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Parameter estimation of time-varying non-Gaussian autoregressive processes can be a highly nonlinear problem. The problem
gets even more difficult if the functional form of the time variation of the process parameters is unknown. In this paper, we
address parameter estimation of such processes by particle filtering, where posterior densities are approximated by sets of samples
(particles) and particle weights. These sets are updated as new measurements become available using the principle of sequential
importance sampling. From the samples and their weights we can compute a wide variety of estimates of the unknowns. In
absence of exact modeling of the time variation of the process parameters, we exploit the concept of forgetting factors so that
recent measurements affect current estimates more than older measurements. We investigate the performance of the proposed
approach on autoregressive processes whose parameters change abruptly at unknown instants and with driving noises, which are
Gaussian mixtures or Laplacian processes.
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1. INTRODUCTION

In on-line signal processing, a typical objective is to process
incoming data sequentially in time and extract information
from them. Applications vary and include system identifi-
cation [1], equalization [2, 3], echo cancelation [4], blind
source separation [5], beamforming [6, 7], blind deconvolu-
tion [8], time-varying spectrum estimation [6], adaptive de-
tection [9], and digital enhancement of speech and audio sig-
nals [10]. These applications find practical use in communi-
cations, radar, sonar, geophysical explorations, astrophysics,
biomedical signal processing, and financial time series anal-
ysis.

The task of on-line signal processing usually amounts to
estimation of unknowns and tracking them as they change
with time. A widely adopted approach to addressing this

problem is the Kalman filter, which is optimal in the cases
when the signal models are linear and the noises are addi-
tive and Gaussian [1]. The framework of the Kalman filter
allows for derivation of all the recursive least squares (RLS)
adaptive filters [11]. When nonlinearities have to be tackled,
the extended Kalman filter becomes the tool for estimating
the unknowns of interest [6, 12, 13]. It has been shown in
the literature that in many situations the extended Kalman
filter, due to the implemented approximations, can diverge
in the tracking of the unknowns and in general can pro-
vide poor performance [14]. Many alternative approaches
to overcome the deficiencies of the extended Kalman filter
have been tried including Gaussian sum filters [15], approx-
imations of the first two moments of densities [16], evalua-
tions of required densities over grids [17], and the unscented
Kalman filter [18].
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Another approach to tracking time-varying signals is par-
ticle filtering [19]. The underlying approximation imple-
mented by particle filters is the representation of densities
by samples (particles) and their associated weights. In par-
ticular, if x(m) and w(m), m = 1, 2, . . . ,M, are the samples
and their weights, respectively, one approximation of p(x) is
given by

p̂(x) =
M∑
i=1

w(m)δ
(
x − x(m)), (1)

where δ(·) is Dirac’s delta function. The approximation of
the densities by particles can be implemented sequentially,
where as soon as the next observation becomes available, the
set of particles and their weights are updated using the Bayes
rule. Some of the basics of this procedure are reviewed in this
paper. The recent interest in particle filters within the sig-
nal processing community has been initiated in [14], where
a special type of particle filters are used for target tracking.
Since the particle filtering methods are computationally in-
tensive, the continued advancement of computer technology
in the past few years has played a critical role in sustaining
this interest. An important feature of particle filtering is that
it can be implemented in parallel, which allows for major
speedups in various applications.

One advantage of particle filters over other methods is
that they can be applied to almost any type of problem where
signal variations are present. This includes models with high
nonlinearities and with noises that are not necessarily Gaus-
sian. In all the work on particle filtering presented in the
wide literature, it is assumed that the applied model is com-
posed of a state equation and an observation equation, where
the state equation describes the dynamics of the tracked sig-
nal (or parameters). Thus, the use of particle filters requires
knowledge of the functional form of the signal (parameter)
variations. In this paper, we make the assumption that this
model is not available, that is, we have no information about
the dynamics of the unknowns. In absence of a state equa-
tion, we propose to use a random walk model for describ-
ing the time variation of the signal (or parameters). We show
that the random walk model implies forgetting of old mea-
surements [20, 21]. In other words, it assigns more weight to
more recent observations than to older measurements.

In this paper, we address the problem of tracking the
parameters of a non-Gaussian autoregressive (AR) process
whose parameters vary with time. The usefulness of themod-
eling of time series by autoregressions is well documented in
the wide literature [22, 23]. Most of the reported work, how-
ever, deals with stationary Gaussian AR processes, and right-
fully so becausemany random processes can bemodeled suc-
cessfully with them. In some cases, however, the Gaussian AR
models are inappropriate, as for instance, for processes that
contain spikes, that is, samples with large values. Such signals
are common in underwater acoustic, communications, oil
exploration measurements, and seismology. In all of them,
the processes can still be modeled as autoregressions, but
with non-Gaussian driving processes, for example, Gaussian
mixture or Laplacian processes. Another deviation from the

standard AR model is the time-varying AR model where the
parameters vary with time [21, 24, 25, 26, 27, 28, 29].

The estimation of the AR parameters of non-Gaussian
AR models is a difficult task. Parameter estimation of such
models has rarely been reported, primarily due to the lack of
tractable approaches for dealing with them. In [30], a max-
imum likelihood estimator is presented and its performance
is compared to the Cramer-Rao bound. The conditional like-
lihood function is maximized by a Newton-Raphson search
algorithm. This method obviously cannot be used in the set-
ting of interest in this paper. In a more recent publication,
[31], the driving noises of the AR model are Gaussian mix-
tures, and the applied estimation method is based on a gen-
eralized version of the expectation-maximization principle.

When the AR parameters change with time, the problem
of their estimation becomes even more difficult. In this pa-
per, the objective is to address this problem, and the applied
methodology is based on particle filtering. In [32, 33], parti-
cle filters are also applied to estimation of time-varying AR
models, but the driving noises there are Gaussian processes.

The paper is organized as follows. In Section 2, we for-
mulate the problem. In Section 3, we provide a brief re-
view of particle filtering. An important contribution of
the paper is in Section 4, where we propose particle fil-
ters with forgetting factors. The proposed method is ap-
plied to time-varying non-Gaussian autoregressive processes
in Section 5. In Section 6, we present simulation examples,
and in Section 7, we conclude the paper with some final re-
marks.

2. PROBLEM FORMULATION

Observed data yt, t = 1, 2, . . . , represent a time-varying AR
process of order K that is excited by a non-Gaussian noise.
The data are modeled by

yt =
K∑
k=1

atk yt−k + vt, (2)

where vt is the driving noise of the process, and atk, k =
1, 2, . . . , K , are the parameters of the process at time t. The
values of the AR parameters are unknown, but the model
order of the AR process, K , is assumed known. The driv-
ing noise process is independently and identically distributed
(i.i.d.) and non-Gaussian, and is modeled as either a Gaus-
sian mixture with two mixands, that is,

vt ∼ (1− ε)�(0, σ21 ) + ε�
(
0, σ22

)
, (3)

where 0 < ε < 1, and σ22 � σ21 , or as a Laplacian, that is,

vt ∼ α

2
e−α|vt|, (4)

where α > 0. In this paper, we assume that the noise param-
eters, ε, σ21 , and σ22 of the Gaussian mixture process and α of
the Laplacian noise are known. The objective is to track the
AR parameters, atk, k = 1, 2, . . . , K , for all t.
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3. PARTICLE FILTERS

Many time-varying signals of interest can be described by the
following set of equations:

xt = ft
(
xt−1, ut

)
, yt = ht

(
xt, vt

)
, (5)

where t ∈ N is a discrete-time index, xt ∈ R is an unobserved
signal at t, yt ∈ R is an observation, and ut ∈ R and vt ∈ R

are noise samples. The mapping ft : R×R �→ R is referred to
as a signal transition function, and ht : R×R �→ R, as a mea-
surement function. The analytic forms of the two functions
are assumed known. Generalization of (5) to include vector
observations and signals as well as multivariable functions is
straightforward.

There are three different classes of signal processing prob-
lems related to the model described by (5):

(1) filtering: for all t, estimate xt based on y1: t,
(2) prediction: for all t and some τ > 0, estimate xt+τ ,

based on y1: t, and
(3) smoothing: for all t, estimate xt, based on y1:T , t ∈

ZT = {1, 2, . . . , T}
where y1: t = {y1, y2, . . . , yt}. Another very important objec-
tive is to carry out the estimation of the unknowns recursively
in time.

A key expression for recursive implementation of the es-
timation is the update equation of the posterior density of
x1: t = {x1, x2, . . . , xt}, which is given by

p
(
x1:t | y1:t) = p

(
yt | xt

)
p
(
xt | xt−1

)
p
(
yt | y1:t−1

) p
(
x1:t−1 | y1:t−1

)
. (6)

Under the standard assumptions that ut and vt represent ad-
ditive noise and are i.i.d. according to Gaussian distributions
and that the functions ft(·) and ht(·) are linear in xt−1 and xt,
respectively, the filtering, prediction, and smoothing prob-
lems are optimally resolved by the Kalman filter [12]. When
the optimal solutions cannot be obtained analytically, we re-
sort to various approximations of the posterior distributions
[12, 13].

The set of methods known as particle filtering methods
are based on a very interesting paradigm. The basic idea is to
represent the distribution of interest as a collection of sam-
ples (particles) from that distribution. We draw M particles,
�t = {x(m)

t }Mm=1, from a so-called importance sampling distri-
bution π(x1:t | y1:t). Subsequently, the particles are weighted
as w(m)

t = p(x(m)
1:t | y1:t)/(π(x(m)

1:t | y1:t)). If �t = {w(m)
t }Mm=1,

then the sets �t and �t can be used to approximate the pos-
terior distribution p(xt | y1:t) as in (1), or

p̂
(
xt | y1:t

) =
M∑

m=1
w(m)
t δ

(
xt − x(m)

t

)
. (7)

It can be shown that the above estimate converges in distri-
bution to the true posterior as M → ∞ [34]. More impor-
tantly, the estimate of Ep(g(xt)), where Ep(g(·)) is the ex-
pected value of the random variable g(xt) with respect to the

posterior distribution p(xt | y1:t), can be written as

Êp
(
g
(
xt
)) =

M∑
m=1

w(m)
t g

(
x(m)
t

)
. (8)

Thus, the particles and their weights allow for easy compu-
tation of minimum mean square error (MMSE) estimates.
Other estimates are also easy to obtain.

Due to the Markovian nature of the state equation, we
can develop a sequential procedure called sequential impor-
tance sampling (SIS), which generates samples from p(x1:t |
y1:t) sequentially [14, 35]. As new data become available, the
particles are propagated by exploiting (6). In this sequential-
updating mechanism, the importance function has the form
π(xt | x1: t−1, y1: t), which allows for easy computation of the
particle weights. The ideal importance function minimizes
the conditional variance of the weights and is given by [36]

π
(
xt | x1:t−1, y1:t

) = p
(
xt | xt−1, yt

)
∝ p

(
yt | xt

)
p
(
xt | xt−1

)
.

(9)

The SIS algorithm can be summarized as follows.
(1) At time t = 0, we generateM particles from π(x0) and

denote them by x(m)
0 , m = 1, . . . ,M, with weights

w(m)
0 = p

(
x(m)
0

)
π
(
x(m)
0

) , (10)

where p(x0) is the prior density of x0.

(2) At times t = 1, . . . , T , let �t = {x(m)
t }Mm=1 be the

set of particles with weights �t = {w(m)
t }Mm=1. The particles

and weights {x(m)
t−1, w

(m)
t−1}Mm=1 approximate the posterior den-

sity p(xt−1 | y1:t−1) according to (7). We obtain the particles
and weights for time t from steps 3, 4, and 5.

(3) Form = 1, . . . ,M, draw x(m)
t ∼ π(xt | x(m)

1:t−1, y1:t).
(4) For m = 1, . . . ,M, compute the weights of x(m)

t using
[36]

w̄(m)
t = w(m)

t−1
p
(
yt | x(m)

t

)
p
(
x(m)
t | x(m)

t−1
)

π
(
x(m)
t | x(m)

1:t−1, y1:t
) . (11)

(5) Normalize the weights using

w(m)
t = w̄(m)

t∑M
j=1 w̄

( j)
t

. (12)

An important problem that occurs in sequential Monte
Carlo methods is that of sample degeneration. As the re-
cursions proceed, the importance weights of all but a few
of the trajectories become insignificant [35]. The degener-
acy implies that the performance of the particle filter will be
very poor. To combat the problem of degeneracy, resampling
is used. Resampling effectively throws away the trajectories
(or particles) with negligible weights and duplicates the ones
having significant weights, in proportion to their weights.
Simple random resampling is implemented in the following
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manner. Let {x(m)
t , w(m)

t }Mm=1 be the weights and particles that
are being resampled. Then

(1) for m = 1, . . . ,M, generate a number j ∈ {1, . . . ,M}
with probabilities proportional to {w(1)

t , . . . , w(M)
t },

and let x̃(m)
t = x

( j)
t ;

(2) form=1, . . . ,M, let w̃(m)
t =1/M. Then {x̃(m)

t , w̃(m)
t }Mm=1

represents the new sets of weights and particles.

Improved resampling in terms of speed can be imple-
mented using the so-called systematic resampling scheme
[37] or stratified resampling [38].

Much of the activity in particle filtering in the sixties
and seventies was in the field of automatic control. With
the advancement of computer technology in the eighties and
nineties, the work on particle filters intensified and many
new contributions appeared in journal and conference pa-
pers. A good source of recent advances and many relevant
references is [19].

4. PARTICLE FILTERSWITH FORGETTING FACTORS

In many practical situations, the function that describes the
time variation of the signals ft(·) is unknown. It is unclear
then how to apply particle filters, especially keeping in mind
that a critical density function needed for implementing the
recursion in (6) is missing. Note that the form of the density
p(xt | xt−1) depends directly on ft(·). In [20], we argue that
this is possible and can be done in somewhat similar way as
with methods known as recursive least squares (RLS) with
discounted measurements [22]. Recall that the idea there is
to minimize a criterion of the form

εt =
t∑

n=1
λt−ne2n, (13)

where λ is known as a forgetting factor with 0 < λ ≤ 1, and
et is an error that is minimized and given by

et = yt − dt (14)

with dt being a desired signal. The tracking of the unknowns
is possible without knowledge of the parametric function of
their trajectories because with λ < 1, the more recent mea-
surements have larger weights than the measurements taken
further in the past. In fact, we apply implicitly a window to
our data that allows more recent data to affect current esti-
mates of the unknowns more than old data.

In the case of particle filters, we can replicate this phi-
losophy by introducing a state equation that will enforce the
“aging” of data. Perhaps the simplest way of doing it is to
have a random walk model in the state equation, that is,

xt = xt−1 + ut, (15)

where ut is a zero mean random sample that comes from
a known distribution. Now, if the particles x(m)

t−1 with their
weights w(m)

t−1 approximate p(xt−1 | y1:t−1), with (15) the dis-

tribution of xt will be wider due to the convolution of the
densities of xt−1 and ut. It turns out that this implies forget-
ting of old data, where the forgetting depends on the param-
eters of p(ut). For example, the larger the variance of ut, the
faster is the forgetting of old data [20]. Additional theory on
the subject can be found in [21] and the references therein.
In the next section we present the details of implementing
this approach to the type of AR processes of interest in this
paper.

5. ESTIMATION OF TIME-VARYING NON-GAUSSIAN
AUTOREGRESSIVE PROCESSES BY PARTICLE
FILTERS

The observation equation of an AR(K) process can be writ-
ten as

yt = aTt yt + vt, (16)

where aTt ≡ (at1, . . . , atK ) and yt ≡ (yt−1, . . . , yt−K )T. Since
the dynamic behavior of at is unknown, as suggested in
Section 4, we model it with a random walk, that is,

at = at−1 + ut , (17)

where ut is a known noise process from which we can draw
samples easily. It is reasonable to choose the noise process as a
zero mean Gaussian with covariance matrix Σut . The covari-
ance matrix Σut is then set to vary with time by depending
on the covariance matrix Σat−1 . For example, for the AR(1)
problem, we choose

σ2at =
σ2at−1
λ

, (18)

where λ is the forgetting factor. From (17), we get

σ2ut = σ2at−1

(
1
λ
− 1
)
. (19)

Similarly, for K > 1, we can choose

Σut = Σdiag

(
1
λ
− 1
)
, (20)

where Σdiag is a diagonal matrix whose diagonal elements are
equal to the diagonal elements of Σat−1 .

Now, the problem is cast in the form of a dynamic state
space model, and a particle filtering algorithm for sequen-
tial estimation of at can readily be applied as discussed in
Section 4. An important component of the algorithm is the
importance function, π(at | a1:t−1, y1:t), which is used to gen-
erate the particles a(m)

t .
The algorithm can be outlined as follows.

(1) Initialize {a(m)
0 }Mm=1 by obtaining samples from a prior

distribution p(a0) and let w̄(m)
0 = 1 for m = 1, . . . ,M. Then

for each time step repeat steps 2, 3, 4, 5, and 6.
(2) Compute the covariance matrix of at and obtain the

covariance matrix Σut .
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(3) For i = 1, . . . ,M, obtain samples a(m)
t from the im-

portance function π(at | a(m)
1:t−1, y1:t). A simple choice of it is

p(at | a(m)
t−1).

(4) For i = 1, . . . ,M, update the importance weights by

w̄(m)
t = w(m)

t−1
p
(
yt | a(m)

t

)
p
(
a(m)
t | a(m)

t−1
)

π
(
a(m)
t | a(m)

1:t−1, y1:t
) . (21)

If the driving noise is a Gaussian mixture, and if π(at | a(m)
1:t−1,

y1:t) = p(at | a(m)
t−1), the update is given by

w̄(m)
t = w(m)

t−1
(
(1−ε)�(a(m)T

t yt , σ21
)
+ε�

(
a(m)T
t yt , σ22

))
. (22)

If the noise is Laplacian, the update is done by

w̄(m)
t = w(m)

t−1e
−α|yt−a(m)T

t yt|. (23)

(5) Normalize the weights according to

w(m)
t = w̄(m)

t∑M
i=1 w̄

(m)
t

. (24)

(6) Resample occasionally or at every time instant from

{a(m)
t , w(m)

t }Mm=1 to obtain particles of equal weights.

6. SIMULATION RESULTS

Wepresent, next, results of experiments that show the perfor-
mance of the proposed approach. In all our simulations we
use p(at | at−1) as the importance function. First, we show a
simple example that emphasizes the central ideas in this pa-
per. We estimated recursively the coefficient of an AR(1) pro-
cess with non-Gaussian driving noise. The data were gener-
ated according to

yt = ayt−1 + vt, (25)

where vt was distributed as in (3), with ε = 0.1, σ21 = 1,
and σ22 = 100. Note that a did not vary with time in this
experiment, and that its value was fixed to 0.99. A random
walk was used as the process equation to impose forgetting
of measurements, that is,

at = at−1 + ut, (26)

where ut was zero mean Gaussian with variance σ2ut chosen
according to (19) with forgetting factor λ = 0.9999. The
number of particles was M = 2000. For comparison pur-
poses, we applied a recursive least squares (RLS) algorithm
whose forgetting factor was also λ = 0.9999.1 One particu-
lar representative simulation is shown in Figure 1. Note that
a was tracked more accurately using the particle filter algo-
rithm. Similar observations were made in most simulations.

1It should be noted that the RLS algorithm is not based on any proba-
bilistic assumption, and that it is computationally much less intensive than
the particle filtering algorithm.
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Figure 1: Estimation of an autoregressive parameter a using the
RLS and particle filtering methods. The parameter a was fixed and
was equal to 0.99.
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Figure 2: Mean square error of the particle filter and the RLS
method averaged over 20 realizations. The driving noise was a Gaus-
sian mixture.

With data generated by this model, we compared the
performances of the particle filter and the RLS for various
number of particles. The methods were compared by their
MSEs averaged over 20 realizations. The results are shown
in Figure 2. It is interesting to observe that for M = 50 and
M = 100, the particle filter had worse performance than the
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Figure 3: Evolution of the log(MSEi(t)) of the particle filter and the
RLS method.

RLS filter. As expected, as the number of particles increased,
the performance of the particle filter improved considerably.

In Figure 3, we present the evolution of the instantaneous
mean square errors as a function of time of the particle filter-
ing and the RLS methods. The instantaneous mean square
errors were obtained from 20 realizations, and

MSEi(t) =
20∑
j=1

(
â j,t − at

)2
, (27)

where â j,t is the estimate of at in the jth realization. For the
particle filter we used M = 2000 particles, and λ = 0.9999.
Clearly, the particle filter performed better. It is not surpris-
ing that the largest errors occur at the beginning, since there
the methods have little prior knowledge of the true value of
the parameter a.

In the next experiment, the noise was Laplacian. There,
the parameter α was varied and had values 10, 2, and 1. In
Figure 4, we present the MSEs of the particle filter and the
RLS estimate averaged over 20 realizations. The particle filter
clearly outperformed the RLS for all values of α.

The results of the first experiment with time-varying AR
parameters are shown in Figure 5. There, a was attributed
a piecewise changing behavior where it jumped from 0.99
to 0.95 at the time instant t = 1001, and the driving noise
was a mixture Gaussian as in the first experiment. The for-
getting factor λ was 0.95. Note that both the RLS and the
particle filter follow the jump. However, the particle filter
tracks it with higher accuracy and lower variation. Note
also that the variation in the estimates in this experiment
is much higher since the chosen forgetting factor was much
smaller.

Statistical results of this experiment are shown in
Figure 6. The figure shows the MSEs of the particle filter and
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Figure 4: Mean square error of the particle filter and the RLS
method averaged over 20 realizations. The driving noise was Lapla-
cian.
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Figure 5: Tracking performance of the piecewise constant AR pa-
rameter at with a jump from 0.99 to 0.95 at t = 1001.

the RLS method averaged over 20 realizations as functions of
time. The particle filter outperformed the RLS significantly.

The experiment was repeated for a jump of a from 0.99
to −0.99 at t = 1001. Two different values of forgetting fac-
tors were used, λ = 0.99 and λ = 0.95, and the number of
particles was kept at M = 2000. In Figures 7 and 8, we plot-
ted MSE(t) obtained from 20 realizations. It is obvious from
the figures that the performance of the particle filter was not
good for λ = 0.95. The main reason for this degradation
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Figure 6: Evolution of the log(MSEi(t)) of the particle filter and the
RLS method. The driving noise was mixture Gaussian.
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Figure 7: Evolution of the log(MSEi(t)) of the particle filter and
the RLS method. The forgetting parameter was λ = 0.95, and the
number of particles wasM = 2000.

is the importance function of the particle filter. The prior
importance function does not expect a change at that time
because it does not use observations for generating particles.
As a result, the particles at t = 1001 are generated around the

values of a(m)
1000, which are all faraway from the actual value

of a. Moreover, it took the particle filter more than 700 sam-
ples to “regroup,” and that is a consequence of the relatively
high value of the forgetting factor. When this value was de-
creased to λ = 0.9, the recovery of the particle filter wasmuch
shorter (see Figure 8). Note that the price for improvement
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Figure 8: Evolution of the log(MSE(t)) of the particle filter and the
RLSmethod. The forgetting parameter was λ = 0.9, and the number
of particles wasM = 2000.

was a larger MSE during the periods of time when awas con-
stant. We can enhance the performance of the particle filter
by choosing an importance function, which explores the pa-
rameter space of a better.

In another experiment we generated data with higher or-
der AR models. In particular, the data were obtained by

yt = −0.7348yt−1 − 1.8820yt−2 − 0.7057− yt−3

− 0.8851yt−4 + vt, t = 1, 2, . . . , 500,

yt = 1.352yt−1 − 1.338yt−2 + 0.662 + yt−3

− 0.240yt−4 + vt, t = 501, 502, . . . , 1000,

yt = 0.37yt−1 + 0.56yt−2 + vt, t = 1001, 1002, . . . , 1500.
(28)

The driving noise was a Gaussian mixture with the same
parameters as in the first experiment. The tracking of the
parameters by the particle filter and the RLS method from
one realization is shown in Figure 9. The number of particles
wasM = 2000 and the forgetting factor λ = 0.9. In Figure 10,
we display the MSE errors of the twomethods as functions of
time.

Another statistical comparison between the two meth-
ods is shown in Figure 11. There, we see the average MSEs
of the methods presented separately for each parameter and
for various forgetting factors. The number of particles M =
8000. The particle filter performed better for a2t, a3t , and a4t ,
but worse for a1t . A reason for the inferior performance of
the particle filter in tracking a1t is perhaps due to the big
change of values of a1t, which requires smaller forgetting fac-
tor than the one used. More importantly, with better im-
portance function the tracking performance of a1t can also
be better. Such function, would generate more particles in
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Figure 9: Tracking of the AR parameters, where the models change at t = 501 and t = 1001.

0 500 1000 1500
t

0

0.05

0.1

0.15

0.2

0.25

M
SE

Particle filter
RLS

Autoregressive parameter a1

0 500 1000 1500
t

0

0.05

0.1

0.15

0.2

0.25

M
SE

Particle filter
RLS

Autoregressive parameter a2

0 500 1000 1500
t

0

0.05

0.1

0.15

0.2

0.25

M
SE

Particle filter
RLS

Autoregressive parameter a3

0 500 1000 1500
t

0

0.05

0.1

0.15

0.2

0.25

M
SE

Particle filter
RLS

Autoregressive parameter a4

Figure 10: Evolution of the MSE of each of the AR parameters as a function of time.
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Figure 11: Mean square error of each of the AR parameters produced by the particle filter and the RLS method averaged over 20 realizations.
The driving noise was mixture Gaussian.

the region of the new values of the parameters, and thereby
would produce a more accurate approximation of their pos-
terior density.

7. CONCLUSIONS

We have presented a method for tracking the parameters of a
time-varying AR process which is driven by a non-Gaussian
noise. The function that models the variation of the model
parameters is unknown. The estimation is carried out by par-
ticle filters, which produce samples and weights that approx-
imate required densities. The state equation that models the
parameter changes with time is a random walk model, which
implies the discounting of old measurements. In the simu-
lations, the parameters of the process are piecewise constant
where the instants of their changes are unknown. The piece-
wise model is not by any means a restriction imposed by the
method, but was used for convenience. Simulation results
were presented. The requirement of knowing the noise pa-
rameters that drive the AR process can readily be removed.
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[20] P. M. Djurić, J. Kotecha, J.-Y. Tourneret, and S. Lesage, “Adap-
tive signal processing by particle filters and discounting of old
measurements,” in Proc. IEEE Int. Conf. Acoustics, Speech, Sig-
nal Processing, Salt Lake City, Utah, USA, 2001.

[21] M.West, Bayesian Forecasting and Dynamic Models, Springer-
Verlag, New York, NY, USA, 1997.

[22] M.H.Hayes, Statistical Digital Signal Processing andModeling,
Wiley, New York, NY, USA, 1996.

[23] S. M. Kay, Modern Spectral Estimation, Prentice-Hall, Engle-
wood Cliffs, NJ, USA, 1988.

[24] R. Charbonnier, M. Barlaud, G. Alengrin, and J. Menez, “Re-
sults on AR modeling of nonstationary signals,” Signal Pro-
cessing, vol. 12, no. 2, pp. 143–151, 1987.

[25] K. B. Eom, “Time-varying autoregressive modeling of HRR
radar signatures,” IEEE Trans. on Aerospace and Electronics
Systems, vol. 36, no. 3, pp. 974–988, 1999.

[26] Y. Grenier, “Time-dependent ARMAmodeling of nonstation-
ary signals,” IEEE Trans. Acoustics, Speech, and Signal Process-
ing, vol. 31, no. 4, pp. 899–911, 1983.

[27] M. G. Hall, A. V. Oppenheim, and A. D. Wilsky, “Time vary-
ing parametric modeling of speech,” Signal Processing, vol. 5,
pp. 276–285, 1983.

[28] L. A. Liporace, “Linear estimation of nonstationary signals,”
J. Acoust. Soc. Amer., vol. 58, no. 6, pp. 1288–1295, 1975.

[29] T. S. Rao, “The fitting of nonstationary time series models
with time-dependent parameters,” J. Roy. Statist. Soc. Ser. B,
vol. 32, no. 2, pp. 312–322, 1970.

[30] D. Sengupta and S. Kay, “Efficient estimation of param-
eters for non-Gaussian autoregressive processes,” IEEE
Trans. Acoustics, Speech, and Signal Processing, vol. 37, no. 6,
pp. 785–794, 1989.

[31] S. M. Verbout, J. M. Ooi, J. T. Ludwig, and A. V. Oppenheim,
“Parameter estimation for autoregressive Gaussian-mixture
processes: The EMAX algorithm,” IEEE Trans. Signal Process-
ing, vol. 46, no. 10, pp. 2744–2756, 1998.

[32] A. Doucet, S. J. Godsill, and M. West, “Monte Carlo filter-
ing and smoothing with application to time-varying spectral
estimation,” in Proc. IEEE Int. Conf. Acoustics, Speech, Signal
Processing, vol. II, pp. 701–704, Istanbul, Turkey, 2000.

[33] S. Godsill and T. Clapp, “Improvement strategies for Monte
Carlo particle filters,” in Sequential Monte Carlo Methods
in Practice, A. Doucet, N. de Freitas, and N. Gordon, Eds.,
Springer, 2001.

[34] J. Geweke, “Bayesian inference in econometrics models using
Monte Carlo integration,” Econometrica, vol. 57, pp. 1317–
1339, 1989.

[35] J. S. Liu and R. Chen, “Sequential Monte Carlo methods for
dynamic systems,” Journal of the American Stastistical Associ-
ation, vol. 93, no. 443, pp. 1032–1044, 1998.

[36] A. Doucet, S. J. Godsill, and C. Andrieu, “On sequential
Monte Carlo sampling methods for Bayesian filtering,” Statis-
tics and Computing, vol. 10, no. 3, pp. 197–208, 2000.

[37] J. Carpenter, P. Clifford, and P. Fearnhead, “An improved par-
ticle filter for non-linear problems,” IEE Proceedings Part F:
Radar, Sonar and Navigation, vol. 146, no. 1, pp. 2–7, 1999.

[38] E. R. Beadle and P. M. Djurić, “A fast weighted Bayesian boot-
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