554 0.00009136

0.10746824 0.00064501

0.16994791 0.00065517

0.23230586 0.00072620

0.29478553 0.00073636

0.34871558 0.00502134

0.41119525 0.00503150

0.47355320 0.00510253

0.53603287 0.00511269

0.59742557 0.00566634

0.65990524 0.00567651

0.72226319 0.00574753

0.78474286 0.00575770

0.78605347 0.03635239

0.84853314 0.03636256

0.91089109 0.03643358

0.97337076 0.03644375

1.03476346 0.03699740

1.09724313 0.03700756

1.15960108 0.03707859

1.22208075 0.03708875

1.27601080 0.04137373

1.33849046 0.04138389

1.40084842 0.04145492

1.46332808 0.04146508

1.52472079 0.04201873

1.58720045 0.04202890

corresponds to

εi = 2−i − arctan
(
2−i
)

=
(
− 2−3i

3
+
2−5i

5
− 2−7i

7
+
2−9i

9
− · · ·

)
,

(13)

εi+1 = 2−i−1 − arctan
(
2−i−1

)
(14)

=
(
− 2−3i−3

3
+
2−5i−5

5
− 2−7i−7

7
+
2−9i−9

9
− · · ·

)

(15)

= 2−3
(
− 2−3i

3
+
2−5i−2

5
− 2−7i−4

7
+
2−9i−6

9
− · · ·

)
.

(16)

By comparing (13) and (16), it can be seen that (13) is about
23 times larger than (16). Assuming a word-length of n bits
and i > �n/5� − 2, the factor is 23. Hence, the term ε�n/5�−1 =
−2−3(�n/5�−1)/3 + 2−5(�n/5�−1)/5 can be stored in a ROM and
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the remaining offset δr is computed as

δr =
�n/3�∑

j=�n/5�−1
dj · ε�n/5�−1 · 2−3( j−�n/5�+1) < 2−3(�n/5�−1). (17)

The largest magnitude of δr is smaller than 2−3(�n/5�−1).

Example for high precision

Assume that we have a word-length of 50 bits and θ =
0.977384381116. Using the most significant 9 bits of θ,
δROM = 0.03644501895249 can be obtained. Hence, d is
computed according to

d = 0.5 · θ + 1− 0.5 · c + δROM + δr

= 0.5 · 0.97738438111600 + 1.08624514683872

+ 0.03644501895249 + 2.483521181241566e

− 09 · (1 + 2−18 + 2−21 + 2−24
)

= 1.61138235883274

= 1.1001110010000011100011011

1100100100010011011100012.

(18)

2.3. The rotationmode in hyperbolic coordinate
systems

Similar to the circular coordinate system, a simple corre-
lation between the input angle θ and the directions of the
micro-rotation can be obtained. Due to the incomplete rep-
resentation of the hyperbolic rotation angle θi, some itera-
tions have to be performed twice. In [2], it was recommended
that every 4th, 13th, (3k + 1)th iteration should be repeated
to complete the angle representation.

Similar to the rotation mode in circular coordinate sys-
tem, the rotation angle θ is equivalent to the summation of all
micro-rotation with their corresponding weight. This leads
to

θ =
∞∑
i=0

σi · arctanh
(
2−i
)
+ σextra4 · arctanh (2−4)

+ σextra13 · arctanh (2−13) + σextra40 · arctanh (2−40) + · · · .
(19)

Performing a Taylor series expansion and applying σi = 2di−
1 results in

d = 0.5θ + 0.5c1 + sign(θ) · 2(0.5− arctanh(0.5)
)

+
(
dextra4 − 1

2

)
· arctanh (2−4)

+
(
dextra13 − 1

2

)
· arctanh (2−13)

+
(
dextra40 − 1

2

)
· arctanh (2−40)

= 0.5θ + c + dextra4 · arctanh (2−4) + dextra13 · arctanh (2−13)
+ dextra40 · arctanh (2−40),

(20)

where c corresponds to c = 1−0.5∑∞
i=1(2−i−arctanh(2−i))−

0.5 · (arctanh(2−4) + arctanh(2−13) + arctanh(2−40) + · · · ).
Since these extra rotation are not known in advance, an ef-
ficient high precision VLSI implementation is not possible.
However, for signal processing applications using a word-
length of less than 13 bits, the ROM size corresponds to only
14 entries.

3. THE NOVEL ROTATION-CORDIC ARCHITECTURE

For an implementation with the operand word-length of
n bits, the pre-processing part consists of a ROM of 2�n/5−2�

entries in which the reference angles θref and the correspond-
ing offsets δ are stored, respectively (see Figure 2). To avoid a
second access to the ROM in case of θref > θ the next smaller
offset δk−1 is additionally stored in the kth entry of the ROM.
The ROM is accessed by the �n/5−2�MSB bits of θ. A binary
tree adder computes, whether θ is smaller or larger than the
chosen reference angle θref and selects the corresponding off-
set (either δk or δk−1). Using a 3 : 2 compressor and another
fast binary tree adder, the two required additions to obtain
dapprox = 0.5θ + c2 + δROM can be performed, where c2 corre-
sponds to c+sign(θ)ε0. Using the bits d�n/5�−1 to d�n/3�, δr can
be computed according to (17) and has to be added to dapprox.
For the worst case scenario, there is a possible ripple from the
bit d3(�n/5�−1) to the bit d(�n/5�) which would call for a time
consuming ripple adder. However, by employing an extra ro-
tation for d3(�n/5�−1)−1 this limitation can be resolved. This
extra rotation corresponds to the overflow bit of the addition
from the bits d

approx
−3(�n/5�−1)···n and δr . The additional rotation

also does not affect the scale factor, since 3(�n/5� − 1) > n/2.
For a precision of n ≤ 16 bits, there are less than 32 offsets
which can be stored in a ROM and the additional overhead
to compute δr can be removed.

The alternative architecture can be chosen by realizing
that the directions of the micro-rotations are required in a
most significant bit first manner (see Figure 2). As in the pre-
vious architecture, a fast binary adder is employed to deter-
mine which offset has to be selected. A redundant sign digit
adder adds 0.5θ, c, and δROM and an on-the-fly converter
starts converting resulting into the corresponding binary
representation. Normally, the most significant bit cannot be
determined until the least significant digit is converted. How-
ever, such worst cases do not exist in the CORDIC imple-
mentation, due to the redundant representations of the an-
gles arctan(2−i), where

arctan
(
2−i
)
<

∞∑
k=i+1

arctan
(
2−k
)
, (21)

as opposed to the binary representation

2−i >
∞∑

k=i+1
2−k. (22)

Therefore, it is not possible that there are more than l − 1
consecutive rotations in the same direction. In case that there
are l − 1 consecutive rotations in the same direction, the lth
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Figure 2: The novel architecture for the rotation mode.

Table 3: The maximal number of consecutive rotation in the same
direction.

i θi l − 1 i θi l − 1 i θi l − 1

0 45 3 2 14.04 6 4 3.58 10

1 26.57 5 3 7.13 8 5 1.79 12

iteration has to be rotated into the opposite direction. This
happens if the angle remainder zi ≈ 0. Table 3 shows the
maximum number of consecutive unidirectional rotations
depending on the iteration number i. This limitation leads
to a reduction in the complexity of the online converters and
its most significant bits can already be used to start the rota-
tions in the x/y datapath.

Example 2. Assuming an angle θ = 0.001. Hence, the angle
remainder θi correspond to

θ0 = 0.001,

θ1 = θ0 − arctan(1) = −0.7844,
θ2 = θ1 + arctan(0.5) = −0.3208,
θ3 = θ2 + arctan(0.25) = −0.0758,
θ4 = θ3 + arctan(0.125) = 0.0486.

(23)

The next rotation has to be performed in the negative direc-
tions, since θ4 > 0. Hence, it is not possible to obtain rotation
sequence like σ0···4 = 01111 but it has to be σ0···4 = 01110.

3.1. Evaluation of the z-datapath

Delay analysis

In this paper, we assume a similar delay model as proposed in
[14]. Nevertheless in [14], the unit delay is set to a gate delay

while in our evaluation the unit delay is set to a full-adder de-
lay. Hence, the delays for 2-input (NAND, NOR) gate, XOR,
multiplexer, register, and full-adder are 0.25, 0.5, 0.5, 0.5, and
1tFA.

The determination of which offset has to be chosen con-
sists of the delay of the decoder, the ROM, a fast binary n-
bit tree adder and a multiplexer. Assuming a delay of log2(m)
gate delays for the decoder, wherem corresponds to the num-
ber of rows in the ROM (m < log2(n) + 1), one for the
word-line driver and another for the ROM, log2(n) · tMux

for the fast binary adder and 0.5 · tFA for the multiplexer,
we can obtain the correct value of δROM after a delay of
(0.5 log2(n) + 1 + 0.25 log2(log2(n))) · tFA.

A 3 : 2 compressor can be employed to reduce the num-
ber of partial products to two. An additional fast binary tree
adder can compute the final value of dapprox. Hence, the entire
delay to obtain dapprox corresponds to

(
0.5 log2(n) + 1 + 0.25 log2

(
log2(n)

)
+ 1 + 0.5 log2(n)

)
· tFA =

(
log2(n) + 2.25

) · tFA.
(24)

After obtaining the bits d�n/5�−1 to d�n/3�, δr can be computed.
Since the value of δr is smaller than 2−3(�n/5�−1) and the value
of dapprox + δr is not required before 23(�n/5�)tFA the computa-
tion of δr is not in the critical path.

Alternatively to the 3 : 2 compressor and the tree adder,
a minimally redundant radix-4 sign digit adder can be em-
ployed which has a delay of two full-adders. Hence, all output
digits are available after these two full-adder delays. An addi-
tional on-the-fly converter converts the digits into its equiva-
lent binary representation starting with the MSD. It requires
a delay of multiplexer and four NANDs/NORs to convert
one digit which results in 1.5tFA per digit (1 digit = 2 bits).
The last digit is converted after a delay of (n/2 + 1) · 1.5tFA.
As already described in Table 3, bit n/3 is stable as soon as
the last digit (corresponding to bit n) has been converted.
Hence, the n/3 rotation can be performed after a delay of
(n/2 + 1) · 1.5tFA. Therefore, the iterations i = 0 can already
be performed after a delay of (n/2 + 1) · 1.5tFA − n/3 · 2tFA =
(1/12 · n + 1)tFA. Note that the conversion of one redundant
digit is performed faster than the addition/subtraction of the
x/y datapath. Hence, an initial delay of (1/12 · n + 1)tFA +
(log2(n) + 2.25)tFA = (1/12 · n + log2(n) + 3.25)tFA has to be
added to the delay of the x/y datapath.

Area analysis

Previously, the area of the z-datapath consists of n/2 itera-
tions in which (n+log2 n+2) multiplexers and (n+log2 n+2)
full-adders and registers are employed. Additionally, due to
the Booth encoding, in the last n/4 iterations, about 2(n +
log2 n + 2) multiplexers and (n + log2 n + 2) full-adders are
required. Assuming AFA = 1.93 · Amux and AFA = 1.61 · Areg

(values are based on layouts), the hardware complexity of the
z-datapath results inAz = 1.7·n(n+log2 n+2)AFA. Assuming
a word-length of 54 bits and neglecting the required area for
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the examination of the most significant three digits, about
5700AFA are required.

The proposed architecture utilizes a ROMof word-length
n and 2�n/5−2� entries, requiring an area of n · 2�n/5−2� · AFA ·
1/50 resulting in 552AFA for a word-length of 54 bits. The im-
plementation of the decoders can be done in multiple ways.
NOR based decoders with precharge lead to the fastest imple-
mentation. However, the decoder area becomes larger. The
decoder size per word-line corresponds to Adec = 0.83AFA.
Since 2�n/5�−2 decoders are required, the area for all decoder
corresponds to Adec,total = 0.83 · 2��n/5�−2� = 424AFA, as-
suming a 54 bit word-length. The ROM has to store θref,
δk, and δk−1. This results in a total area for the ROM and
the decoder of about 2080AFA. The computation of δr re-
quires n/3 − n/5 + 2 = 2n/15 + 2 rows of CSA (carry-save-
adders) and Muxes and a final fast binary tree adder. Note
that each row of CSA adders and Muxes only consists of
(n − 3n/5 + 6 = 2n/5 + 6) bits (the more significant bits
are zero). The required area corresponds to 10 · 27AFA +
10 · 27Amux and 5 · 27AFA, respectively. Hence, the compu-
tation of δr requires 540AFA. Moreover, the two redundant
sign digit adder require 2n · AFA, while the converter con-
sists of about (0.5n2 + n)Amux. This corresponds to 108 and
696AFA for a word-length of 54 bits. This makes a total of
3426AFA, which is about 60% of the z-datapath previously
employed.

3.2. Evaluation of the x/y datapath

In the first n/2 micro-rotations, the critical path of the x/y
rotator part consists of a multiplexer and a 4 : 2 compres-
sor, which has a combined critical path of 2 full-adders. The
last n/2 micro-rotations can be performed only using n/4 it-
erations, since Booth encoding can be employed. However,
the delay of the selection for the multiple of the shifted x/y
components requires slightly more time, resulting in a delay
of about one full-adder delay. The delay for the 4 : 2 com-
pressor remains 1.5 full-adder. Hence, the critical path of the
entire x/y rotator part consists of n/2 · 2tFA +n/4 · 2.5 · tFA =
1.625n · tFA. Note that the direction of the first iteration is
already known; hence, the first iteration is not in the critical
path. Therefore, the critical path of the entire x/y rotator part
consists of (1.625n− 2)tFA.

As an example, for a word-length of n = 16 bits, the x/y
datapath delay and the entire delay of the CORDIC algorithm
corresponds to 24 and 32.5 full-adder delays, respectively.

3.3. Scale factor compensation

Since the scale factor is constant, the x and y values can al-
ready be scaled while the rotation direction is being com-
puted. The scaling requires an adder of word-length (n +
log2(n)) bits. Using a binary tree adder, this results in a de-
lay of log2(n + log2(n)) · tMux. For the scale factor, a CSD
(canonic signed digit) representation can be used, leading
to at most n/3 nonzero digits. Applying a Wallace-tree for
the partial product reduction, the total delay of the scal-
ing results into (0.5 log2(n + log2(n)) + log1.5(n/3)) · tFA <
(1/12 · n + log2(n) + 3.25) · tFA = tinitial. Hence, the scaling

of the x and y coordinates does not affect the total latency of
the novel algorithm.

4. OVERVIEWOF PREVIOUSLY REPORTED CORDIC
ALGORITHMS

The delay of every iteration can be decomposed into two dif-
ferent time delays, td,σ and td,xy , where td,σ corresponds to the
time delay to predict the new rotation direction while td,xy
corresponds to the time delay of the multiplexer/add struc-
ture of the x/y datapath. Various implementations have been
proposed to obtain a speedup of the CORDIC algorithm. Im-
provements have been especially made in the reduction of
td,σ .

In [17], the angle remainder has been decomposed every
k = 3k+1 iteration. From the given angle θ, the first four ro-
tation directions can be immediately determined. After per-
forming the corresponding addition/subtraction of the terms
σi · αi from the input angle θ using CSA arithmetic, a fast bi-
nary tree adder computes the nonredundant result z4. The
bits 4 to 13 of z4 deliver the rotation direction σ4 to σ13 which
are used to perform the rotation in the x/y datapath and the
computation of the next angle remainder z40. Hence, a low
latency CORDIC algorithm is obtained. However, a signif-
icant reduction in latency is achieved at the cost of an ir-
regular design. Furthermore, it is difficult to perform a π/2
initial rotation or the rotation of index i = 0 for circular
coordinates, as it would force a conversion from redundant
to conventional arithmetic for the z coordinate just after the
first micro-rotation which is costly in time and area. Hence,
this parallel and nonpipelined architecture only converges
in the range of [−1, 1]. The overall latency of this architec-
ture corresponds to about 2n + log3(n) + log2(n) full-adder
delay.

In [18], a direct correlation between the z remainder af-
ter �n/3� rotations and the remaining rotation direction have
been shown. Hence, no more examination of the direction of
themicro-rotation has to be performed leading to a consider-
able reduction in latency. However, in the first �n/3� iteration
a conventional method has to be employed.

In [19], the directions of the micro-rotation have been
recoded using an offset binary coding (OBC) [20]. The ob-
tained correlation is approximately piecewise linear since
small elementary angles can be approximated by a(i) =
arctan(2−i) ≈ s · 2n−i−2, where s is the slope of the linearity.
This is valid for i ≥ m, where m is an integer which makes
the approximation tolerable (normally m = �n/3�). Hence,
the following correlation can be obtained:

n−1∑
i=m

σi2αi ≈ s ·
n−1∑
i=m

σi · 2−i−1. (25)

By performing some arithmetic computations, the following
correlation of the rotation direction can be obtained:

n−1∑
i=0

σi · 2−i =
n−1∑
i=0

σi · 2−i−1 −
n−1∑
i=m

σi · 2α(i)
s

. (26)
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Hence, a multiplication by the inverse of the slope s is re-
quired. This multiplication can be simplified to two stages
of addition for an operand word-length of 9 bits. However,
in most digital signal processing application, the operands
have a word-length of up to 16 bits. Hence, for those applica-
tions, the presented method requires more stages of addition
to compensate the multiplication resulting in a more com-
plex implementation and an increase in delay.

In [21], a double rotation method is introduced which
compensates for the scale factor while performing the regular
x/y rotations. However, due to the double rotation nature
of this method, td,xy is increased to about twice its original
value.

To reduce the latency of the CORDIC operation, [22]
proposed an algorithm using online arithmetic. However,
this results in a variable scale factor. This drawback is re-
moved in [23]. In every iteration a significant amount of time
is used to examine the most significant three digits to pre-
dict σi. The employed random logic requires a delay of about
1.5 full-adder delays. Since the x/y datapath consists of a 4-2
compressor, it requires also a delay of 2 full-adders. Hence,
the overall iteration delay corresponds to 3.5 full-adder de-
lays. To maintain a constant scale factor, consecutive rota-
tions are required in the first n/2, where n corresponds to
the word-length of the operands. For the computation of the
last n/2 bits, Booth encoding can be employed reducing the
number of iterations by a factor of 2. However, the selection
of multiple of the shifted x and y operands requires an ad-
ditional multiplexer delay and increases the overall iteration
delay to 4 full-adder delays. Hence, the number of iteration
is equivalent to 0.75n which corresponds to a total latency of
3n full-adders (this does not include the scale operation and
the conversion).

Other implementations like [24] remove the extra rota-
tions by a branching mechanism in case that the sign of the
remainder cannot be determined (most significant three dig-
its are zero). Hence, no extra-rotations are required while the
required implementation area is doubled. Nevertheless, the
most significant three digits (or most significant six bits) still
have to be examined for the prediction of the next rotation
direction. In [25], the double step branching CORDIC algo-
rithm is introduced which performs two rotations in a single
step. Nevertheless, this method requires an examination of
the most significant six digits to detect two rotation direc-
tions. Since some of the digits can be examined in parallel,
the delay increases only to 2tFA. The computation time of a
double rotation in the x/y datapath is slightly reduced com-
pared to two normal x/y rotations. Hence, the total amount
of computation time corresponds to 0.5n(2tFA + 3tFA) =
2.5tFA.

In [26], the signs of all micro-rotations are computed se-
rially. However, a speed up of the sampling rate is achieved by
separating the computation of the sign and the magnitude of
every zi or yi remainder. The sign of every remainder is com-
puted by a pipelined carry-ripple adder (CRA) leading to an
initial latency of n full-adders before the first CORDIC rota-
tion can be performed. Nevertheless, after this initial latency,
the following signs can be obtained with a delay of only one

Table 4: An overview between the proposed algorithm and other
CORDIC implementations.

Approach Delay in tFA

proposed 1.625n + 1/12 · n + log2(n) + 1.25

[14] 2n + 6

[26] 3n + 1

[21] 3.75n

[27] 5.25n

[25] 2.5n

[17] 2n + log3(n) + log2(n)

full-adder. This leads to an overall latency of 3n full-adders
delays.

In comparison to the CORDIC implementations with
constant scale factor, other implementations use a minimally
redundant radix-4 or an even higher radix number repre-
sentation [12, 13, 14]. By using this number system, the
number of iterations can be reduced. However, the predic-
tion of the σi becomes more complicated, since there are
more possible values for σi. In addition, the scale factor be-
comes variable and has to be computed every time, due to
the absence of consecutive rotations. An online computa-
tion of the scale factor and a parallel scaling of the x and
y operands can be achieved. Depending of the use of CSA
or fast carry-propagate-adders (CCLA), the number of it-
erations can be reduced to 2�n/3� + 4 and n/2 + 1, respec-
tively. The iteration delay td,CSA of the architecture using CSA
adders corresponds to the same delay as already described
for the last n/2 iteration in the constant scale factor using
Booth-encoding, while the architecture employing the fast
CCLA adders requires 1.5·d,CSA [14]. Hence, the overall la-
tency of these CORDIC algorithm using a minimally redun-
dant radix-4 digit set corresponds to about 2n full-adder
delays.

Table 4 provides a delay comparison between the pro-
posed algorithm and other CORDIC implementations. Some
of the delays have been taken from [14, 17, 26].

5. CONCLUSION

This paper presented a CORDIC algorithm for the rotation
mode which computes the directions of the required micro-
rotation before the actual CORDIC computations start while
maintaining a constant scale factor. This is obtained by us-
ing a linear correlation between the rotation angle θ and the
corresponding direction of all micro-rotations for the rota-
tion mode. The rotation directions are obtained by adding
the rotation angle θ to a constant and a variable offset which
is stored in a ROM. An implementation for high precision is
also provided which reduces the size of the required ROM.
Hence, neither extra or double rotations nor a variable scale
factor are required. The implementation is suitable for word-
lengths up to 54 bits, while maintaining a reasonable ROM
size.
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