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Strides in computer technology and the search for deeper, more powerful techniques in signal processing have brought multimodal
research to the forefront in recent years. Audio-visual speech processing has become an important part of this research because it
holds great potential for overcoming certain problems of traditional audio-only methods. Difficulties, due to background noise
and multiple speakers in an application environment, are significantly reduced by the additional information provided by visual
features. This paper presents information on a new audio-visual database, a feature study on moving speakers, and on baseline
results for the whole speaker group. Although a few databases have been collected in this area, none has emerged as a standard for
comparison. Also, efforts to date have often been limited, focusing on cropped video or stationary speakers. This paper seeks to
introduce a challenging audio-visual database that is flexible and fairly comprehensive, yet easily available to researchers on one
DVD. The Clemson University Audio-Visual Experiments (CUAVE) database is a speaker-independent corpus of both connected
and continuous digit strings totaling over 7000 utterances. It contains a wide variety of speakers and is designed to meet several
goals discussed in this paper. One of these goals is to allow testing of adverse conditions such as moving talkers and speaker pairs.
A feature study of connected digit strings is also discussed. It compares stationary and moving talkers in a speaker-independent
grouping. An image-processing-based contour technique, an image transform method, and a deformable template scheme are
used in this comparison to obtain visual features. This paper also presents methods and results in an attempt to make these
techniques more robust to speaker movement. Finally, initial baseline speaker-independent results are included using all speakers,
and conclusions as well as suggested areas of research are given.
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1. INTRODUCTION

Over the past decade, multimodal signal processing has been
an increasing area of interest for researchers. Over recent
years, the potential of multimodal signal processing has
grown as computing power has increased. Faster process-
ing allows the consideration of methods which use separate
audio and video modalities for improved results in many

applications. Audio-visual speech processing has shown great
potential, particularly in speech recognition. The addition
of information from lipreading or other features helps mak-
ing up for information lost due to corrupting influences in
the audio. Due to this, audio-visual speech recognition can
outperform audio-only recognizers, particularly in environ-
ments where there are background noises or other speak-
ers. Researchers have demonstrated the relationship between
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lipreading and human understanding [1, 2] and have pro-
duced performance increases with multimodal systems [3, 4,
5, 6, 7].

Because of the young age of this area of research as well
as difficulties associated with the high volumes of data nec-
essary for simultaneous video and audio, the creation and
distribution of audio-visual databases have been somewhat
limited to date. Most researchers have been forced to record
their own data. This has been limited in many ways to ei-
ther cropped video, stationary speakers, or video with aids
for feature segmentation. In order to allow for better com-
parison and for researchers to enter the area of study more
easily, available databases that meet certain criteria are nec-
essary. The Clemson University Audio-Visual Experiments
(CUAVE) corpus is a new audio-visual database that has been
designed to meet some of these criteria.1 It is a speaker-
independent database of connected (or isolated, if desired)
and continuous digit strings of high quality video and audio
of a representative group of speakers and is easily available on
one DVD. Section 2 of this paper presents a discussion of the
database and associated goals. Section 2.1 discusses a brief
survey of audio-visual databases and presents motivation for
a new database. Next, Section 2.2 includes design goals of the
CUAVE database and specifics of the data collection and cor-
pus format.

One of the goals of the CUAVE database is to include real-
istic conditions for testing robust audio-visual schemes. One
of these considerations is the movement of speakers. Meth-
ods that do not require a fixed talker are necessary. Record-
ings from the database are grouped into tasks where speak-
ers are mostly stationary and tasks where speakers intention-
ally move while speaking. Movements include nodding the
head in different directions, moving back and forth and side-
to-side in the field of view, and in some cases rotation of
the head. This results in more difficult testing conditions.
A feature study, discussion, and results that compare sta-
tionary and moving talkers in a speaker-independent group-
ing are included. Features included are an image-processing-
based contour method that is naturally affine invariant,
an image transform method that is also modified to im-
prove rotation robustness, and a new variation of the de-
formable template that is also inherently affine invariant.
Section 3 includes a discussion of the different feature ex-
traction methods, the overall recognition system, training
and testing from the database, and results of the different
techniques.

Finally, one of the main purposes of all speech corpora
is to allow the comparison of methods and results in order
to stimulate research and fuel advances in speech processing.
This is a main consideration of the CUAVE database, easily
distributable on one DVD. It is a fully-labeled, medium-sized
task that facilitates more rapid development and testing of
novel audio-visual techniques. To this end, baseline results
are included using straightforward methods for a speaker-

1For information on obtaining CUAVE, please visit our webpage
(http://ece.clemson.edu/speech).

independent grouping of all the speakers in a connnected-
digit string task. Section 4 presents these results. Finally,
Section 5 closes with some observations and suggestions
about possible areas of research in audio-visual speech pro-
cessing.

2. THE CUAVE SPEECH CORPUS

This section discusses the motivation and design of the
CUAVE corpus. It includes a brief review of known audio-
visual databases. Information on the design goals of this
database are included along with the corpus format. Finally, a
single speaker case that was performed in preparation before
collecting this database is discussed. This case presents iso-
lated word recognition in various noisy conditions, compar-
ing an SNR-based fusion with a noise-and-SNR-based fusion
method. Basing fusion on the noise type is shown to improve
results.

2.1. Audio-visual databases and research criteria

There have been a few efforts in creating databases for the
audio-visual research community. Tulips1 is a twelve sub-
ject database of the first four English digits recorded in
8-bit grayscale at 100 × 75 resolution [8]. AVLetters in-
cludes the English alphabet recorded three times by ten talk-
ers in 25 fps grayscale [9]. DAVID is a larger database in-
cluding various recordings of thirty-one speakers over five
sessions including digits, alphabets, vowel-consonant-vowel
syllable utterances, and some video conference commands
distributed on multiple SVHS tapes [10]. It is recorded in
color and has some lip highlighting. The M2VTS database
and the expanded XM2VTSDB are geared more toward per-
son authentication and include 37 and 295 speakers, respec-
tively, including head rotation shots, two sequences of dig-
its, and one sentence for each speaker [11]. The M2VTS
database is available on HI-8 tapes, and XM2VTSDB is avail-
able on 20 1-hour MiniDV cassettes. There have also been
some proprietary efforts by AT&T and by IBM [6, 12]. The
AT&T database was to include connected digits and iso-
lated consonant-vowel-consonant words. There were also
plans for large-vocabulary continuous sentences. However,
the database was never completed nor released. The IBM
database is the most comprehensive task to date, and for-
tunately, front-end features from the IBM database are be-
coming available but there are currently no plans to release
the large number of videos [12]. Large-vocabulary continu-
ous speech recognition is an ultimate goal of research. Be-
cause audio-visual speech processing is a fairly young disci-
pline, though, there are many important techniques open to
research that can be performed more easily and rapidly on a
medium-sized task. To meet the need for a more widespread
testbed for audio-visual development, CUAVE was produced
as a speaker-independent database consisting of connected
and continuous digits spoken in different situations. It is
flexible, representative, and easily available. Section 2.2 dis-
cusses the design goals, collection methods, and format of
the corpus.
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Figure 1: Sample speakers from the database.

2.2. Design goals and corpus format

The major design criteria were to create a flexible, realis-
tic, easily distributable database that allows for representa-
tive and fairly comprehensive testing. Because DVD read-
ers for computers have become very economical recently,
the choice was made to design CUAVE to fit on one DVD-
data disc that could be made available through contact in-
formation listed on our website. Aside from being a speaker-
independent collection of isolated and connected digits (zero
through nine), CUAVE is designed to enhance research in
two important areas: audio-visual speech recognition that is
robust to speaker movement and also recognition that is ca-
pable of distinguishing multiple simultaneous speakers. The
database is also fully and manually labeled to improve train-
ing and testing possibilities. This section discusses the collec-
tion and formatting of the database performed to meet the
aforementioned goals.

The database consists of two major sections: one of in-
dividual speakers and one of speaker pairs. The first major
part, with individual speakers, consists of 36 speakers. The
selection of individuals was not tightly controlled, but was
chosen so that there is an even representation of male and
female speakers, unfortunately a rarity in research databases,
and also so that different skin tones and accents are present
as well as other visual features such as glasses, facial hair, and
hats. Speakers also have a wide variety of skin and lip tones
as well as face and lip shapes. See Figure 1 for a sample of
images from some of the CUAVE speakers.

Individual speakers were framed above the shoulders and
recorded speaking connected and continuous digit strings.
Initially, 50 connected digits are spoken while standing still.
As this was not forced, there is some small natural movement
among these speakers. Also, at a few points, some speakers
actually lapse into continuous digits. Aside from these lapses,
the connected-digit tasks may be treated as isolated digits, if
desired, since label data is included for all digits. This sec-
tion is for general training and testing without more difficult
conditions. Video is full color with no aids given for face/lip
segmentation. Secondly, each individual speaker was asked
to intentionally move around while talking. This includes
side-to-side, back and forth, and/or tilting movement of the
head while speaking 30 connected digits. There is occasion-
ally slight rotation in some of the speakers as well. This group
of moving talkers is an important part of the database to al-

Table 1: Summary of CUAVE tasks: individuals and pairs, station-
ary and moving, connected and continuous digits.

Part Task Movement Number of digits Mode

(1) Individual 1 Still 50× 36 speakers Connected

2 Moving 30× 36 speakers Connected

3 Profile 20× 36 speakers Connected

4 Still 30× 36 speakers Continuous

5 Moving 30× 36 speakers Continuous

(2) Pairs 6 Still (30× 2)× 20 pairs Continuous

low for testing of affine invariant visual features. In addition
to this connected-digit section, there is also a continuous-
digit section with movement as well. So far, much research
has been limited to low resolution and pre-segmented video
of only the lip region. Including the speaker’s upper body and
segments withmovement will allow formore realistic testing.
The third and fourth parts spoken by each individual include
profile views and continuous-digit strings facing the camera.
Both profiles are recorded while speaking 10 connected digits
for each side. The final continuous digits were listed as tele-
phone numbers on the prompting to elicit a more natural
response among readers. There are 6 strings. The first 3 are
stationary and the final 3 are moving for a total of 60 con-
tinuous digits for each speaker. See Table 1 for a summary of
these tasks.

The second major section of the database includes 20
pairs of speakers. Again, see Table 1. The goal is to allow
for testing of multispeaker solutions. These include distin-
guishing a single speaker from others as well as the ability
to simultaneously recognize speech from two talkers. This
is obviously a difficult task, particularly with audio infor-
mation only. Video features correlated with speech features
should facilitate solutions to this problem. In addition, tech-
niques that will help with the difficult problem of speech
babble can be tested here. (One such application could be
a shopping mall kiosk that distinguishes a user from other
shoppers nearby while giving voice guided information.) The
two speakers in the group section are labeled persons A and
B. There are three sequences per person. Person A speaks a
continuous-digit sequence, followed by speaker B and vice
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Figure 2: Sample speaker pair from the database.

versa. For the third sequence, both speaker A and B over-
lap each other while speaking each person’s separate digit se-
quence. See Figure 2 for an image from one of the speaker-
pair videos.

The database was recorded in an isolated sound booth at
a resolution of 720×480 with theNTSC standard of 29.97 fps,
using a 1-megapixel-CCD, MiniDV camera. (Frames are in-
terpolated from separate fields.) Several microphones were
tested. An on-camera microphone produced the best results:
audio that was clear from clicking or popping due to speaker
movement and video where the microphone did not block
the view of the speaker. The video is full color with no visual
aids for lip or facial feature segmentation. Lighting was con-
trolled and a green background was used to allow chroma-
keying of different backgrounds. This serves two purposes.
If desired, the green background can be used as an aid in
segmenting the face region, but more importantly, it can be
used to add video backgrounds from different scenes such
as a mall, or a moving car, etc. See Figure 3. In this manner,
not only can audio noise be added for testing but video noise
such as other speakers’ faces or moving objects may be added
as well that will allow for testing of robust feature segmenta-
tion and tracking algorithms. We plan to include standard
video backgrounds (such as those recorded in a shopping
mall, crowded room, ormoving automobile) in an upcoming
release.

Nearly three hours of data from about 50 speakers were
recorded onto MiniDV tapes and transferred into the com-
puter using the IEEE 1394 interface (FireWire). The record-
ings were edited into the selection of 36 representative speak-
ers (17 female and 19 male) and 20 pairs. Disruptive mis-
takes were removed but occasional vocalized pauses and mis-
takes in speech were kept for realistic test purposes. The data
was then compressed into individual MPEG-2 files for each
speaker and group. It has been shown that this does not sig-
nificantly affect the collection of visual features for lipread-
ing [13]. The MPEG-2 files are encoded at a data-rate of
5,000 kbps with multiplexed 16-bit, stereo audio at a 44 kHz
sampling rate. An accompanying set of downsampled wav
format audio files, checked for synchronization, are included
at a 16-bit, mono rate of 16 kHz. The data is fully-labeled
manually at the millisecond level. HTK-compatible label files
are included with the database [14]. The data rate and fi-
nal selection of speakers and groups was chosen so that a

medium-sized database of high quality, digital video and au-
dio as well as label data (and possibly some database tools)
could be released on one 4.7GB DVD. This helps with the
difficulty of distributing and working with the unruly vol-
ume of data associated with audio-visual databases. The next
section discusses a single-speaker test case conducted before
collecting the database.

2.3. Speaker-independent test case using noise-based
late integration

Before recording the database, we conducted a test study in
the area of visual features and data fusion related to audio-
visual speech recognition using a single speaker for a 10-
word isolated speech task [15, 16]. The audio-visual recog-
nizer used was a late-integration system with separate audio
and visual hidden Markov model (HMM) based speech rec-
ognizers. The audio recognizer used sixteen Mel frequency
discrete wavelet coefficients extracted from speech sampled
at 16 kHz [17]. The video recognizer used red-green plane
division and thresholding before edge detection of the lip
boundaries [18]. Geometric features based on the oral cav-
ity and affine invariant Fourier descriptors were passed to
the visual recognizer [15]. All the noises from the NOISEX
database [19] were added at various SNRs, and the system
was trained on clean speech and tested under noisy condi-
tions. Initial results for the single speaker were good and led
us to choose some of the database design goals mentioned in
Section 2.2, such as the inclusion of recordings with moving
speakers and continuous digit strings. See Table 2 for a sum-
mary of these results. (Here, the field of view was cropped to
lips only to ease preliminary work.) The purpose of this study
was to investigate the effects of noise on decision fusion. Late
integration was used and recognition rates were found over
all noises andmultiple SNRs. See Table 3. For each noise type
and level, optimal values of data fusion using a fuzzy-and rule
were determined [1, 16]. Results obtained using the fusion
values based on noise type and SNR are shown to give slightly
superior results to those obtained with fusion based solely on
SNR.

3. FEATURE STUDY USING STATIONARY
ANDMOVING SPEAKERS

This section discusses a moving-talker, speaker-independent
feature study over several features. Image processing, image
transform, and template matching methods are employed
over Part (1), Tasks 1 and 2 of the CUAVE database (see
Table 1). The task includes individuals speaking connected-
digit strings while either stationary or moving. The vi-
sual features used are affine-invariant Fourier descriptors
(AIFDs) [15], the discrete cosine transform (DCT), an im-
proved rotation-corrected application of the DCT, and a
naturally affine-invariant B-Spline template (BST) scheme.
(See Table 1 for a summary of the tasks.) Details of the
overall system are presented in Section 3.1. The techniques
for segmenting and tracking the face and lips are dis-
cussed in Section 3.2. Visual-feature extraction is discussed
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Figure 3: Examples of varied video backgrounds.

Table 2: Recognition rates (percentage correct) averaged over noises for single-speaker case.

Audio only Video only SNR-based AV Noise & SNR-based AV

Clean 100% 87.0% 100% 100%

18 dB 96.5% 87.0% 99.1% 99.3 %

12 dB 80.9% 87.0% 96.4% 96.9%

6 dB 52.6% 87.0% 91.5% 92.9%

0 dB 29.1% 87.0% 87.6% 89.9%

−6 dB 21.0% 87.0% 87.0% 88.4%

Table 3: Performance comparison of (SNR-based — noise-based) late integration using noises from NOISEX-92.

Noise Clean 18 dB 12 dB 6 dB 0 dB −6 dB
Speech 100%— 100% 99%— 99% 94%— 95% 91%— 91% 85%— 87% 87%— 87%

Lynx 100%— 100% 99%— 99% 94%— 95% 90%— 91% 85%— 87% 87%— 87%

Op Room 100%— 100% 100%— 100% 97%— 97% 92%— 94% 90%— 90% 87%— 88%

Machine Gun 100%— 100% 100%— 100% 99%— 99 % 96%— 97% 92%— 94% 87%— 91%

STITEL 100%— 100% 98%— 98% 94%— 95% 85%— 89% 81%— 87% 87%— 87%

F16 100%— 100% 98%— 99% 97%— 97% 91%— 92% 88%— 89% 87%— 89%

Factory 100%— 100% 99%— 99% 97%— 98% 90%— 92% 88%— 91% 87%— 88%

Car 100%— 100% 100%— 100% 99%— 99% 97%— 97% 92%— 93% 87%— 90 %

in Sections 3.3, 3.4, and 3.5. Lastly, Section 3.6 presents a
comparison of moving and stationary talker results using the
various feature methods.

3.1. System details

This subsection describes the setup for the stationary ver-
sus moving talker comparison over various visual features.
The image processingmethod for AIFDs detailed below is the
most sensitive to the weakness of a single-mixture, uniform
color model. Because of this, an attempt was made to gener-
ate a more fair comparison of results. A group of 14 speakers
who yielded more robust lip contour extraction was chosen.
The group was arranged arbitrarily into 7 training speakers
and 7 testing speakers for a completely speaker-independent
study. Part (1) of the database, Tasks 1 and 2, were used for
this study (see Table 1). For each set of visual features, HMMs
were trained using HTK with the same speakers. The mod-
els were simple single-mixture models with eight states per
model.

Before each of the following visual features was tested, a
brief initial test was performed to demonstrate the impor-

Table 4: Word accuracy for preliminary difficult test case demon-
strates usefulness of difference features.

DCT features Accuracy

35 Static 6%

35 Difference 18%

15 Difference 10%

15 Stat./20 Diff. 10%

tance of dynamic features as supported by other researchers
[13, 18]. Table 4 contains results from a difficult two-speaker
test case. Recognition models were trained on DCT features
from one female speaker and tested on onemale speaker with
facial hair. Static and difference features as well as the combi-
nation were compared.

As shown in previous work and in this case, different co-
efficients seem to provide more useful information, particu-
larly when dealing with a speaker-independent case. Shape
information along with information on lip movement is
more applicable in a speaker-dependent case. Methods for
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speaker adaptation, image warping, or codebook schemes
might improve the use of shape information. For dynamic
coefficients, some work also demonstrates that better results
can be obtained by averaging over several adjacent frames for
longer temporal windows [20].

For this study, coefficients are only differenced over one
frame, as some previous work has also shown no apparent
improvement with longer temporal windows [13]. All visual
feature schemes here begin with the same face and lip track-
ing algorithms. Smaller and larger regions of interest (ROIs)
are passed to each feature routine. The smaller region tracks
tightly around the lips and can be searched to locate lip fea-
tures such as the lip corners, angle, or width. The larger in-
cludes the jaw, specifically to give a larger region for applica-
tion of the DCT, as shown in [20] to yield better results than a
smaller region. All features are passed as different coefficients
at a rate of 29.97Hz to match the NTSC standard. As these
are speechreading results only, no interpolation to an audio
frame rate is performed. Techniques for locating the face and
lip regions are described next.

3.2. Detecting the face and lips

Dynamic thresholding of red-green division used to initially
segment the lips in our earlier work did not prove to be good
for feature segmentation over the database of many speak-
ers. For this reason, we manually segmented the face and lip
regions for all speakers, as shown in Figure 4, to obtain the
mean and variance of the nonface, face, and lip color dis-
tributions. Since R, G, and B values are used, a measure of
intensity is also included. This is relatively consistent in this
test case, although this could be difficult in practical applica-
tions as the intensity may vary. The estimated Gaussian dis-
tributions for the nonface, face, and lip classes are shown in
Figure 5. These are used to construct a classifier based on the
Bayes classification rule [21],

p
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x|ω1

)
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(
ω1
) ?
<>
(
x|ω2

)
P
(
ω2
)
, (1)

where x is the feature vector (RGB levels), ω is each class
(nonface versus face, or face versus lips), p(x|ωi) is estimated
by the respective estimated Gaussian density, and P(ωi) is es-
timated by the ratio of class pixels present in training data.
This classification is performed on image blocks or pixels,
and the class with the larger value is chosen. Currently, only
a single Gaussian mixture is used. This results in good class
separation over all except for a few speakers whose facial
tones are ruddy and very similar to their lip tones.

For speed in image-processing routines, the image is bro-
ken into 10×10 pixel blocks. Each block is averaged and clas-
sified as nonface or face, then as face or lips. Determining the
location of the speaker’s lips in the video frame is central to
determining all visual features presented here, although some
are more sensitive to exact location. In order to identify the
lip region, the face is first located in each frame. This is based
on a straightforward template search of the classified blocks,
locating the largest region classified as face. The segmenta-
tion from this step is shown in Figure 6. The current search

Figure 4: Manually segmented face and lips for distribution train-
ing.
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Figure 5: Gaussian estimation of nonface, face, and lip color distri-
butions.

template is rectangular to improve the speed over using an
oval template that might have to be rotated and scaled to
match speaker movement. This performs well for the current
setup that does not have environment backgrounds substi-
tuted for the green screen via chroma keying. Figure 7 dis-
plays a located face. There are some extreme cases of speaker
movement such as large tilting of the head that can cause
poor face location. This would likely be solved by the slower
scaled/rotated oval template.

After locating the probable face region, this area is
searched for the best template match on lip classified pixels.
Pixels are used in locating the lip region for more accuracy.
A center of mass check is also employed to help centering the
tracker on the lips. Again, a rectangular template is used for
speed rather than an oval template. Heuristics, such as check-
ing block classifications near the current template, help pre-
venting misclassifying red shirt collars as lips. See Figure 8.
A final overlaid lip segmentation is shown in Figure 9. After
the lip region is located, it is passed in two forms to the cho-
sen visual feature extraction routine. A smaller box around
the location of the lips is passed to be searched for lip corners
and angle, a larger box is passed as well. It has been shown
that performing the image transform on a slightly larger re-
gion including the jaw as well as the lips yields improved re-
sults in speechreading [20]. Figure 10 demonstrates the re-
gions passed on to the feature routines. The routines have
been designed so that theymay be expanded to trackmultiple
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Figure 6: Segmentation of face from nonface and lips within face
region.

Figure 7: Locating the face region.

speakers, as in the CUAVE speaker-pair cases. The following
subsections discuss each of the feature methods compared in
this work.

3.3. Image-processing contourmethod

The feature-extraction method discussed here involves the
application of affine invariant techniques to Fourier coeffi-
cients of lip contour points estimated by image processing
techniques. More information about the development and
use of AIFD is given in [15, 22]. A binary image of the ROI
passed from the liptracker is created using the classification
rule in (1). This is similar to the overlaid white pixels shown
in Figure 9. The Robert’s cross operator is used to estimate lip
edges as shown in Figure 11. The outer lip edge is traversed
to assemble pixel coordinates to which AIF technique will be
applied.

A difficulty of lip pixel segmentation is that in certain
cases, lip pixels are occasionally lost or gained by improper
classification. In this case, the lip contour may include extra
pixels or not enough ones such as in Figure 12 where there is
separation between the upper and lower lips. This separation
would cause a final mouth contour to be generated which
may only include the lower lip such as in Figure 13 rather
than the good contour detected and shown in Figure 14. This
affects all the feature-extraction techniques to some degree,
since the lip tracker is based on similar principles. How-
ever, contour estimation methods are the most affected. (The
DCT method presented in the next subsection is the least af-
fected by this, though, helping account somewhat for its bet-
ter performance.) These effects could possibly be minimized
by adding more mixtures to the color models, using an adap-

Figure 8: Sensitivity of classification scheme to red clothing, im-
proved by searching within the face region and using Heuristics.

Figure 9: Final lip segmentation.

tive C-means-type scheme for color segmentation within re-
gions, or including additional information such as texture.
Additional mixtures would be more important for extract-
ing the inner lip contour around teeth and shadow pixels.
For the comparison in this paper, the single-mixture model
suffices, since all feature schemes are based on the same lip-
tracker routine. In fact, using individually trained mixtures
for each person rather than a single mixture overall did not
yield improved recognition results in our tests even though
segmentation appeared somewhat more accurate.

Once the lip contour coordinates are determined, the dis-
crete Fourier transform (DFT) is applied. The redundant
coefficients are removed. The zeroth coefficient is then dis-
carded to leave shift invariant information. Remaining coef-
ficients are divided by an additional arbitrary coefficient to
eliminate possible rotation or scaling effects. Finally, the ab-
solute value of the coefficients is taken to remove phase infor-
mation and thus, eliminate differences in the starting point of
the contour coordinate listing. This leaves a set of coefficients
(AIFDs) that are invariant to shift, scale, rotate, and point-
order. (Although we employed a parametric-contour estima-
tion of lip contours before AIFD calculation in our earlier
work for improved results, this is not yet implemented in
this system [15]. Results here are for directly estimated lip
contours with no curve estimation or smoothing.)

3.4. Image transformmethod

The larger ROI passed from the liptracker is downsampled
into a 16 × 16 grayscale intensity image matrix, as shown in
Figure 15. The DCT was chosen as the image transform in-
stead of other transform methods because of its information
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Figure 10: Locating the smaller and larger lip region.

Figure 11: Mouth contour after edge detection.

packing properties and strong results presented by other re-
search [13, 20]. The separable 2D DCT was used in this work

Y = CTXC, (2)

where

C(n, k) = 1√
N
, k = 0, 0 ≤ n ≤ (N − 1),

C(n, k) =
√

2
N

cos
π(2n+1)k

2N
,

1 ≤ k ≤ (N − 1), 0 ≤ n ≤ (N − 1).

(3)

The matrix X is the downsampled image matrix and Y is
the resulting transformed matrix. The upper left block (6 ×
6) of Y is used for feature coefficients, with the exception of
the zeroth element that is dropped to perform feature mean
subtraction for better speaker-independent results.

As shown in Section 3.6, the DCT was not robust to
speaker movement. To try to improve this, a rotation-
corrected version of the image block was passed to the DCT
(rc-DCT). The angle for rotation correction is determined by
searching for the lip corners and estimating the vertical angle
of the lips/head from the two lip corners. This was chosen for
speed, versus estimating the tilt of the whole head with an
elliptical template search. All image pixels that would then
form a box parallel to the angled lips are chosen for the X
matrix to which the DCT is applied. Figure 16 demonstrates
estimation of the rotation-correction factor, and Figure 17
shows a downsampled image matrix based on the estimated
angle. The head is slightly tilted but the lips are normal-
ized back to horizontal lips. This correction is an attempt to

Figure 12: Poor mouth contour after edge detection.

Figure 13: Poor final mouth contour for AIFD calculation.

remove one possible affine transformation is rotation. Trans-
lation variance has already beenminimized, hopefully, by the
liptracker and center of mass algorithm that should center the
downsampled image matrix around the lips. Scale is not cur-
rently taken into account although a good possibility would
be to scale the downsampled image block by the width of
the speaker’s face. The approximate measurement can be es-
timated slightly above a speaker’s mouth where the width
of the face should not change due to jaw movement. This
should roughly scale each person’s lips and improve robust-
ness to back and forth movement and also improve speaker-
independent performance.

Although the rotation correction improves the DCT’s ro-
bustness to speaker movement, stationary performance actu-
ally drops due to the dependence on estimating the lip cor-
ners. Sensitivity to lip segmentation has been introduced as
in the contour methods, and performance drops to about
their level. In order to improve this, a smoothed rc-DCT that
smooths the angle estimate between frames to minimize im-
proper estimates or erratic changes was tested. The DCT, rc-
DCT, and the smoothed rc-DCT results are compared against
the image processing and template-based contour methods
in Section 3.6.

3.5. Deformable templatemethod

Asomewhat different approach is taken in this deformable
template method than in other approaches based on para-
metric curves (B-Spline, Bézier, elliptical), snakes, or active
contour models. The main goal is to capture information
from lip movement in a reference coordinate system, thus di-
rectly producing affine invariant results. The method of de-
termining the lip movement is simple, direct, and slightly less
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Figure 14: Final mouth contour for AIFD calculation.

Figure 15: Downsampling for DCT application.

sensitive to improper lip segmentation. The deformable tem-
plate principle is the same; lip contours are guided by min-
imizing a cost function C(R) over the area enclosed by the
curves, forming region R [23]

C(R) =
∑

(x,y)∈R
log

P
(
o(x, y)|ωface

)
P
(
o(x, y)|ωlips

) . (4)

The method presented here may be implemented with B-
Spline curves. For the tables of results, this technique will
be referred to as B-Spline template (BST). Currently, we use
splines with a uniform knot vector, and the Bernstein ba-
sis also known as Bézier curves [24]. Eight control vertices
(CVs) are used, four for the top lip and four for the bottom
one. (Because the top and bottom points for the lip corners
are the same, this actually reduces to six distinct points.) CVs
are demonstrated in Figure 18. A Bézier curve generated by
CVs is shown in Figure 19. CVs are also known as Bi points,
where Bi = (xi, yi), that control the parametric curves by the
following formulas:

P(t) =
n∑
i=0

Bi Jn,i(t), 0 ≤ t ≤ 1,

Jn,i =
(
n

i

)
ti(1− t)n−i.

(5)

There are two sets of 4 Bi points: Bt
0−3 for the top curve and

Bb
0−3 for the bottom curve. The range of values for t is usu-

ally normalized to the 0 to 1 range in parametric curve for-
mulas. Here, the width of the lips is used to normalize this.
The corners and angle of the lips are estimated as discussed

Figure 16: Rotation correction before applying DCT.

Figure 17: Rotation-corrected, downsampled image region for
DCT application.

in the previous section. The control points B0 and B3 for the
top and bottom are set to the corners of the lips in the im-
age coordinate system. Based on the angle estimation, these
points are rotated into a relative-reference coordinate sys-
tem, with B0 as the origin. (Affine transforms may be ap-
plied to CVs without affecting the underlying curves.) New
Bi values for searches based on changing the width, height,
location, etc. of the template are generated. These are then
transformed back to the image coordinate system to gen-
erate resulting curves. Several searches are performed while
minimizing C(R) within these curves in the image coordi-
nate system. First, the location is searched by moving all the
CVs throughout the larger box to confirm that the lips are
accurately centered within the template. Next, the CVs are
changed to minimize C(R) in respect to the width of the
template. After the width, the height of the top lip and bot-
tom lip are compared against the cost function. Finally, the
shape can be changed by searching for the spacing of B1 and
B2 based on C(R), for both the top and bottom indepen-
dently. The horizontal spacing from the center of the lips be-
tween B1 and B2 was assumed to be symmetric, as no use-
ful information is seemingly gained from asymmetric lip po-
sitions. Once Bt

0−3 and Bb
0−3 that minimize C(R) are deter-

mined, the actual reference coordinate system CV (x, y) val-
ues are differenced from the previous frame and passed on
as visual features that capture the moving shape informa-
tion of the lips. In this respect, angle and translation vari-
ance are eliminated. Currently, scaling is not implemented,
but could be done so in a similar manner as discussed in
the previous subsection. The advantages of this technique
are simplicity, slightly less sensitivity to lip segmentation,
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Figure 18: Control vertices for estimated lip curves.

Figure 19: Estimated lip contour using control vertices for Bézier
curves.

and inherent affine invariance. Another possibility is that
CVs are automatically generated that could be passed to con-
trol curves for a facial animation or lip synchronization task
based on a recorded speaker. Example of curves that min-
imized C(R) are shown in Figures 20 and 21. The former
represents a good match of the cost minimization to the ac-
tual lip curve. The latter is slightly off although moving in-
formation may still convey useful information. During ex-
perimentation, more exact contour estimation did not al-
ways seem to translate directly into improved recognition
performance.

3.6. Stationary andmoving results

Each of the visual feature methods were used on the test
setup described in Section 3.1. The grouping is completely
speaker-independent set, training on one group and test-
ing on a completely separate group. Task 1 (see Table 1) is
used for stationary testing and training. Task 2 is used for
moving-speaker testing and training. The results are pre-
sented in Table 5 over a stationary set, a moving set with
models trained on the stationary set, and a moving set with
models trained on a moving set. It is interesting to note that
training on the stationary set produces better performance
for the moving cases. It is likely that features are corrupted
more during the speaker movement, thus producing poor
training data. Although results may not strictly be compared
to other results, the range of these is on the order of results
from other medium-sized, connected/continuous, speaker-
independent speechreading tasks [13, 20]. Results presented
are obtained using single mixture, eight state HMMs. The

Figure 20: Well estimated lip contour from Bézier curves.

Figure 21: Poorly estimated lip contour from Bézier curves.

AIFD features were shown to perform nearly equally well on
stationary and moving speakers as hoped. Confirming the
conclusion in [13] that an image transform approach yields
better performance than lip contour methods, the DCT fea-
tures outperform the AIFD-contour features in this test sys-
tem. A large part of this is likely due to sensitivity to the
lip segmentation and tracking algorithms. The DCT is much
less sensitive as the larger block can be more easily located
than precise lip contours. DCT performance drops substan-
tially, though, undermoving speaker conditions. Implement-
ing the rotation correction did improve the performance of
the rc-DCT on the moving-speaker case, however stationary
performance dropped significantly. This is due to the depen-
dence on the lip segmentation introduced by the lip angle
estimation. Implementing the smoothing factor as discussed
in Section 3.4 both improved results more on the moving
case and nearly regained stationary performance. The BST
features performed on par with the AIFDs. Another interest-
ing note, though, is that they actually earned the best per-
formance on the moving group, surpassing the smoothed
rc-DCT and even their own stationary performance. They
seem to be fairly robust to speaker movement, still captur-
ing the lip motions important for speechreading. Unfortu-
nately, they are still quite sensitive to the lip segmentation
scheme through the cost function, as shown in Section 4.
One possibility that should significantly improve this depen-
dence is to increase the number of mixtures in the Gaussian
density estimation for the lips to include tongue, teeth, and
shadows. This should reduce patchiness in lip pixel classifi-
cation, thus improving the accuracy of minimizing the cost
function.
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Table 5: Comparison of performance (word accuracy) on stationary and moving speakers, digit strings.

Features Stationary Moving (trn. stat.) Moving (trn. mov.)

AIFD 22.40% 21.89% 14.79%

DCT 27.71% 19.62% 17.70%

rc-DCT 22.57% 21.53% 21.05%

Smoothed rc-DCT 27.43% 23.92% 21.53%

BST 22.86% 24.46% 21.20%

4. SPEAKER-INDEPENDENT RESULTS
OVER ALL SPEAKERS

In this section, we include baseline results over the whole
database for Tasks 1 and 2, stationary and moving tasks, re-
spectively. The 36 individual speakers were divided arbitrar-
ily into a set of 18 training speakers and 18 different test talk-
ers for a completely speaker-independent grouping. With a
simple, Mel-Frequency Cepstral Coefficients (MFCC)-based
HMM recognizer implemented in HTK using 8-state mod-
els and only one mixture per state, we obtained 92.25% cor-
rect recognition with a word accuracy of 87.25% (slightly
lower due to some insertions between actual digits). With
some tuning and the addition of more mixtures, recognition
near 100% should be attainable. Here, we also include visual
speechreading results over 36 speakers using the same train-
ing and testing groups as for the audio. Results are included
for DCT, rc-DCT, smoothed rc-DCT, and BST features as in
the previous test. AIFDs are not currently included because
the current implementation is very sensitive to differences
that a single-mixture color model does not represent well. In
fact, the BST features which are somewhat less-sensitive also
show a performance drop over the whole group. This is par-
ticularly true for the moving results where the BST features
performed well in the prior test. The DCT gained the highest
score on the stationary task with 29% word accuracy. Perfor-
mance drops to the level of the BST features on the moving
task. Again the rc-DCT performs better on moving, but loses
stationary performance. The smoothed rc-DCT performs the
best here on moving speakers but does not quite restore the
full performance of the DCT on stationary speakers. This is
also probably affected by the additional speakers who do not
fit the color model as well as the prior test group. Estimating
the lip angle to correct the DCT suffers when lip segmenta-
tion is poor. Overall, results seem to indicate that contour
methods might perform as well as transform methods if ro-
bust enough. The difficulty is creating speaker-independent
models that perform accurate lip segmentation under the
many varying conditions.

5. CONCLUSIONS AND RESEARCH DIRECTIONS

This paper presents a flexible, speaker-independent audio-
visual speech corpus that is easily available on one DVD-data
disc. The goal of the CUAVE database is to faciliate multi-
modal research and to provide a basis for comparison as well
as to provide test data for affine invariant feature methods

Table 6: Baseline Speechreading results (word accuracy) over all
speakers.

Features Stationary Moving

DCT 29.00% 21.12%

rc-DCT 25.95% 22.39%

Smoothed rc-DCT 26.47% 24.73%

BST 23.85% 21.48%

and multiple speaker testing. Our website, listed in the ti-
tle section, contains sample data and includes current con-
tact information for obtaining the database. As it is a rep-
resentative, medium-sized digits task, the database may also
be used for testing in other areas apart from speech recog-
nition. These may include speaker recognition, lip synchro-
nization, visual speaker synthesis, etc. Also, results are given
that suggest that data fusion can benefit by considering noise
type as well as level. An example application could be in
an automobile where a variety of noises and levels are en-
countered. A camera could be easily mounted to keep the
driver in the field of view for an audio-visual speech recog-
nizer. Dynamic estimations classifying the background noise
could be used to improve recognition results. A feature study
of image-processing-based contours, image transform, and
deformable template methods has also been detailed. It in-
cluded results on stationary and moving talkers and also at-
tempts to lessen the effect of speaker movement on the var-
ious visual feature sets. Contour methods are more severely
limited by models used for feature segmentation and track-
ing. However, simple changes may yield improved results in
the template method. Future work may show if these can
compare with image transform results. Scale correction will
also be included for the various feature sets to determine its
effect. Finally, baseline results have been included for two of
the database tasks to encourage comparison of techniques
among researchers.

There are several areas that are wide open for audio-
visual speech recognition research that may be tested on
this database. A very important area is visual feature ex-
traction. A variety of speakers and speaker movement has
been included for this end. Methods are needed that ei-
ther significantly strengthen feature tracking under practi-
cal conditions or that create new features for speechread-
ing. Better features may include some other measures of the
mouth, teeth, tongue, jaw, psychoacoustic considerations,
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or eye direction to name a few possibilities. Techniques for
speaker-independent speechreading are also needed. These
may include some form of speaker adaptation, model adap-
tation, image warping, use of feature codebooks, or some of
the many other methods employed for audio speaker adap-
tation. Finally, data fusion is an important area of research.
Improved techniques for multimodal, multistream HMMs
could also provide important strides, particularly in contin-
uous audio-visual speech recognition. Other methods, such
as hybrid fusion systems may be considered. Dynamic con-
siderations will be important for improving data fusion for
practical environments. Finally, the ability to distinguish and
separate speakers is important for powerful interfaces that
may be desired wheremultiple speakers are present such as in
public areas or automobiles with passengers. Hopefully, the
CUAVE database will facilitate more widespread research in
these areas.
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