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To enable floating-point (FP) signal processing applications in low-power mobile devices, we propose lightweight floating-point
arithmetic. It offers a wider range of precision/power/speed/area trade-offs, but is wrapped in forms that hide the complexity of
the underlying implementations from both multimedia software designers and hardware designers. Libraries implemented in C++
and Verilog provide flexible and robust floating-point units with variable bit-width formats, multiple rounding modes and other
features. This solution bridges the design gap between software and hardware, and accelerates the design cycle from algorithm
to chip by avoiding the translation to fixed-point arithmetic. We demonstrate the effectiveness of the proposed scheme using
the inverse discrete cosine transform (IDCT), in the context of video coding, as an example. Further, we implement lightweight
floating-point IDCT into hardware and demonstrate the power and area reduction.
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1. INTRODUCTION

Multimedia processing has been finding more and more ap-
plications in mobile devices. A lot of effort must be spent
to manage the complexity, power consumption, and time-
to-market of the modern multimedia system-on-chip (SoC)
designs. However, multimedia algorithms are computation-
ally intensive, rich in costly FP arithmetic operations rather
than simple logic. FP arithmetic hardware offers a wide dy-
namic range and high computation precision, yet occupies
large fractions of total chip area and energy budget. There-
fore, its application on mobile computing chip is highly lim-
ited. Many embedded microprocessors such as the Stron-
gARM [1] do not include an FP unit due to its unacceptable
hardware cost.

So there is an obvious gap in multimedia system devel-
opment: software designers prototype these algorithms us-
ing high-precision FP operations, to understand how the al-
gorithm behaves, while the silicon designers ultimately im-

plement these algorithms into integer-like hardware, that is,
fixed-point units. This seemingly minor technical choice ac-
tually creates severe consequences: the need to use fixed-
point operations often distorts the natural form of the al-
gorithm, forces awkward design trade-offs, and even intro-
duces perceptible artifacts. Error analysis and word length
optimization of fixed-point 2D IDCT, inverse discrete cosine
transform, algorithm has been studied in [2], and a tool for
translating FP algorithms to fixed-point algorithms was pre-
sented in [3]. However, such optimization and translation
are based on human knowledge of the dynamic range, preci-
sion requirements, and the relationship between algorithm’s
architecture and precision. This time-consuming and error-
prone procedure often becomes the bottleneck of the entire
system design flow.

In this paper, we propose an effective solution: light-
weight FP arithmetic. This is essentially a family of cus-
tomizable FP data formats that offer a wider range of preci-
sion/power/speed/area trade-offs, but wrapped in forms that
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hide the complexity of the underlying implementations from
both multimedia algorithm designers and silicon designers.
Libraries implemented in C++ and Verilog provide flexible
and robust FP units with variable bit-width formats, multi-
ple rounding modes and other features. This solution bridges
the design gap between software and hardware and accelerate
the design cycle from algorithm to chip. Algorithm design-
ers can translate FP arithmetic computations transparently
to lightweight FP arithmetic and adjust the precision eas-
ily to what is needed. Silicon designers can use the standard
ASIC or FPGA design flow to implement these algorithms
using the arithmetic cores we provide which consume less
power than standard FP units. Manual translation from FP
algorithms to algorithms can be eliminated from the design
cycle.

We test the effectiveness of our lightweight arithmetic li-
brary using an H.263 video decoder. Typical multimedia ap-
plications working with modest-resolution human sensory
data such as audio and video do not need the whole dynamic
range and precision that IEEE-standard FP offers. By reduc-
ing the complexity of FP arithmetic in many dimensions,
such as narrowing the bit-width, simplifying the rounding
methods and the exception handling, and even increasing the
radix, we explore the impact of such lightweight arithmetic
on both the algorithm performance and the hardware cost.

Our experiments show that for the H.263 video decoder,
FP representation with less than half of the IEEE standard
FP bit-width can produce almost the same perceptual video
quality. Specifically, only 5 exponent bits and 8 mantissa bits
for a radix-2 FP representation, or 3-exponent bits and 11
mantissa bits for a radix-16 FP representation are all we need
to maintain the video quality. We also demonstrate that a
simple rounding mode is sufficient for video decoding and
offers enormous reduction in hardware cost. In addition, we
implement a core algorithm in the video codec, IDCT, into
hardware using the lightweight arithmetic unit. Compared
to a conventional 32-bit FP IDCT, our approach reduces the
power consumption by 89.5%.

The paper is organized as follows. Section 2 introduces
briefly the relevant background on FP and fixed-point rep-
resentations. Section 3 describes our C++ and Verilog li-
braries of lightweight FP arithmetic and the usage of the li-
braries. Section 4 explores the complexity reduction we can
achieve for IDCT built with our customizable library. Based
on the results in this section, we present the implementa-
tion of lightweight FP arithmetic units and analyze the hard-
ware cost reduction in Section 5. In Section 6, we compare
the area/speed/power of a standard FP IDCT, a lightweight
FP IDCT, and a fixed-point IDCT. Concluding remarks fol-
low in Section 7.

2. BACKGROUND

2.1. Floating-point representation versus fixed-point
representation

There are two common ways to specify real numbers: FP and
fixed-point representations. FP can represent numbers on an

1 8 23
|s| exp | frac

FP value: (1)528%P~bias . 1 frac (The leading 1 is implicit)
0 < exp < 255, bias = 127

FIGURE 1: FP number representation.

16 16
| int | frac |

FiGURrE 2: Fixed-point number representation.

exponential scale and is reputed for a wide dynamic range.
The date format consists of three fields: sign, exponent, and
fraction (also called mantissa), as shown in Figure 1.

Dynamic range is determined by the exponent bit-width,
and resolution is determined by the fraction bit-width. The
widely adopted IEEE single FP standard [4] uses an 8-bit ex-
ponent that can reach a dynamic range roughly from 2712¢
to 2'%7, and a 23-bit fraction that can provide a resolution of
2exp~127.. 9723 'where exp stands for value represented by the
exponent field.

In contrast, the fixed-point representation is on a uni-
form scale, that is, essentially the same as the integer repre-
sentation, except for the fixed radix point. For instance (see
Figure 2), a 32-bit fixed-point number with a 16-bit integer
part and a 16-bit fraction part can provide a dynamic range
of 2716 t0 216 and a resolution of 271°.

When prototyping algorithms with FP, programmers do
not have to concern about dynamic range and precision, be-
cause IEEE standard FP provides more than necessary for
most general applications. Hence, float and double are stan-
dard parts of programming languages like C++, and are sup-
ported by most compilers. However, in terms of hardware,
the arithmetic operations of FP need to deal with three parts
(sign, exponent, fraction) individually, which adds substan-
tially to the complexity of the hardware, especially in the as-
pect of power consumption, while fixed-point operations are
almost as simple as integer operations. If the system has a
stringent power budget, then the application of FP units has
to be limited, and on the other hand, a lot of manual work is
spent in implementing and optimizing the fixed-point algo-
rithms to provide the necessary dynamic range and precision.

2.2, IEEE-754 floating-point standard

IEEE-754 is a standard for binary FP arithmetic [4]. Since
our later discussion about the lightweight FP is based on this
standard, we give a brief review of its main features in this
section.

Data format

The standard defines two primary formats, single precision
(32bits) and double precision (64 bits). The bit-widths of
three fields and the dynamic range of single and double-
precision FP are listed in Table 1.
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TasLE 1: IEEE FP number format and dynamic range.

Format Sign Exp Frac Bias Max Min
Single 1 8 23 127 3.4-10% 1.4-107%
Double 1 11 52 1023  1.8-10%%  49.107%*
1 8 23
| s |00000000 | frac#0

F1GURE 3: Denormalized number format.

Rounding

The default rounding mode is round-to-nearest. If there is
a tie for the two nearest neighbors, then it is rounded to the
one with the least significant bit as zero. Three user selectable
rounding modes are: round-toward +co, round-toward —oo,
and round-toward-zero (or called truncation).

Denormalization

Denormalization is a way to allow gradual underflow. For
normalized numbers, because there is an implicit leading 1,
the smallest positive value is 27126 - 1.0 for single precision
(it is not 27127 - 1.0 because the exponent with all zeros is
reserved for denormalized numbers). Values below this can
be represented by a so-called denormalized format (Figure 3)
that does not have the implicit leading 1.

The value of the denormalized number is 27126 - 0. frac
and the smallest representable value is hence scaled down
to 27149 (27126 . 2723), Denormalization provides graceful
degradation of precision for computations on very small
numbers. However, it complicates hardware significantly and
slows down the more common normalized cases.

Exception handling

There are five types of exceptions defined in the standard: in-
valid operation, division by zero, overflow, underflow, and
inexact. As shown in Figure 4, some bit patterns are reserved
for these exceptions. When numbers simply cannot be rep-
resented, the format returns a pattern called NaN, not-a-
number, with information about the problem. NaNs provide
an escape mechanism to prevent system crashes in case of
invalid operations. In addition to assigning specific NaN bit
patterns, some status flags and trapping signals are used to
indicate exceptions.

From the above review, we can see that IEEE standard FP
arithmetic has a strong capability to represent real numbers
as accurately as possible and is very robust when exceptions
occur. However, if the FP arithmetic unit is dedicated to a
particular application, the IEEE-mandated 32 or 64-bit long
bit-width may provide more precision and dynamic range
than needed, and many other features may be unnecessary
as well.

1 8 23
Infinite | s [11111111 | frac==0 |

1 8 23
NaN | s |11111111| frac# 0 |

NaN is assigned when some invalid operations occur, like
(+00) + (=00), 0 % o0, 0/0, ... etc.

FIGURE 4: Infinite and NaN representations.

3. CUSTOMIZABLE LIGHTWEIGHT FLOATING-POINT
LIBRARY

The goal of our customizable lightweight FP library is to
provide more flexibility than IEEE standard FP in bit-width,
rounding and exception handling. We created matched C++
and Verilog FP arithmetic libraries that can be used dur-
ing algorithm/circuit simulation and circuit synthesis. With
the C++ library, software designers can simulate the algo-
rithms with lightweight arithmetic and decide the minimal
bit-width, rounding mode, and so forth, according to the
numerical performance. Then with the Verilog library, hard-
ware designers can plug in the parameterized FP arithmetic
cores into the system and synthesize it to the gate-level cir-
cuit. Our libraries provide a way to move the FP design
choices (bit-width, rounding, ...) upwards to the algorithm
design stage and better predict the performance during early
algorithm simulation.

3.1. Easy-to-use C++ class Cmufloat for algorithm
designers

Our lightweight FP class is called Cmufloat and imple-
mented by overloading existing C++ arithmetic operators
(+, =, *,/,...). It allows direct operations, including assign-
ment between Cmufloat and any C++ data types except char.
The bit-width of Cmufloat varies from 1 to 32 including
sign, fraction, and exponent bits and is specified during the
variable declaration. Three rounding modes are supported:
round-to-nearest, Jamming, and truncation, one of which is
chosen by defining a symbol in an appropriate configuration
file. Explanation of our rounding modes is presented in detail
later. In Figure 5, we summarize the operators of Cmufloat
and give some examples of using it.

Our implementation of lightweight FP offers two advan-
tages. First, it provides a transparent mechanism to embed
Cmufloat numbers in programs. As shown in the example,
designers can use Cmufloat as a standard C++ data type.
Therefore, the overall structure of the source code can be pre-
served and a minimal amount of work is spent in translating
a standard FP program to a lightweight FP program. Sec-
ond, the arithmetic operators are implemented by bit-level
manipulation, which carefully emulates the hardware imple-
mentation. We believe the correspondence between software
and hardware is more exact than previous work [5, 6]. These
other approaches appear to have implemented the operators
by simply quantizing the result of standard FP operations
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Cmufloat Cmufloat + == Cmufloat
double double - >=> double
float = float ¥ <=, < float
int int / 1= int
short short short

(a) Operators with Cmufloat.

Cmufloat < 14,5 >a =0.5; // 14-bit fraction and 5-bit exponent
Cmufloat <> b = 1.5; /] Default is IEEE-standard float
Cmufloat < 18,6 > ¢[2]; /I Define an array

float fa;

c[l]=a+b;

fa=axb; /I Assign the result to float

c[2] =fa+c[1]; /] Operation between float and Cmufloat
cout << ¢[2]; /1 T/O stream

func(a); // Function call

(b) Examples of Cmufloat.

FIGURE 5: Operators and examples of Cmufloat.

into limited bits. This approach actually has more bit-width
for the intermediate operations, while our approach guaran-
tees that results of all operations, including the intermedi-
ate results, are consistent with the hardware implementation.
Hence, the numerical performance of the system during the
early algorithm simulation is more trustworthy.

3.2. Parameterized Verilog library for silicon designers

We provide a rich set of lightweight FP arithmetic units
(adders, multipliers) in the form of parameterized Verilog.
First, designers can choose implementations according to the
rounding mode and the exception handling. Then they can
specify the bit-width for the fraction and exponent by pa-
rameters. With this library, silicon designers are able to sim-
ulate the circuit at the behavioral level and synthesize it into
a gate-level netlist. The availability of such cores makes pos-
sible a wider set of design trade-offs (power, speed, area, ac-
curacy) for multimedia tasks.

4. REDUCING THE COMPLEXITY OF FLOATING-POINT
ARITHMETIC FOR A VIDEO CODEC IN MULTIPLE
DIMENSIONS

Most multimedia applications process modest-resolution
human sensory data, which allows hardware implementation
to use low-precision arithmetic computations. Our work
aims to find out how much the precision and the dynamic
range can be reduced from the IEEE standard FP with-
out perceptual quality degradation. In addition, the impacts
of other features in IEEE standard, such as the rounding
mode, denormalization, and the radix choice are also stud-
ied. Specifically, we target the IDCT algorithm in an H.263
video codec, since it is the only module that really uses FP
computations in the codec, and also is common in many

other media applications, such as image processing, audio
compression, and so forth.

In Figure 6, we give a simplified diagram of a video codec.
In the decoder side, the input compressed video is put into
IDCT after inverse quantization. After some FP computa-
tions in IDCT, those DCT coefficients are converted to pixel
values that are the differences between the previous frame
and the current frame. The last step is to get the current
frame by adding up the outputs of IDCT and the previous
frame after the motion compensation.

Considering the IEEE representation of FP numbers,
there are five dimensions that we can explore in order to
reduce the hardware complexity (Table 2). Accuracy versus
hardware cost trade-off is made in each dimension. In or-
der to measure the accuracy quantitatively, we integrate the
Cmufloat IDCT into a complete video codec and measure
the PSNR (peak-signal-to-noise-ratio) of the decoded video,
which reflects the decoded video quality,

2
PSNR = 10log < 22> (1)

ico (pi— fi)/N’

where N is the total number of pixels, p; stands for the pixel
value decoded by the lightweight FP algorithm, and f; stands
for the reference pixel value of the original video.

4.1. Reducing the exponent and fraction bit-width
Reducing the exponent bit-width

The exponent bit-width determines the dynamic range. Us-
ing a 5-bit exponent as an example, we derive the dynamic
range in Table 3. Complying with the IEEE standard, the ex-
ponent with all 1s is reserved for infinity and NaN. With a
bias of 15, the dynamic range for a 5-bit exponent is from
27" or 271 t0 26, depending on the support for denormal-
ization.

In order to decide the necessary exponent bit-width for
our IDCT, we collected the histogram information of expo-
nents for all the variables in the IDCT algorithm during a
video sequence decoding (see Figure 7). The range of these
exponents lies in [—22, 10], which is consistent with the the-
oretical result in [7]. From the dynamic range analysis above,
we know that a 5-bit exponent can almost cover such a range
except when numbers are extremely small, while a 6-bit ex-
ponent can cover the entire range. However, our experiment
shows that 5-bit exponent is able to produce the same PSNR
as an 8-bit exponent.

Reducing the fraction bit-width

Reducing the fraction bit-width is the most practical way to
lower the hardware cost because the complexity of an integer
multiplier is reduced quadratically with decreasing bit-width
[8]. On the other hand, the accuracy is degraded when nar-
rowing the bit-width. The influence of decreasing bit-width
on video quality is shown in Figure 8.

As we can see in the curve, PSNR remains almost con-
stant across a rather wide range of fraction bit widths, which
means that the fraction width does not affect the decoded
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DCT Q
IQ
IDCT
Motion D
compensation
Encoder

Transmit

Cmufloat

/ algorithm

Motion
compensation

Decoder

FIGURE 6: Video codec diagram Q: quantizer, IQ: inverse quantizer, D: delay.

TaBLE 2: Working dimensions for lightweight FP.

Dimension

Description

Smaller exponent bit-width
Smaller fraction bit-width
Simpler rounding mode

No support for denormalization

Reduce the number of exponent bits at the expense of dynamic range
Reduce the number of fraction bits at the expense of precision
Choose simpler rounding mode at the expense of precision

Do not support denormalization at the expense of precision

Increase the implied radix from 2 to 16 for the FP exponent (higher radix FP

Higher radix

needs less exponent bits and more fraction bits than radix-2 FP, in order to

achieve the comparable dynamic range and precision)

TaBLE 3: Dynamic range of a 5-bit exponent.

Exponent Value of exp-bias Dynamic range

Biggest exponent 11110 16 216
Smallest exponent

(with support for 00001 —14 214
denormalization)

Smallest exponent

(no support for 00000 -15 271

denormalization)

video quality in this range. The cutoff point where PSNR
starts dropping is as small as 8 bits—this is about 1/3 of
the fraction-width of an IEEE standard FP. The difference of
PSNR between an 8-bit fraction FP and 23-bit fraction is only
0.22 dB, which is almost not perceptible to human eyes. One
frame of the video sequence is compared in Figure 9. The top
one is decoded by a full precision FP IDCT, and the bottom
one is decoded by a 14-bit FP IDCT. From the perceptual
quality point of view, it is hard to tell the major difference
between these two.

From the above analysis, we can reduce the total bit-
width from 32 bits to 14 bits (1-bit sign + 5-bit exponent +
8-bit fraction), while preserving good perceptual quality. In

1000000
100000
10000 HH
1000 HE
100 H HHH

SO TR/

-26 -22 -18 -14 -10 -6 -2 2 6 10
Exponent

—

FIGURE 7: Histogram of exponent value.

order to generalize our result, the same experiment is carried
on three other video sequences: Akiyo, Stefan, mobile, all of
which have around 0.2 dB degradation in PSNR when 14-bit
FP is applied.

The relationship between video compression ratio
and the minimal bit-width

For streaming video, the lower the bit rate, the worse is the
video quality. The difference in bit rate is mainly caused by
the quantization step size during encoding. A larger step size
means coarser quantization and therefore worse video qual-
ity. Considering the limited wireless network bandwidth and
the low display quality of mobile devices, a relatively low bit
rate is preferred to transfer video in this situation. Hence, we
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F1GURE 8: PSNR versus fraction width.

(a) One frame decoded by 32-bit FP
1-bit sign + 8-bit exp + 23-bit fraction.

(b) One frame decoded by 14-bit FP
1-bit sign + 5-bit exp + 8-bit fraction.

FIGURE 9: Video quality comparison.

want to study the relationship between compression ratio, or
quantization step size and the minimal bit-width.

We compare the PSNR curves obtained by experiments
with different quantization step sizes in Figure 10. From the
figure, we can see that for a larger quantization step size, the
PSNR is lower, but at the same time the curve drops more
slowly and the minimal bit-width can be reduced further.
This is because coarse quantization can hide more computa-
tion error under the quantization noise. Therefore, less com-
putational precision is needed for the video codec using a
larger quantization step size.

23 20 17 14 11 8 5
Fraction width

—o— Quantization step size = 4

—=— Quantization step size = 8
—A— Quantization step size = 16

Figure 10: Comparison of different quantization step.

»
»

23 21 19 17 15 13 11 9 7 5
Fraction width

—e— Intracoding
—A— Intercoding

FiGure 11: Comparison of intracoding and intercoding.

The relationship between inter/intra-coding
and the minimal bit-width

Intercoding refers to the coding of each video frame with ref-
erence to the previous video frame. That is, only the differ-
ence between the current frame and the previous frame is
coded, after motion compensation. Since in most videos, ad-
jacent frames are highly correlated, intercoding provides very
high efficiency.

Based on the assumption that video frames have some
correlation, for intercoding, the differences coded as the in-
puts to DCT are typically much smaller than regular pixel
values. Accordingly, the DCT coefficients, or inputs to IDCT
are also smaller than those in intracoding. One property of
FP numbers is that representation error is smaller when the
number to be represented is smaller. From Figure 11, the
PSNR of intercoding drops more slowly than intracoding, or
the minimum bit-width of intercoding can be 1 bit less than
intracoding.

However, if the encoder uses the full precision FP IDCT,
while the decoder uses the lightweight FP IDCT, then the er-
ror propagation effect of intercoding cannot be eliminated.
In that case, intercoding does not have the above advantage.

The results in this section demonstrates that some pro-
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grams do not need the extreme precision and dynamic range
provided by IEEE standard FP. Applications dealing with the
modest-resolution human sensory data can tolerate some
computation error in the intermediate or even final results,
while giving similar human perceptual results. Some exper-
iments on other applications also agree with this assertion.
We also applied Cmufloat to an MP3 decoder. The bit-width
can be cut down to 14 bits (1-bit sign + 6-bit exponent +
7-bit fraction) and the noise behind the music is still not
perceptible. In the CMU Sphinx application, a speech rec-
ognizer, 11-bit FP (1-bit sign + 6-bit exponent + 4-bit frac-
tion) can maintain the same recognition accuracy as 32-bit
FP. Such dramatic bit-width reduction offers enormous ad-
vantage that may broaden the application of lightweight FP
units in mobile devices.

Finally, we note that the numerical analysis and preci-
sion optimization in this section can be implemented in a
semiautomated way by appropriate compiler support. We
can extend an existing C++ compiler to handle lightweight
arithmetic operations and assist the process of exploring the
precision trade-offs with less programmer intervention. This
will unburden designers from translating codes manually
into proper limited-precision formats.

4.2. Rounding modes

When an FP number cannot be represented exactly, or the
intermediate result is beyond the allowed bit-width during
computation, then the number is rounded, introducing an
error less than the value of the least significant bit. Among
the four rounding modes specified by the IEEE FP standard,
round-to-nearest, round-to-(+o0), and round-to-(—c0) need
an extra adder in the critical path, while round-toward-zero
is the simplest in hardware, but the least accurate in preci-
sion. Since round-to-nearest has the most accuracy, we im-
plement it as our baseline of comparison. There is another
classical alternative mode that may have potential in both ac-
curacy and hardware cost: von Neumann [9]. We will dis-
cuss these three rounding modes (round-to-nearest, Jam-
ming, round-toward-zero) in detail.

Round-to-nearest

In the standard FP arithmetic implementation, there are
three bits beyond the significant bits that are for intermediate
results [10] (see Figure 12). The sticky bit is the logical OR of
all bits thereafter.

These three bits participate in rounding in the following
way:

b000

b--- Truncate these tail bits

b011

5100 _»Ifb-lsl,addltob o
If b is 0, truncate the tail bits

b101

b--- Add1ltob

b111

significant bit

guard bit

N\

round bit

sticky bit

FIGURE 12: Guard/round/sticky bit.

bXXX
b XXX 0000
0001 - -

0--- }> Add1ltob
|: OR 0111

1000  ——> Do nothing
1001
v 1---

1111

—— Do nothing

} Truncate tail bits

FIGURE 13: Jamming rounding.

Round-to-nearest is the most accurate rounding mode,
but needs some comparison logic and a carry-propagate
adder in hardware. Further, since the rounding can actually
increase the fraction magnitude, it may require extra normal-
ization steps which cause additional fraction and exponent
calculations.

Jamming

The rule for Jamming rounding is as follows: if b is 1, then
truncate those 3 bits, if b is 0, and there is a 1 among those
3 bits, then add 1 to b, else if b and those 3 bits are all 0, then
truncate those 3 bits. Essentially, it is the function of an OR
gate (see Figure 13).

Jamming is extremely simple as hardware, almost as sim-
ple as truncation, but numerically more attractive for one
subtle but important reason. The rounding created by trun-
cation is biased; the rounded result is always smaller than
the correct value. Jamming, by sometimes forcing a 1 into
the least significant bit position, is unbiased. The magnitude
of Jamming errors is not different from truncation, but the
mean of errors is zero. This important distinction was recog-
nized by von Neumann almost 50 years ago [9].

Round-toward-zero

The operation of round-toward-zero is just truncation. This
mode has no overhead in hardware, and it does not have to
keep 3 more bits for the intermediate results. So it is much
simpler in hardware than the first two modes.

The PNSR curves for the same video sequence obtained
using these three rounding modes are shown in Figure 14.
Three rounding modes produce almost the same PSNR when
the fraction bit-width is more than 8bits. At the point of
8 bits, the PSNR of truncation is about 0.2 dB worse than
the other two. On the other hand, from the hardware point
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FIGURE 14: Comparison of rounding modes.

X L 1.000 1.111
Without denormalization | Ll
0.001 0.111
With denormalization

FiGguURre 15: Denormalization.

of view, Jamming is much simpler than round-to-nearest
and truncation is the simplest among these three modes.
So trade-off will be made between quality and complexity
among the modes of Jamming and truncation. We will final-
ize the choice of rounding mode during the hardware imple-
mentation section.

4.3. Denormalization

The IEEE standard allows for a special set of non-normalized
numbers that represent magnitudes very close to zero. We
illustrate this in Figure 15 by an example of a 3-bit frac-
tion. Without denormalization, there is an implicit 1 before
the fraction, so the actual smallest fraction is 1.000, while
with denormalization, the leading 1 is not enforced so that
the smallest fraction is scaled down to 0.001. This mech-
anism provides more precision for scientific computation
with small numbers, but for multimedia applications, espe-
cially for video codec, do those small numbers during the
computation affect the video quality?

We experimented on the IDCT with a 5-bit exponent
Cmufloat representation. 5 bits was chosen to ensure that no
overflow would happen during the computation. But from
the histogram of Figure 7, there are still some numbers below
the threshold of normalized numbers. That means if denor-
malization is not supported, these numbers will be rounded
to zero. However, the experiment shows that the PSNRs with
and without denormalization are the same, which means that
denormalization does not affect the decoded video quality at
all.

4.4. Higher radix for FP exponent

The exponent of the IEEE standard FP is based on radix 2.
Historically, there are also systems based on radix 16, for

example, the IBM 390 [11]. The advantage of radix 16 lies
mainly in fewer types of shifting during prealignment and
normalization, which can reduce the shifter complexity in
the FP adder and multiplier. We will discuss this issue in
Section 5.4 when we discuss hardware implementation in
more detail.

The potential advantage of a higher radix such as 16 is
that the smaller exponent bit-width is needed for the same
dynamic range as the radix-2 FP, while the disadvantage is
that the larger fraction bit-width has to be chosen to main-
tain the comparable precision. We analyze such features in
the following.

Exponent bit-width

The dynamic range represented by i-bit exponent is approx-
imately from f2" to 2" (B is the radix). Assume we use
i-bit exponent for radix-2 FP and j-bit exponent for radix-
16 FP. If they have the same dynamic range, then 22" =
162", or j = i— 2. Specifically, if the exponent bit-width for
radix-2 is 5, then only 3 bits are needed for the radix-16 FP
to reach approximately the same range.

Fraction bit-width

The precision of an FP number is mainly determined by the
fraction bit-width. But the radix for the exponent also plays a
role, due to the way that normalization works. Normalization
ensures that no number can be represented with two or more
bit patterns in the FP format, thus maximizing the use of the
finite number of bit patterns. Radix-2 numbers are normal-
ized by shifting to ensure a leading bit 1 in the most signif-
icant fraction bit. IEEE format actually makes this implicit,
that is, it is not physically stored in the number.

For radix 16, however, normalization means that the first
digit of the fraction, that is, the most significant 4 bits after
the radix point, is never 0000. Hence there are four bit pat-
terns that can appear in the radix-16 fraction (see Table 4).
In other words, the radix-16 fraction uses its available bits
in a less efficient way, because the leading zeros reduce the
number of significant bits of precision. We analyze the loss
of significant precisions bits in Table 4.

The significant bit-width of a radix-2 i-bit fraction is i+1,
while for a radix-16 j-bit fraction, the significant bit-width is
j»j—1,j—2,or j— 3, with possibility of 1/4, respectively.
The minimum fraction bit-width of a radix-16 FP that can
guarantee the precision not less than radix-2 must satisfy the
following inequality:

min{j,j—1j—-2j-3}2i+1, (2)

so the minimum fraction bit-width is i + 4. Actually, it can
provide more precision than radix-2 FP since j, j — 1, j — 2
are larger than i + 1.

From previous discussions, we know that 14-bit radix-2
FP (1-bit sign + 5-bit exponent + 8-bit fraction) can produce
good video quality. Moving to radix-16, two less exponent
bits (3 bits) and four more fraction bits (12 bits), or 16 bits
for total FP can guarantee the comparable video quality.
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TasLE 4: Comparison of radix-2 to radix-16.

FP format Normal form of fraction Range of fraction Significant bits
Radix-2 (i-bit fraction) L.xx: - -XX l<f<2 i+1
IXX: « -+ + X 12= f<1 j
Radix-16 (j-bit fraction) Olxx- - -x I/4< f <172 j-1
001x- - -x 1/8< f<1/4 j-2
.0001x--x 1/16 < f < 1/8 j-3
40 . dard, it has the following specification:
|
. 35 Cutoff point i y
m I I
< 30 77 10000 .
= | | 2li0 Zj:() k=0 ex* (i, i)
Z s ! ! omse = < 0.02 (3)
Z ! ! 64 x 10000
| |
20 ! !
15—\ (where omse is the overall-mean-square-error, e is the pixel
23 21 19 17 15 13 11 9 7 5 difference between reference and proposed IDCT, and i, j are
. the position of the pixel in the 8 X 8 block).
—e— Radix 16 . . .
e Radix2 PSNR specification can be derived from omse: PSNR
= 10log,,(255*/ omse) > 65.1dB, which is too tight for
F16URE 16: Comparison of radix-2 and radix-16. videos/images displayed by mobile devices. The other reason
we did not choose this standard is that it uses the uniform
distributed random numbers as input pixels that eliminate
TaBLE 5 11-bit fraction for radix-16 is sufficient the correlation between pixels and enlarge the FP computa-
tion error. We also did experiments based on the IEEE stan-
EP format PSNR dard. It turns out that around 17-bit fraction is required to
a2 (8.bit feact D meet all the constraints. From PSNR curves in this section,
adix-2 (8-bit fraction) 38.529 we know that PSNR almost keeps constant for fraction width
Radix-16 (12-bit fraction) 38.667 from 17 bits down to 9bits. The experimental results sup-
Radix-16 (11-bit fraction) 38.536 port our claim very well that IEEE standard specifications
Radix_16 (10-bit fraction) 38.007 for IDCT is too strict for encoding/decoding real video se-

Since the minimum fraction bit-width is derived from the
worst case analysis, it could be reduced further from the per-
spective of average precision. Applying radix-16 Cmufloat to
the video decoder, we can see that the cutoff point actually is
11 bits, not 12 bits for fraction width (Figure 16 and Table 5).

After discussion in each working dimension, we summa-
rize the lightweight FP design choices for the H.263 video
codec in the following:

Data format: 14-bit radix-2 FP (5-bit exponent + 8-bit
fraction) or 15-bit radix-16 FP (3-bit exponent + 11-bit frac-
tion).

Rounding: Jamming or truncation.

Denormalization: not supported.

The final choice of data format and rounding mode are
made in Section 5 according to the hardware cost.

In all discussions in this section, we use PSNR as a mea-
surement of the algorithm. However, we need to mention
that there is an IEEE standard specifying the precision re-
quirement for 8 X 8 DCT implementation [12]. In the stan-

quences.

5. HARDWARE IMPLEMENTATION OF LIGHTWEIGHT
FP ARITHMETIC UNITS

FP addition and multiplication are the most frequent FP op-
erations. A lot of work has been published about IEEE com-
pliant FP adders and multipliers, focusing on reducing the
latency of the computation. In IBM RISC System/6000, lead-
ing zero anticipator is introduced in the FP adder [13]. The
SNAP project proposed a two-path approach in the FP adder
[14]. However, the benefit of these algorithms is not signif-
icant and the penalty in area is not ignorable when the bit-
width is very small. In this section, we present the structure
of the FP adder and multiplier appropriate for narrow bit-
width and study the impact of different rounding/exception
handling/radix schemes.

Our design is based on Synopsys Designware library and
STMicroelectronics 0.18 ym technology library. The area and
latency are measured on gate-level circuit by Synopsys De-
signCompiler, and the power consumption is measured by
Cadence VerilogXL simulator and Synopsys DesignPower.
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FIGURE 17: Diagram of FP, the adder and multiplier.

5.1. Structure

As shown in Figure 17, we take the most straightforward top-
level structure for the FP adder and multiplier. The tricks re-
ducing the latency are not adopted because firstly the adder
and multiplier can be accelerated easily by pipelining, and
secondly those tricks increase the area by a large percentage
in the case of narrow bit width.

Shifter

The core component in the prealignment and normalization
is a shifter. There are three common architectures for shifter:

N-to-1 Mux shifter is appropriate when N is small.

Logarithmic shifter [15] uses log(N) stages and each stage
handles a single, power-of-2 shifts. This architecture has
compact area, but the timing path is long when N is big.

Fast two-stage shifter is used in IBM RISC System/6000
[16]. The first stage shifts (0,4, 8, 12,...) bit positions, and
the second stage shifts (0, 1, 2, 3) bit position.

The comparison of these three architectures over differ-
ent bit-widths is shown in Figure 18. It indicates that for
narrow bit-width (8 ~ 16), logarithmic shifter is the best
choice considering both of area and delay, but when the

Area
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3000 //e
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0 T T
8 16 32
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—— N-to-1 Mux

—=— Two stages
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Delay

6
5 A

Delay (ns)
o

Bit width

—&— N-to-1 Mux
—&— Two stages
—a&— Logarithmic

FIGURE 18: Area and delay comparisons of three shifter structures.

bit-width is increased to a certain level, two-stage shifter be-
come best.

5.2. Rounding

In our lightweight FP arithmetic operations, round-to-
nearest is not considered because of the heavy hardware over-
head. Jamming rounding demonstrates similar performance
as round-to-nearest in the example of video codec. But it
still has to keep three more bits in each stage in the FP
adder, which becomes significant, especially for narrow bit-
width cases. The other candidate is round-toward-zero be-
cause its performance is close to Jamming rounding at the
cutoff point. Table 6 shows the reduction in both of the area
and delay when changing rounding mode from Jamming to
round-toward-zero. Since 15% reduction in the area of FP
adder can be obtained, we finally choose truncation as the
rounding mode.
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TaBLE 6: Comparison of rounding modes.

Rounding mode Area (um?)

Jamming 7893 5.8
7741 (—1.9%) 5.71 (-1.6%)

Delay (ns)

Truncation

(a) 14-bit FP adder.

Rounding mode Area (um?)
Jamming 8401 10.21

7123 (—-15%) 9.43 (=7.6%)

Delay (ns)

Truncation

(b) 14-bit FP multiplier.

TaBLE 7: Comparison of exception handling.

Exception handling Area (um?)

Full 8401 10.21

Delay (ns)

Partial 7545 (—10%) 9.26 (—9.3%)
(a) 14-bit FP adder.

Exception handling Area (um?) Delay (ns)

Full 7893 5.8

Partial 7508 (—4.9%) 4.62 (—20%)

(b) 14-bit multiplier.

N

(a) Radix-2 FP (8-bit fraction
+1 leading bit).

(b) Radix-16 FP (11-bit fraction).

FiGure 19: Shifting positions for radix-2 and radix-16 FP.

5.3. Exception handling

For an IEEE compliant FP arithmetic unit, a large portion
of hardware in critical timing path is dedicated for rare ex-
ceptional cases, for example, overflow, underflow, infinite,
NaN and so forth. If the exponent bit-width is enough to
avoid overflow, then infinite and NaN will not occur during
computation. Then in the FP adder and multiplier diagram
(Figure 17), exception detection is not needed and only un-
derflow is detected in exception handling. As a result, the de-
lay of the FP adder and multiplier is reduced by 9.3% and
20%, respectively, using partial exception handling.

5.4. Radix

The advantage of higher radix FP is less complex in the
shifter. From Section 4, we know that in video codec, the pre-
cision of radix-16 FP with 11-bit fraction is close to radix-2

TasLE 8: Comparison of radix 2 and radix 16.

Radix Area (um?) Delay (ns)
2 8401 10.21
16 7389 (—12%) 8.48 (—17%)
(a) FP adder.
Radix Area (um?) Delay (ns)
2 7893 5.8
16 11284 (+43%) 6.62 (+14%)

(b) FP multiplier.

TABLE 9
Data format Area (um?) Delay (ns) Power (mW)
Lightweight 10666 5.67 16.5
IEEE standard 51830 14.5 100.1

(a) Comparison of lightweight FP and IEEE FP-adder.

Data format
Lightweight 5206 7.49 6.9
IEEE standard 19943 21.7 29.3

Area (um?) Delay (ns) Power (mW)

(b) Comparison of lightweight FP and IEEE FP-multiplier.

FP with 8-bit fraction. We illustrate the difference in shifter
in (Figure 19). The step size of shifting for radix-16 is four
and only three shifting positions are needed. Such a simple
shifter can be implemented by the structure of 3-to-1 Mux.
Although there are 3 more bits in the fraction, FP adder still
benefited from higher radix in both area and delay (Table 8).

On the other hand, more fraction width increases the
complexity of the FP multiplier. The size of multiplier is
increased about quadratically with the bit-width, so only 3
more bits can increase the multiplier’s area by 43% (Table 8).

From the table, it is clear that radix-16 is not always bet-
ter than radix-2. In a certain application, if there are more
adders than multipliers, then radix-16 is a better choice than
radix-2. In our IDCT structure, there are 29 adders and 11
multipliers. Therefore, radix-16 is chosen for the implemen-
tation of IDCT.

Combining all the optimization strategies in this sec-
tion, the final 15-bit radix-16 FP adder and multiplier are
compared with the IEEE standard compliant single-precision
FP adder and multiplier in Table 9. Reducing the bit-width
and simplifying the rounding/shifting/exception handling,
the power consumption of FP arithmetic unit is cut down
to around 1/5 of the IEEE standard FP unit.

Further optimization can be conducted in two direc-
tions. One is low-power design approach. As proposed in
[17], triple data path in FP adder structure can reduce the
power delay product by 16X. The other is transistor level op-
timization. Shifter and multiplexor designed in transistors
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are much smaller and faster than those implemented as logic
gates [15, 18].

6. IMPLEMENTATION OF IDCT

IDCT performs linear transform on an 8-input data set.
The algorithm developed in [19] uses minimum resources,
11 multiplications and 29 additions, to compute a one-
dimensional IDCT (Figure 20).

6.1. Optimization in butterfly

In the architecture of IDCT, there are 12 butterflies and each
one is composed of two adders. Because these two adders
have the same inputs, some operations such as prealignment
and negation can be shared. Further, in the butterfly struc-
ture, normalization and leading-one detection can be sepa-
rated into two paths and executed in parallel, which reduce
the timing critical path.

Figure 21a is a diagram of the FP adder, and Figure 21b
is a diagram of the butterfly with the function of two FP
adders. From the figure, we can see that a butterfly is similar
to one FP adder in structure except one extra integer adder
and some selection logic. Table 10 shows that such butterfly
structure saves 37% area compared with two simple adders.

This reduction is due to the property of FP addition. For
a fixed-point butterfly, no operations can be shared.

6.2. Results comparison

We implement the IDCT in 32-bit IEEE FP, 15-bit radix-16
lightweight FP, and fixed-point algorithms (see the compari-
son in Table 11). In the fixed-point implementation, we pre-
serve 12-bit accuracy for constants, and the widest bit-width
is 24 in the whole algorithm (not fine tuned). From the per-
spective of power, the lightweight FP IDCT consumes only
around 1/10 of the power compared to the IEEE FP IDCT,
and is comparable with the fixed-point implementation.

7. CONCLUSION

In this paper, we introduce C++ and Verilog libraries
of lightweight FP arithmetic, focusing on the most criti-
cal arithmetic operators (addition, multiplication), and the

(a) FP adder.

fa fb
J

Alignment

1

Negation

l

Fraction addition

Fraction addition

2 1
Normalization Leadlr.lg—one
detection
2 2

Selection logic

! !

fa+ b fa—fb

(b) FP butterfly.

FIGURE 21: Diagrams of a FP adder and a FP butterfly.

most common parameterizations useful for multimedia tasks
(bit-width, rounding modes, exception handling, radix).
With these libraries, we can easily translate a standard FP
program to a lightweight FP program, and explore the system
numerical performance versus hardware complexity trade-
off.

An H.263 video codec is chosen to be our benchmark.
Such media applications do not need a wide dynamic range
and high precision in computations, so the lightweight FP
can be applied efficiently. By examining the histogram in-
formation of FP numbers and relationship between PSNR
and bit-width, we demonstrate that our video codec have
almost no quality degradation when more than half of the
bit-width in standard FP is reduced. Other features specified
in the standard FP, such as rounding modes, exception han-
dling and the radix choice, are also discussed for this partic-
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TaBLE 10: Comparison of two FP adders and a “butterfly.”

Structure Area (um?) Delay (ns)
Two FP adders 10412 7.49
Butterfly 6545 8.14

TasLE 11: Comparison of three implementations of IDCT.

Implementation Area (um?) Delay (ns) Power (mW)

IEEE FP 926810 111 1360
Lightweight FP 216236 46.75 143
Fixed-point 106598 36.11 110

ular application. Such optimization offers huge reduction in
hardware cost. In the hardware implementation of IDCT, we
combined two FP adders in a butterfly (basic component of
IDCT), which further reduced the hardware cost. At last, we
show that power consumption of the lightweight FP IDCT is
only 10.5% of the standard FP IDCT, and comparable to the
fixed-point IDCT.
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