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INTRODUCTION

There has been growing interest in introducing speech as a new modality into the human-computer interface (HCI). Motivated
by the multimodal nature of speech, the visual component is considered to yield information that is not always present in the
acoustic signal and enables improved system performance over acoustic-only methods, especially in noisy environments. In this
paper, we investigate the usefulness of visual speech information in HCI related applications. We first introduce a new algorithm
for automatically locating the mouth region by using color and motion information and segmenting the lip region by making use
of both color and edge information based on Markov random fields. We then derive a relevant set of visual speech parameters
and incorporate them into a recognition engine. We present various visual feature performance comparisons to explore their
impact on the recognition accuracy, including the lip inner contour and the visibility of the tongue and teeth. By using a common
visual feature set, we demonstrate two applications that exploit speechreading in a joint audio-visual speech signal processing
task: speech recognition and speaker verification. The experimental results based on two databases demonstrate that the visual
information is highly effective for improving recognition performance over a variety of acoustic noise levels.

Keywords and phrases: automatic speechreading, visual feature extraction, Markov random fields, hidden Markov models, poly-
nomial classifier, speech recognition, speaker verification.

presence of noise such as in a typical office environment with
ringing telephones and noise from fans and human conver-

In recent years there has been growing interest in introduc-
ing new modalities into human-computer interfaces (HClIs).
Natural means of communicating between humans and
computers using speech instead of a mouse and keyboard
provide an attractive alternative for HCI.

With this motivation much research has been carried out
in automatic speech recognition (ASR). Mainstream speech
recognition has focused almost exclusively on the acoustic
signal. Although purely acoustic-based ASR systems yield ex-
cellent results in the laboratory environment, the recogni-
tion error can increase dramatically in the real world in the

sations. Noise robust methods using feature-normalization
algorithms, microphone arrays, representations based on hu-
man hearing, and other approaches [1, 2, 3] have limited
success. Besides, multiple speakers are very hard to separate
acoustically [4].

To overcome this limitation, automatic speechreading
systems, through their use of visual information to augment
acoustic information, have been considered. This is moti-
vated by the ability of hearing-impaired people to lipread.
Most human listeners who are not hearing impaired also
make use of visual information to improve speech perception
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especially in acoustically hostile environments. In human
speechreading, many of the sounds that tend to be difficult
for people to distinguish orally are easier to see (e.g., /p/, /t/,
/k/), and those sounds that are more difficult to distinguish
visually are easier to hear (e.g., /p/, /b/, /m/). Therefore, vi-
sual and audio information can be considered to be comple-
mentary to each other [5, 6].

The first automatic speechreading system was developed
by Petajan in 1984 [7]. He showed that an audio-visual sys-
tem outperforms either modality alone. During the follow-
ing years various automatic speechreading systems were de-
veloped [8, 9] that demonstrated that visual speech yields
information that is not always present in the acoustic sig-
nal and enables improved recognition accuracy over audio-
only ASR systems, especially in environments corrupted by
acoustic noise and multiple talkers. The two modalities serve
complementary functions in speechreading. While the audio
speech signal is represented by the acoustic waveform, the
visual speech signal usually refers to the accompanying lip
movement, tongue and teeth visibility, and other relevant fa-
cial features.

An area related to HCI is personal authentication. The
traditional way of using a password and PIN is cumbersome
since they are difficult to remember, must be changed fre-
quently, and are subject to “tampering.” One solution is the
use of biometrics, such as voice, which have the advantage of
requiring little custom hardware and are nonintrusive. How-
ever, there are two significant problems in current generation
speaker verification systems using speech. One is the diffi-
culty in acquiring clean audio signals in an unconstrained
environment. The other is that unimodal biometric models
do not always work well for a certain group of the popula-
tion. To combat these issues, systems incorporating the visual
modality are being investigated to improve system robustness
to environmental conditions, as well as to improve overall
accuracy across the population. Face recognition has been
an active research area during the past few years [10, 11].
However, face recognition is often based on static face im-
ages assuming a neutral facial expression and requires that
the speaker does not have significant appearance changes. Lip
movement is a natural by-product of speech production, and
it does not only reflect speaker-dependent static and dynamic
features, but also provides “liveness” testing (in case an im-
poster attempts to fool the system by using the photograph
of a client or pre-recorded speech). Previous work on speaker
recognition using visual lip features includes the studies in
[12,13].

To summarize, speech is an attractive means for a user-
friendly human-computer interface. Speech not only con-
veys the linguistic information, but also characterizes the
talker’s identity. Therefore, it can be used for both speech and
speaker recognition tasks. While most of the speech informa-
tion is contained in the acoustic channel, the lip movement
during speech production also provides useful information.
These two modalities have different strengths and weaknesses
and to a large extent they complement each other. By incor-
porating visual speech information we can improve a purely
acoustic-based system.

To enable a computer to perform speechreading or
speaker identification, two issues need to be addressed. First,
an accurate and robust visual speech feature extraction al-
gorithm needs to be designed. Second, effective strategies to
integrate the two separate information sources need to be de-
veloped. In this paper, we will examine both these aspects.

We report an algorithm developed to extract visual
speech features. The algorithm consists of two stages of visual
analysis: lip region detection and lip segmentation. In the lip
region detection stage, the speaker’s mouth in the video se-
quence is located based on color and motion information.
The lip segmentation phase segments the lip region from its
surroundings by making use of both color and edge informa-
tion, combined within a Markov random field framework.
The key locations that define the lip position are detected
and a relevant set of visual speech parameters are derived. By
enabling extraction of an expanded set of visual speech fea-
tures, including the lip inner contour and the visibility of the
tongue and teeth, this visual front end achieves an increased
accuracy in an ASR task when compared with previous ap-
proaches. Besides ASR, it is also demonstrated that the visual
speech information is highly effective over acoustic informa-
tion alone in a speaker verification task.

This paper is organized as follows. Section 2 gives a re-
view of previous work on extraction of visual speech features.
We point out advantages and drawbacks of the various ap-
proaches and illuminate the direction of our work. Section 3
presents our visual front end for lip feature extraction. The
problems of speech and speaker recognition using visual and
audio speech features are examined in Sections 4 and 5, re-
spectively. Finally, Section 6 offers our conclusions.

2. PREVIOUS WORK ON VISUAL FEATURE
EXTRACTION

It is generally agreed that most visual speech information is
contained in the lips. Thus, visual analysis mainly focuses on
lip feature extraction. The choice for a visual representation
of lip movement has led to different approaches. At one ex-
treme, the entire image of the talker’s mouth is used as a fea-
ture. With other approaches, only a small set of parameters
describing the relevant information of the lip movement is
used.

In the image-based approach, the whole image contain-
ing the mouth area is used as a feature either directly [14, 15],
or after some preprocessing such as a principal components
analysis [16] or vector quantization [17]. Recently, more so-
phisticated data preprocessing has been used, such as a linear
discriminant analysis projection and maximum likelihood
linear transform feature rotation [18]. The advantage of the
image-based approach is that no information is lost, but it is
left to the recognition engine to determine the relevant fea-
tures in the image. A common criticism of this approach is
that it tends to be very sensitive to changes in illumination,
position, camera distance, rotation, and speaker [17].

Contrary to the image-based approach, others aim at ex-
plicitly extracting relevant visual speech features. For exam-
ple in [19], descriptors of the mouth derived from optical
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flow data were used as visual features. In [20], oral cavity
features including width, height, area, perimeter, and their
ratios and derivatives were used as inputs for the recognizer.

In more standard approaches, model-based methods are
considered, where a geometric model of the lip contour is
applied. The typical examples are deformable templates [21],
“snakes” [22], and active shape models [23]. Either the model
parameters or the geometric features derived from the shape
such as the height and width of the mouth are used as fea-
tures for recognition. For all three approaches, an image
search is performed by fitting a model to the edges of the
lips, where intensity values are commonly used. The diffi-
culty with these approaches usually arises when the contrast
is poor along the lip contours, which occurs quite often un-
der normal lighting conditions. In particular, edges on the
lower lip are hard to distinguish because of shading and re-
flection. The algorithm is usually hard to extend to various
lighting conditions, people with different skin colors, or peo-
ple with facial hair. In addition, the teeth and tongue are not
easy to detect using intensity-only information. The skin-lip
and lip-teeth edges are highly confusable.

An obvious way of overcoming the inherent limitations
of the intensity-based approach is to use color, which can
greatly simplify lip identification and extraction. Lip fea-
ture extraction using color information has gained interest
with the increasing processing power and storage of hard-
ware making color image analysis more affordable. However,
certain restrictions and assumptions are required in existing
systems. They either require individual chromaticity mod-
els [24], or manually determined lookup tables [25]. More
importantly, most of the methods only extract outer lip con-
tours [26, 27]. No methods have been able to explicitly detect
the visibility of the tongue and teeth so far.

Human perceptual studies [28, 29] show that more visual
speech information is contained within the inner lip con-
tours. The visibility of the teeth and tongue inside the mouth
is also important to human lipreaders [30, 31, 32]. We, there-
fore, aim to extract both outer and inner lip parameters, as
well as to detect the presence/absence of the teeth and tongue.

One of the major challenges of any lip tracking system
is its robustness over a large sample of the population. We
include two databases in our study. One is the audio-visual
database from Carnegie Mellon University [33, 34] including
ten test subjects, the other is the XM2VTS database [35, 36],
which includes 295 test subjects. In the next section, we
present an approach that extracts geometric lip features us-
ing color video sequences.

3. VISUAL SPEECH FEATURE EXTRACTION
3.1. Lipregion/feature detection

3.1.1

The RGB color model is most widely used in computer vision
because color CRTs use red, green, and blue phosphors to
create the desired color. However, its inability to separate the
luminance and chromatic components of a color hinders the
effectiveness of color in image recognition. Previous studies

Color analysis

(a) (b)

FIGURE 1: (a) Original image. (b) Manually extracted lip ROIL.

[37, 38] have shown that even though different people have
different skin colors, the major difference lies in the intensity
rather than the color itself. To separate the chromatic and
luminance components, various transformed color spaces
can be employed, such as the normalized RGB space (which
we denote as rgb in the following), YCbCr, and HSV. Many
transformations from RGB to HSV are presented in the
literature. Here the transformation is implemented after
[39].

The choice of an appropriate color space is of great im-
portance for successful feature extraction. To analyze the
statistics of each color model, we build histograms of the
three color components in each color space by discretizing
the image colors and counting the number of times each dis-
crete color occurs in the image. We construct histograms for
the entire image and for the manually extracted lip regions
of interest (ROI) bounded within the contour, as shown in
Figure 1.

Typical histograms of the color components in the RGB,
rgb, HSV, and YCbCr color spaces are shown in Figures 2, 3,
4, and 5, where two cases are given: (a) those for the entire
image and (b) those for the extracted lip region only.

Based on the histograms obtained from video sequences
taken under various test conditions and for different test sub-
jects, we can make the following observations. (i) The color
components (1, g, b), (Cb, Cr), and (H) exhibit peaks in the
histograms of the lip region. This indicates that the color dis-
tribution of the lip region is narrow and implies that the color
for the lip region is fairly uniform. On the other hand, color
distributions of the R/G/B components (Figure 2) are wide
spread since they contain luminance components. The RGB
color space is therefore not suitable for object identification
and is discarded in the following analysis. (ii) The color his-
togram of (r, g, b) and (Cb, Cr) in the lip region more or less
overlaps with that of the whole image (Figures 3 and 5), while
the hue component has the least similarity between the entire
image and the isolated lip region (Figure 4). This shows that
hue has high discriminative power. (iii) The distributions of
(r, g, b) and (Cb, Cr) vary for different test subjects, while
hue is relatively constant under varying lighting conditions,
and for different speakers. We therefore conclude that hue is
an appropriate measure for our application.
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FIGURE 2: Histograms of R/G/B components. (a) Entire image. (b) Lip ROL
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FIGURE 3: Histograms of r/g/b components. (a) Entire image. (b) Lip ROL.
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FIGURE 4: Histograms of H/S/V components. (a) Entire image. (b) Lip ROI.
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FIGURE 5: Histograms of Y/Cb/Cr components. (a) Entire image. (b) Lip ROL.
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(d)

FIGURE 6: Lip region detection. (a) Gray level representation of the original RGB color image. (b) Hue image. (c) Binary image after H/S
thresholding. (d) Accumulated difference image. (e) Binary image (d) after thresholding. (f) Result from AND operation on (c) and (e). (g)

Original image with the identified lip region.

The first figure in Figure 4b shows the histogram of hue
for the lip region. We observe that the red hue falls into two
separate subsets at the low and high ends of the whole color
range, as a result of the wrap-around nature of hue (hue
is defined on a ring). For easy use of the hue component,
we rotate the hue to the left, so that the red color falls in a
connected region that lies at the high end of the hue range
close to 1 (we scale the hue by a factor of 360 so that it is
defined over the range [0, 1]). The modified RGB to HSV
conversion is shown in the following:

M = max(R, G, B)

m = min(R, G, B)

d=M-m

Value calculation: V = M

Saturation calculation: S = (M == 0)?20: d/M
Hue calculation:

if (§==0)

H=0
else

if (d==0) d=1

H=(R==MQ2(G-B)/d) : (G==M)?2+(B—R)/d) :
4+ (R-G)/d)

H-=.

H/ =6

if(H<0) H+=1

3.1.2 Lipregion detection

The problem of visual feature extraction consists of two
parts: lip region detection and lip feature extraction. In the
first stage of the visual analysis, the speaker’s mouth in the
video sequence is located. We utilize hue for this purpose.
Given an RGB image of the frontal view of a talker, as shown
in Figure 6a, a modified hue color image can be derived
(Figure 6b). Since the modified red hue value lies at the high
end, the lips appear to be the brightest region, but there is

considerable noise in the hue image. Part of the noise is re-
lated to the unfortunate singularity property of RGB to HSV
conversion, which occurs when R = G = B (saturation = 0)
[40]. To remove this type of noise, we require that S exceed a
certain preset value. For segmenting the lips, we label a pixel
as a lip pixel if and only if H(j, j) > Ho, S(i, j) > So, where
Hy =0.8,Sy = 0.25 for H, S € [0, 1]. The accuracies of those
two values are not very critical, and they proved to generalize
well for other talkers. The resulting binary image is shown in
Figure 6c¢.

Another component of the noise is caused by the non-lip
red blobs in the image, for example when there are distract-
ing red blobs in the clothing, or if the person has a ruddy
complexion, as is the case for the person shown in Figure 6.
In this case, we exploit motion cues to increase the robust-
ness of detecting the lips. In this approach, we search for the
moving lips in the image if an audio signal is present in the
acoustic channel. To detect the moving object, we build dif-
ference images between subsequent frames and sum over a
series of frames. The accumulated difference image (ADI) is
defined as follows:

ADIO(I’ ]) =0,

(1)
ADIk(i, j) = ADIx_1(i, j) + AR (i, j),

kel,...,T,

where the difference image ARk(i, j) is calculated by
pixel-wise absolute subtraction between adjacent frames
ARk (i, j) = |Rk(i, j)—Rk-1(i, j)|. Note that we use the R com-
ponent for our lip detection. T is set to 100 in our work, that
is, we sum the difference images over 100 frames. An example
of an accumulated difference image is shown in Figure 6d.
To separate the moving lips from the background, we use
two subsequent thresholding operations. The first threshold
is applied to the entire image, where threshold #; is derived
by using Otsu’s method [41]. This operation separates the
speaker from the background. A subsequent threshold is then
applied to the image with all pixel values > t;, and t, > ¢ is
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FiGUrE 7: (a) Configuration of lip sites (o) and edge sites (—). (b) Neighborhood system for lip sites. The filled circle represents the site, and
unfilled circles represent the neighbors of the site. (c) Neighborhood system for horizontal edge sites. The thick line represents the site, and

thin lines represent the neighbors of the site.

derived. The binary image based on ¢, is shown in Figure 6e
with moving mouth being highlighted. When this is com-
bined with the binary image from the hue/saturation thresh-
olding, shown in Figure 6¢, the binary image, Figure 6f, is
obtained by combining the two binary images using an AND
operation. Based on the resulting image, we extract the lip re-
gion from its surroundings by finding the largest connected
region. The identified lip area is shown as a white bounding
box in Figure 6g.

There exist many other sophisticated classifiers in the lit-
erature such as in [42, 43]. The effectiveness of this rather
simple algorithm lies in the fact that the hue color is very
efficient in identifying the lips due to its color constancy
and high discriminative power. It should be noted, however,
that it is assumed here that the video sequence contains the
frontal view of a speaker without significant head motion.

The lip location algorithm described above needs to be
done only once for the first image of the sequence. For the
succeeding frames, we estimate the lip region from the de-
tected lip features of the previous frame based on the as-
sumption that the mouth does not move abruptly from
frame to frame. Subsequent processing is restricted to the
identified lip region.

3.1.3 MRF-based lip segmentation

Since hue in [39] is defined on a ring (see Section 3.1.1)
rather than on an interval R, standard arithmetic operations
do not work well with it. In [44] another hue definition was
suggested, H = R/(R + G), where R, G denote the red and
green components. It is defined on R, and achieves nearly as
good a reduction of intensity dependence as the conventional
hue definition.

In addition to the color information, edges characterize
object boundaries and provide additional useful informa-
tion. We perform edge detection by using a Canny detection
on the hue image. In the Canny detector, the input image H
is convolved with the first derivative of a Gaussian function
G(i, j) = o?e”@*+i)/20° (we set o to 1.0 in our implementa-
tion) to obtain an image with enhanced edges. The convo-
lution with the two-dimensional Gaussian can be separated
into two convolutions with one-dimensional Gaussians in di-
rections i and j. The magnitude of the result is computed at

each pixel (i, j) as

e(i, j) = \JalHi (i, )2 + & Hj (i, j)2, (2)

where H] and H; are results of the convolutions between
the first derivatives of the Gaussian and the image H in the
two separate directions. Based on this magnitude, a non-
maximum suppression and double thresholding algorithm
are performed and the edge map is derived. In expression
(2), ¢1 and ¢, are normally set to be equal. Since the lips con-
tain mainly horizontal edges, we assign ¢; = 10c; to accen-
tuate the importance of horizontal edges. This modification
results in an improved edge map for lip images.

To combine the edge and hue color information, we have
chosen to use the machinery of the Markov random field
(MRF), which has been shown to be suitable for the prob-
lem of image segmentation. An MRF is a probabilistic model
defined over a lattice of sites. The sites are related to each
other through a neighborhood system. In MRFs, only neigh-
boring sites have direct interaction with each other. Due to
the Hammersley-Clifford theorem, the joint distribution of
an MRF is equivalent to a Gibbs distribution, which takes
the form

px) = S e (- FUK), G

where Z is the normalizing constant, T the temperature con-
stant, and U(x) the Gibbs potential

U = S Vi), 4)

ceC

which is the sum of clique potentials V,(x) over all possible
cliques C.

In our problem, each site s = (3, j) is assigned a label
xl =1 (forlips) or 0 (for non-lips), and x¢ = 1 (for edge) or 0
(for non-edge). Figure 7a shows configuration of lip sites and
edge sites. Figures 7b and 7c show neighborhood systems for
lip and horizontal edge sites, respectively. Here we use a first-
order neighborhood system. A very similar two-label scheme
can be found in [45]. The maximum a posteriori (MAP) cri-
terion is used to formulate what the best labeling should be.
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The MAP estimate is equivalent to that found by minimizing
the posterior energy term

*

x* = argmin U (x]y), (5)
X

where x = {x/,x¢} denotes the configuration of the labeling,
and y the observed image data.

Using Bayes’ rule, the posterior probability is expressed
as

p(xly) o« p(ylx) p(ylx®) p(x), (6)

where p(y|x') and p(y|x¢) represent the conditional proba-
bility distribution of the observed image color and edge data
given the true interpretation of the images x/ and x¢. They
are modeled as follows:

p(ylx) OCeXp(—Z(yS_M)z), (7)

2
s 2 Gxé

where y,; and 0,1 are the mean and variance of all pixels in
the image with the lip label x!. They are obtained by using
Otsu’s methods [41] based on the histogram. The observed
color data is represented by the hue color y; = R/(R+ G) at
site s = (i, j).

In addition,

p(ylx®) deXp(fZes(lfxf)) (8)

s

where e, represents the strength of the edge at site s and is
the magnitude derived from the Canny detector described in
(2). The label x¢ is the edge label at site s. It is 1 if there is
an edge, and 0 otherwise. Since the edge map is defined for
each pixel, we shift the edge map by 1/2 pixel downwards
against the original image, so that x¢ at s = (4, j) indicates
the edge between pixels (i, j) and (4, j + 1). For simplicity, we
only consider horizontal edges.

By combining the above equations, it is clear that the
MAP solution is equivalent to minimizing the following en-
ergy function:

(}’S — Ul ) 2
2033,

Uxly) = > Vex)+A4 D,

ceC s

+A, Z es(1-x5). (9)

S

In (9), the first term expresses the prior expectation and
the second and third terms bind the solution to the color and
edge data, respectively. We use A; = 2 and A, = 1. The V,
are the clique potentials describing the interactions between
neighbors. They encode a priori knowledge about the spa-
tial dependence of labels at neighboring sites. They are com-
posed of three parts

Ve =k Vi+kVE+ ks VE, (10)

where k; = 10, k, = 1, and k3 = 1. The first term in (10), VC’,
imposes smoothness and continuity of color regions over an

entire image, the second term, V¢, is responsible for bound-
ary organization for the edges, and the third term, V¢, is the
coupling term between the color and edge labels. There has
been some work on applying statistical methods to estimate
parameters for the clique potentials, such as in [46, 47]. How-
ever, choosing the clique potentials on an ad hoc basis has
been reported to produce promising results [48, 49]. In this
paper, we define these terms as follows:

1 ifxl(i, j) = £+ 1, ),

Vl',';'+1,‘= - .
(0 jii ) {-H otherwise;

-1 ifxl(i, j) =G, j+1)
l .) ; .) . + 1 — i ol >
V(i jshj+1) +1 otherwise;

e X ) = X+ 1 ),
Vel jit 1 j) = {+1 otherwise;
—1 ifx( j)#xG 1), x°Ghj) =1,
VEG jii j+1) =1-1 ifx(i, j)=x'G, j+ 1), x°(i, j) =0,
+1 otherwise.

(11)

For the optimization strategy, a stochastic relaxation
technique, such as simulated annealing, can be used to find
the globally optimal interpretation for the image [45]. How-
ever, an exhaustive search for a global optimum imposes a
large computational burden because the labels for all pix-
els need to be estimated simultaneously. Therefore, alterna-
tive estimates have been suggested, including using a Monte
Carlo method [50], mean field technique [51], iterated con-
ditional modes (ICM) [52], and high confidence first (HCF)
algorithm [53]. We chose to use the HCF, because it is deter-
ministic, computationally attractive, and achieves good per-
formance. HCF differs from the other methods in the order
of sites which are visited. Instead of updating the pixels se-
quentially, HCF requires that the site that is visited next be
the one that causes the largest energy reduction. This pro-
cedure converges to a local minimum of the Gibbs potential
within a relatively small number of cycles. The current lip
feature extraction algorithm runs at a speed of 5 seconds per
frame with an original image resolution of 720 x 480. The
algorithm is designed to be scalable and can work in near-
real time at lower image resolution with decreased tracking
accuracy.

3.2. Visual speech features

Segmentation results with different persons and different lip
opening situations are demonstrated in Figure 8. We ob-
serve that the highlighted pixels fairly well match the true lip
area. Based on the segmented lip image, we are able to ex-
tract the key feature points on the lips [54]. We detect four
feature points along the vertical lip line—the upper/lower
outer/inner lip. To increase the accuracy of the identified fea-
ture points, we incorporate intensity gradient information.
If the gradient of the detected point is below a preset value,
we start searching for the largest gradient in its vicinity, and
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FIGURE 8: Segmented lips overlayed on the original image.
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FiGure 10: Illustration of the extracted geometric features of the
lips.

replace the old one with it. Finally, given the constraints of
the outer corners and the upper/lower inner lip, we locate
the inner lip corners. Examples of extracted feature points
are shown in Figure 9.

Based on the extracted key feature points, we can derive
the geometric dimensions of the lips. The following features
are used in our study: mouth width (w,), upper/lower lip
width (hy, h3), lip opening height/width (h,, w;), and the dis-
tance between the horizontal lip line and the upper lip (h4).
An illustration of the geometry is shown in Figure 10.

Besides the geometric dimensions of the lips, we also
detect the visibility of the tongue and teeth. For detecting
the tongue, we search for the “lip” labels within the inner
lip region. Two cases need to be differentiated, as shown in
Figure 11. In the first case, the tongue is separated from the
lips by the teeth. Tongue detection is trivial in this case. In the
second case however, the tongue merges with the lips. From
the segmented image, we have a lip closure case. Here, we use
the gradient of the intensity to detect the inner upper/lower

(a) (b)

FiGuUrk 11: (a) Tongue is separated from the lips. (b) Tongue merges
with the lips.

lip. In the case that h, = 0, we search for intensity gradi-
ent values along the vertical lip line. If the gradients of two
points exceeding a preset value are found, they are identi-
fied as upper/lower inner lip. The parameter for the tongue
is represented by the total number of lip-color pixels within
the inner lip contour.

The teeth are also easy to detect since their H values are
distinctly different from the hue of the lips. This is a big
advantage compared with gray-level-based approaches that
may confuse skin-lip and lip-teeth edges. Teeth are detected
by forming a bounding box around the inner mouth area and
testing pixels for white teeth color: § < Sy, where Sy = 0.35.
The parameter of the teeth is the total number of white pixels
within the bounding box.

We applied the feature extraction algorithm on the
Carnegie Mellon University database [33] with ten test sub-
jects and the XM2VTS database [35] including 295 subjects.
These two databases include head-shoulder full frontal face
color video sequences of a person talking. Test subjects have
various skin complexions with no particular lipstick. The
first database was provided on DV tapes. We captured the
sequences as AVI files with a resolution of 640 X 480 pixels
and a frame rate of 30 frame/second. The second database
was stored in DV encoded AVI format. The pixel resolution is
720 X 576 with a frame rate of 25 frame/second. The feature
extraction algorithm works well for most of the sequences
in the two data sets, which cover approximately seven hours
and more than 300 individuals. In a few cases, a few pix-
els of inaccuracy are observed. The limitation of the color-
based feature extraction occurs when the lip color and its
surrounding skin color are very close to each other, which
exists in a small percentage of the population. In these cases,
the extraction of the key points on the upper and lower lips
becomes unstable. We therefore attempt to control the er-
rors by using the geometric constraint and time constraint
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FIGURE 12: Examples of detected feature points.

methods. In the geometric constraint method the ratio be-
tween the lip opening height and the mouth width is less than
a threshold, and in the time constraint method the variation
of the measures between successive frames is within a limited
range. Figure 12 shows examples of feature extraction results.
Since the evaluation of feature extraction methods is often
subjective, it is common that the direct evaluation is omit-
ted at the visual feature level, and performance is evaluated
based only on the final results of the system, which could be
a speech recognition or speaker verification system. In our
experiment, we evaluate the accuracy of the derived visual
features for the tongue and teeth by randomly selecting a set
of test sequences. These sequences are typically hundreds of
frames long. We verify the computed results by visual inspec-
tion of the original images. The results show that the com-
puted feature sets have an accuracy of 93% for the teeth and
91% for tongue detection, approximately.

4. AUTOMATIC SPEECH RECOGNITION

4.1. Visual speech recognition

In this section, we describe the modeling of the extracted lip
features for speech recognition using hidden Markov models.
HMMs [55] have been successfully used by the speech recog-
nition community for many years. These models provide a
mathematically convenient way of describing the evolution
of time sequential data.

In speech recognition, we model the speech sequence by
a first-order Markov state machine. The Markov property
is encoded by a set of transition probabilities with a;; =
P(q: = jlgi-1 = i), the probability of moving to state j
at time t given the state i at time ¢ — 1. The state at any
given time is unknown or hidden. It can, however, be proba-
bilistically inferred through the observations sequence O =
{01,02,...,07}, where o; is the feature vector extracted at
time frame ¢ and T is the total number of observation vec-
tors. The observation probabilities are commonly modeled
as mixtures of Gaussian distributions

M
bj(O) = Z CjkN(O;yjk, Ejk); (12)
k=1

where 32, cjt = 1 and M is the total number of mixture
components, yjx and Zj; are the mean vector and covari-
ance matrix, respectively, for the kth mixture component in
state j.

An HMM representing a particular word class is defined
by a parameter set A = (A, B, w), where 7 is the vector of

initial state probabilities, A = {a;;} the matrix of state tran-
sition probabilities, and B = {b;(0;)} the vector of state-
dependent observation probabilities. Given a set of training
data (segmented and labeled examples of speech sequences),
the HMM parameters for each word class are estimated using
a standard EM algorithm [56]. Recognition requires evalu-
ating the probability that a given HMM would generate an
observed input sequence. This can be approximated by using
the Viterbi algorithm. For isolated word recognition consid-
ered in this paper, given a test token O, we calculate P(O|);)
for each HMM, and select A where ¢ = argmax; P(O|;).

We perform the speech recognition task using the audio-
visual database from Carnegie Mellon University [33]. This
database includes ten test subjects (three females, seven
males) speaking 78 isolated words repeated ten times. These
words include numbers, days of the week, months, and oth-
ers that are commonly used for scheduling applications.
Figure 13 shows a snapshot of the database.

We conducted tests for both speaker-dependent and in-
dependent tasks using visual parameters only. The eight vi-
sual features used are: wy, wa, hy, hy, h3, hy corresponding to
Figure 10, and the parameters for the teeth/tongue. The vi-
sual feature vectors are preprocessed by normalizing against
the average mouth width w, of each speaker to account for
the difference in scale between different speakers and differ-
ent record settings for the same person. For comparison, we
also provide test results on partial feature sets. In particular,
we limited the features to the geometric dimensions of the
inner contour (wy, 1), and outer contour (w,, b + hy + h3).
The role of the use of the tongue and teeth parameters was
also evaluated. For the HMM, we use a left-right model and
consider continuous density HMMs with diagonal observa-
tion covariance matrices, as is customary in acoustic ASR.
We use ten states for each of the 78 HMM words and due to
the training set size model the observation vectors using only
two Gaussian mixtures for the speaker-independent task. Be-
cause of an even more limited training data available, we use
only one Gaussian mixture in the speaker-dependent case.
The recognition system was implemented using the Hidden
Markov Model Toolkit (HTK) [57].

For the speaker-dependent task, the test was set up by us-
ing a leave-one-out procedure, that is, for each person, nine
repetitions were used for training and the tenth for testing.
This was repeated ten times. The recognition rate was aver-
aged over the ten tests and again over all ten speakers. For
the speaker-independent task, we use different speakers for
training and testing, that is, nine subjects for training and
the tenth for testing. The whole procedure was repeated ten



1240

EURASIP Journal on Applied Signal Processing

TaBLE 1: Recognition rates for visual speech recognition using database [33]. The numbers represent the percentage of correct recognition.

Features SD (static) SD (static + A) SI (static) SI (static + A)
All (8) 45.51 45.59 18.17 21.08
All excl. tongue/teeth (6) 40.26 40.60 12.78 16.70
Outer/inner contour (4) 39.90 43.45 14.85 20.97
Outer contour (2) 28.72 35.16 7.9 12.55
Inner contour (2) 29.5 31.88 11.91 15.63

Anne

Chris

Gavin Jay

F1GUre 13: Examples of extracted lip ROI from the audio-visual database from Carnegie Mellon University [33].

times, each time leaving a different subject out for testing.
The recognition rate was averaged over all ten speakers.

The experimental results for the two modes are shown in
Table 1. Rows correspond to various combinations of visual
features used. The numbers in brackets give the total num-
ber of features used in each test. The A refers to the delta
features which are obtained by using a regression formula
drawing in a few number of frames before and after the cur-
rent frame. The second/third and forth/fifth columns give the
average results in the speaker-dependent (SD) and speaker-
independent (SI) mode, respectively. All recognition rates are
given in percent.

We observe that the geometric dimensions of the lip
outer contour, as used in many previous approaches [58, 59,
60], are not adequate for recovering the speech information.
Comparing the case with a total of eight features, the rate
drops by 16.79 percentage points for the SD and 10.27 per-
centage points for the SI case. While the use of the lip inner
contour features achieves almost the same recognition rate
as that of the lip outer contour in the SD mode, it outper-
forms the former by four percentage points in the SI task, and
suggests it provides a better speaker-independent character-
istic. The contribution of the use of tongue/teeth is about five
percentage points in both tasks. The delta features yield ad-
ditional improved accuracy by providing extra dynamic in-
formation. It is noted that while the contribution of the dy-
namic features in the eight features case is rather marginal
for the speaker-dependent task, they are very important for
the speaker-independent case. This suggests that the dynamic
features are more robust across different talkers. Overall best
results are obtained by using all relevant features, achieving

45.59% for the speaker-dependent case and 21.08% for the
speaker-independent case.

4.2. Audio-visual integration

We consider speaker-dependent tasks in the following audio-
visual speech recognition experiments. In our acoustic
sub-system, we use 12mel frequency cepstral coefficients
(MFCCs) and their corresponding delta parameters as the
features—a 24-dimensional feature vector. MFCCs are de-
rived from FFT-based log spectra with a frame period of
11 milliseconds and a window size of 25 milliseconds. We
employ a continuous HMM, where eight states and one mix-
ture are used. The recognition system was implemented us-
ing the HTK Toolkit.

In the following, we examine three audio-visual inte-
gration models within the HMM based speech classifica-
tion framework: early integration, late integration and mul-
tistream modeling [58, 60, 61, 62, 63]. The early integration
model is based on a traditional HMM classifier on the con-
catenated vector of the audio and visual features

o= [ot0! "], (13)

where of and o denote the audio- and visual-only feature
vectors at time instant f. The video has a frame rate of 33
milliseconds. To match the audio frame rate of 11 ms, linear
interpolation was used on the visual features to fit the data
values between the existing feature data points.

The late integration model is built by applying separate
acoustic and visual HMMs, and the combined scores take the
following form: log P,, = Alog P, + (1 — A)log P,, where A is
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the weighting factor (0.7 in our experiments), and P, and
P, are the probability scores of the audio and visual compo-
nents.

In the expression of (13), early integration does not ex-
plicitly model the contribution and reliability of the audio
and visual sources of information. To address this issue,
we employ a multistream HMM model by introducing two
stream exponents y4 and ypy in the formulation of the out-
put distribution

M ya

bj(of") = < > C1jkN(0f‘;.u1jk,21jk))
k=

1 (14)

M, yv
: ( Z kN (0fs wajis szk)) ,

k=1

where M; and M, are the numbers of mixture components
in audio and video streams. The exponents y4 and yy are
the weighting factors for each stream. We set y4 = 0.7 and
ypy = 0.3 in our experiments, as was used in other similar
implementations, such as in [62].

In the following, we present our experimental results on
audio-visual speech recognition over a range of noise levels
using these three models. We used the same database and
data partition for the training and test as described in the
last section for the visual speech recognition. Artificial white
Gaussian noise was added to simulate various noise condi-
tions. The experiment was conducted for speaker-dependent
tasks under mismatched condition—the recognizers were
trained at 30 dB SNR, and tested from 30 dB down to 0dB
in steps of 5dB.

Figure 14 summarizes the performance of various recog-
nizers. As can be seen, while the visual-only recognizer re-
mains unaffected by acoustic noise, as must be the case since
the signals were the same, the performance of the audio-only
recognizer drops dramatically at high noise levels. A real-life
experiment with actual noise might show variations in the
visual only performance due to the Lombard effect [64, 65],
but this aspect was not investigated (the Lombard effect was
examined for example in study [66]).

In the speaker-dependent speech recognition, the multi-
stream model performs the best among the three AV models
at high SNR. Compared with the early integration model, the
multistream model better explains the relations between the
audio and video channels in this SNR range by emphasizing
the reliability of the acoustic channel more. However at low
SNR, the weighting factors of y4 = 0.7 and yy = 0.3 are not
appropriate any more, since the visual source of information
becomes relatively more reliable.

Apart from the exception at high SNR for the late inte-
gration, all integrated models demonstrate improved recog-
nition accuracy over audio-only results. However, the per-
formance of the integrated systems drops below the perfor-
mance of the visual-only system at very low SNRs, because
the bad acoustic recognizer pulls down the total result. It
is observed that the visual contribution is most distinct at
low SNR. When the performance of the acoustic recognizer

100

Correct (%)

0 5 10 15 20 25 30
SNR (dB)
Visual only + AV-early
—— Audio only x AV-late

o Multi-stream

FIGURE 14: Performance comparison for various audio-visual
speaker-dependent speech recognition systems under mismatched
conditions. Recognition in speaker-dependent mode.

improves with increasing SNRs, the benefit of the addition
of the visual component becomes less visible because there is
less room for improvement. In total, when the best AV inte-
gration model is used, we obtain a performance gain of 27.97
percentage points at 0 dB and 8.05 percentage points at 30 dB
over audio-only.

The CMU database [33] has been studied by several other
groups [34, 67] for audio-visual speech recognition. How-
ever, only partial vocabulary and test subjects were used. To
our knowledge, the results presented here are the first ones
that evaluated the entire database.

5. SPEAKER VERIFICATION

The speaker verification task corresponds to an open test
set scenario where persons who are unknown to the system
might claim access. The world population is divided into
two categories—a client who is known to the system, and
imposters who falsely claim to have the identity of a client.
Speaker verification is to validate a claimed identity: either to
accept or reject an identity claim. Two types of error are pos-
sible: false acceptance of an imposter (FA), and false rejection
of a client (FR).

For the speaker verification task, we use the polynomial-
based approach [68]. Polynomial-based classification re-
quires low computation while maintaining high accuracy.
Because of the Weierstrass approximation theorem, poly-
nomials are universal approximators for the Bayes classifier
[69].

The classifier consists of several parts as shown in
Figure 15. The extracted feature vectors oy,..., 0y are in-
troduced to the classifier. For each feature vector o;, a
score is produced by using the polynomial discriminant
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FIGURE 15: Structure of a polynomial classifier.

function d(o,w) = w'p(0), where p(0) is the polynomial
basis vector constructed from the input vector o, p(o) =
[1 0, 0, 0% 010, 0}]7 for a two-dimensional feature vec-

tor o = [0, 0,]7 and for polynomial order two, and w is
the class model. The polynomial discriminant function ap-
proximates the a posteriori probability of the client/impostor
identity given the observation [69]. In [70, 71], a statistical
interpretation of scoring was developed. The final score is
computed by averaging over all feature vectors

L LN
Score = NWT > plo).

i=1

(15)

The accept/reject decision is performed by comparing the
output score to a threshold. If Score < T, then reject the
claim, otherwise, accept the claim.

The verification system requires discriminative training
in order to maximize its accuracy. For a speaker’s features,
an output value of 1 is desired. For impostors’ features, an
output of 0 is desired. The optimization problem can be for-
mulated using a mean-squared error criterion

Nopk
. 1 <& 2
Wypk = argmm[ Z |lwip(o;) — 1]
w Nepk i
(16)
1 Nimp
T (— 2
F 3 Iwipte) |
imp -
where oy,..., oy, contain all training data for the user and
01,..., 0N, are the data for the impostors. The reason to

incorporate the weighting factors in (16) is to balance the
number of vectors in the two classes, since normally there is
a large amount of data for impostors and only a few values
for the user. This equalization prevents overtraining on the
impostor data set.

When expressed in matrix form, (16) can be rewritten
as

Wspk = argmin||DMw — Dul|,, (17)
w

where D is a diagonal matrix, u is the vector consisting of
Npi ones followed by Niy,, zeros, and

M = Mspk
Mimp

(18)

with

Mspk = >
(19)

Mimp =

P (6Nimp ) !

It can be shown that (17) can be solved [72] by using

Nypk
(Rspk + iRimp)""spk = Mz;,kl)

N (20)

where 1 is the vector of N,k ones, Ry = MSTpkMSpk and
Rimp = mI Mimp. Note that both matrices Rk and Rimp

1m
are of fixed sfze and Rimp can be precomputed and stored in
advance.

We perform the speaker verification test on the XM2VTS
database [35]. This database includes four recordings of 295
subjects taken at one month intervals. (However we were able
to use only 261 of the 295 speakers because of corrupted au-
dio or video sequences [73].) Each sequence is approximately
5seconds long and contains the subject speaking the sen-
tence “Joe took father’s green shoe bench out.” The database
covers a large population variation from various ethnic ori-
gins and with various appearances. The same person might
attend the four sessions with a different appearance, in-
cluding hairstyles, with/without glasses, with/without beard,
with/without lipstick. A snapshot of one person attending
four sessions is shown in Figure 16.

To evaluate the performance of the person authentication
systems on the XM2VTS database, we adopt the protocol de-
fined in [74]. We chose configuration II due to the audio-
visual data we are using. For the data partition defined in the
protocol, each subject appears only in one set. This ensures
realistic evaluation of the imposter claims whose identity is
unknown to the system.

The verification performance is characterized by two er-
ror rates computed during the tests: the false acceptance rate
(FAR) and the false rejection rate (FRR). The FAR is the
percentage of the trials that the system falsely accepts an
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FIGURE 16: Snapshot of the XM2VTS database [35].
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FiGure 17: Performance of audio-visual speaker verification in
noisy conditions. Speaker verification FRR and FAR at EER in vary-
ing noise conditions

imposter, and the FRR is the percentage of times access is de-
nied to a valid claimant. The pooled equal error rate (EER)
threshold at which FAR = FRR is determined from the eval-
uation set and used against the test population to determine
the system performance. Both FAR and FRR are reported for
this operating point. The test results for a visual-only speaker
verification system are shown in Table 2.

In our experiment, polynomial orders two and three are
used. The visual features included are the eight parameters
derived in Section 3. Extra features are the corresponding
delta features and the normalized time index i/M, where i is
the current frame index, and M is the total number of frames.
Since the score in a polynomial-based classifier (15) is an av-
erage of all feature vectors, the time index carries temporal
information within the spoken sentence. As can be seen, by
incorporating extra features, a lower error rate is achieved.
At the same time, increasing the polynomial order also con-
tributes to improved verification results.

To our knowledge, there were no other published
results on using visual speech features for the speaker
verification experiments based on the XM2VTS database

TaBLE 2: Performance for the speaker verification tasks using
database [35].

Features Poly.order = FRR%  FAR%
All (8) 2 8.8 9.7
All+ A (16) 2 6.1 9.3
All (8) 3 5.0 9.0
All+ A (16) 3 4.4 8.2
All + time (9) 2 8.3 9.2
All + time (9) 3 4.8 8.5

(Studies [13, 75] performed speaker verification experiments
on a smaller set of the M2VTS database). However, the
XM2VTS database has been extensively used by the face
recognition community. A face verification contest was orga-
nized at the International Conference on Pattern Recognition,
2000 to promote a competition for the best face verification
algorithm. The tests were carried out using the static image
shots of the XM2VTS database. All research groups partic-
ipated in the contest used the same database and the same
protocol for training and evaluation. A total of fourteen face
verification methods were tested and compared [76]. For the
same configuration as carried out in our speaker verification
experiments, the published results of FAR/FRR range from
1.2/1.0 to 13.0/12.3. This suggests that our speaker verifica-
tion approach that uses the lip modality is comparable to the
state-of-the-art face-based personal authentication methods.

In the audio modality, each feature vector is composed of
12 cepstral coefficients and one normalized time index [68].
A third-order polynomial classifier is used. To fuse the two
modalities, we use a late integration strategy. We combine
the classifier outputs from the audio and visual modalities by
averaging the class scores, s = asa + (1 — a)sy, where s4 v are
computed from (15) for the audio and visual channels. For
the following experiments, the audio and visual modalities
are weighted equally (i.e., « = 0.5).

The performance of the bimodal speaker verification sys-
tem is shown in Figure 17. Artificial white noise was added to
clean speech to simulate various noise conditions. The per-
formance was measured from 0 dB to 25 dB in steps of 5dB.
This figure shows the FRR and the FAR for each modality in-
dependently, as well as for the fused system. Both curves are
of interest since the threshold is determined with an evalu-
ation population separated from the test population. As can
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be seen, the contribution of the visual modality is most dis-
tinct at low SNR. We observe an error rate drop of 36 per-
centage points for FRR and 32 percentage points for FAR at
0dB over audio-only when visual modality is incorporated.
As illustrated in the figure, the audio-visual fusion is shown
to outperform both modalities at high signal-to-noise ratios.
However, error rates over the low range of signal-to-noise ra-
tios (SNR) are worse than the visual-only results and it indi-
cates that a dynamic fusion strategy, for example, adjusting
the weighting of the modalities as SNR degrades, may im-
prove the overall system performance.

6. SUMMARY

In this paper, we described a method of automatic lip feature
extraction and its applications to speech and speaker recog-
nition. Our algorithm first reliably locates the mouth re-
gion by using hue/saturation and motion information from
a color video sequence of a speaker’s frontal view. The algo-
rithm subsequently segments the lip from its surroundings
by making use of both color and edge information, combined
within a Markov random field framework. The lip key points
that define the lip position are detected and the relevant vi-
sual speech parameters are derived and form the input to the
recognition engine. We then demonstrated two applications
by exploring these visual parameters. Experiments for auto-
matic speech recognition involve discrimination of a set of 78
isolated words spoken by ten subjects [33]. It was found that
by enabling extraction of an expanded set of visual speech
features including the lip inner contour and the visibility of
the tongue and teeth, the proposed visual front end achieves
an increased accuracy when compared with previous stud-
ies that use only lip outer contour features. Three popular
audio-visual integration schemes were considered and the
visual information is shown to improve recognition perfor-
mance over a variety of acoustic noise levels. In the speaker
verification task, we employed a polynomial based approach.
The speaker verification experiments on the database with
261 speakers achieve an FRR of 4.4% and an FAR of 8.2%
with polynomial order 3, and suggest that visual information
is highly effective in reducing both false acceptance and false
rejection rates in such tasks.
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