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It has been shown that integration of acoustic and visual information especially in noisy conditions yields improved speech recog-
nition results. This raises the question of how to weight the two modalities in different noise conditions. Throughout this paper we
develop a weighting process adaptive to various background noise situations. In the presented recognition system, audio and video
data are combined following a Separate Integration (SI) architecture. A hybrid Artificial Neural Network/Hidden Markov Model
(ANN/HMM) system is used for the experiments. The neural networks were in all cases trained on clean data. Firstly, we evaluate
the performance of different weighting schemes in a manually controlled recognition task with different types of noise. Next, we
compare different criteria to estimate the reliability of the audio stream. Based on this, a mapping between the measurements and
the free parameter of the fusion process is derived and its applicability is demonstrated. Finally, the possibilities and limitations of
adaptive weighting are compared and discussed.
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1. INTRODUCTION

The limited performance of Automatic Speech Recognition
(ASR) systems in the presence of background noise still re-
stricts their usability in many scenarios. Different attempts
have been made to increase the robustness of ASR systems
but all fall short in comparison to human performance.

It is well known that the movement of the lips plays an
important role in speech perception [1, 2]. The contribution
of the lips is especially high in noisy speech [3, 4]. This is
due to the fact that visual speech mainly conveys information
about the place of articulation, which is most easily confused
in the audio modality when noise is present [5]. Motivated
by these findings many researchers have tried to integrate the
information transmitted by lip movement into ASR systems
(see [6, 7, 8,9, 10, 11, 12] for a review). The first systems,
already, showed noticeable improvements of the recognition
scores in noise when the audio and video signals are jointly

evaluated. Since then significant progress was made, and cur-
rently a recognition system using both, audio and video data,
can outperform humans having only access to the audio sig-
nal at low Signal to Noise Ratio (SNR) [13]. Despite this high
performance of audio-visual ASR systems, there is still along
way to go before these systems will have performance com-
parable to humans in an identical task.

Throughout this paper, we mainly want to focus on the
adaptive fusion of audio and video data under different noise
conditions. We start with a quick look at different possible
fusion architectures and point out why we have chosen a Sep-
arate Integration architecture, where fusion takes place on a
decision level. Next, we present four different fusion schemes
of audio and video decisions. A comparison of these fusion
schemes in a wide range of noise conditions allows to iden-
tify the best scheme. In order to be adaptive to changing
noise conditions, there is need for a criterion to evaluate the
reliability of the audio channel. We present three different
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reliability criteria and compare them in different noise con-
ditions. We conclude this paper with a discussion of the re-
sults of our comparisons. Throughout this discussion, special
attention is paid to the question of whether adaptive weights
on the audio and video stream are necessary, or if it is suffi-
cient to simply use one fixed weight for all situations.

2. FUSION OF AUDIO AND VIDEO DATA

When looking at the fusion of audio and video data for
audio-visual speech recognition, the first question to be ad-
dressed is where the fusion of the data takes place. Several
different architectures for the fusion process have been pro-
posed [5, 14]. The first is integration on the feature level.
In this case, audio and video features are directly combined
to a larger feature vector, which is then used to identify the
corresponding phoneme. This is also referred to as Direct
Integration (DI) (see also Figure 1). In contrast to this, fu-
sion can also take place after independent identification of
each stream. Hence the fusion is rather a fusion of identifica-
tion results. This is called Separate Integration (SI). Between
these two extremes lies the so-called Motor Recoding (MR) in
which the input features are first transformed into a common
representation, and the classification then is based upon the
combined features in this representation. The articulatory
gesture parameters are chosen as common representation, to
which both audio and video features are mapped. A prob-
lematic point when using Motor Recoding is the choice of
the representation of the articulatory gestures. In the fourth
fusion architecture one stream is dominant. In this case, the
decision is based on the dominant stream, and the second
stream is only used to rescore the identification results of the
dominant stream. This is called Dominant Recoding (DR).
Due to the fact that it conveys much more information than
the video stream, naturally the audio stream is chosen as the
dominant stream.

When comparing the different fusion architectures, Sep-
arate Integration exhibits some characteristics that make it
the best choice for our task. An important property is that
the fusion of the two input streams can be controlled by
weighting the streams. The code elements in Figure 1 are the
phonemes H; to which we can assign a posteriori probabili-
ties P(H;|x4, xv) for their occurrence given the acoustic fea-
ture vector x4 and the video feature vector xy (see Figure 2).
These a posteriori probabilities, or to be more precise their
estimates P, are generated by an Artificial Neural Network
(ANN) [15] in each time frame. Therefore the SI, in com-
bination with an ANN, allows an adaptive weighting of the
input streams depending on their reliability. Adaptation of
the weights can be done once per scenario as well as for each
single frame. Furthermore comparisons of SI with other ar-
chitectures showed superior performance of SI [16, 17, 18].!
For these reasons, we decided to use an SI architecture for
our recognition experiments. Once we have chosen the SI

!Regarding the comparison of DI and SI, these results were confirmed by
our own experiments but not reported here.
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FiGurek 1: Four different fusion architectures for audio-visual recog-
nition.
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FIGURE 2: Weighting of audio and video a posteriori probabilities in
a Separate Integration architecture to take into account the chang-
ing reliability of the input streams.
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architecture, the next question to tackle is how the fusion of
the identification results takes place.

The quality of the estimate of the a posteriori probabil-
ities is related to the match of the training and test condi-
tions. As training was in all cases performed on clean data,
the reliability of these estimates, particularly in the case of
the audio path, strongly depends on the noise present in the
test condition. In order to cope with the changing reliability,
a weighting of the audio and video probabilities is desirable.
Even though the quality of the video stream was kept con-
stant in all following tests, an adaptive weighting of the video
stream depending on the quality of the audio stream does
improve the performance.

2.1. Unweighted Bayesian Product

The simplest way to combine audio and video data is to fol-
low Bayes’ rule and multiply the audio and video a posteriori
probabilities to derive the combined probabilities. This ap-
proach is valid in a probabilistic sense if the audio and video
data are independent. Perceptive studies showed that in hu-
man speech perception audio and video data are treated as
class conditional independent [19, 20]. Under this hypothe-
sis,

P(x4,xv|H;) = P(x4|H;)P(xv|H;). (1)

When applying Bayes’ rule, we can write the desired a poste-
riori probability of the phoneme H; as

(Hilxa) P(Hilxv)
P(H;)

. P(xa)P(xv)
P(xa,xv)

P(H,‘|XA,Xv) = L (2)

Replacement of the probabilities P by estimates P leads to
the representation of the, as we want to call it, Unweighted
Bayesian Product (UBP)

N P(H;|x4)P(H;|x
Pugp (Hilxa,xv) = (H, ;()H() ixv) 1 (3)

where the terms independent of the actual phoneme are re-
placed by the normalization factor

—

n= (4)

Z;‘\Izlp(Hj‘XA)P(Hjlxv)/ﬁ(Hj))

with N being the number of phonemes. This fusion scheme is
also the core of the Fuzzy Logical Model of Perception (FLMP)
[21], which is used to model human perception.

2.2, Standard Weighted Product

In order to deal with varying reliability levels of the in-
put streams, different authors introduced a weighted fusion,
where different weights are applied to the audio and video
channels. The weighting of the a posteriori probabilities pro-

posed in [17, 18] follows (we want to refer to this as Standard
Weighted Product)

. P M H;|x4)POY (H;|x
Pswe, (Hilxa, xv) = —=x (AAI 4) - 1()Ll v) . (5)
>.—1 PM(Hjlxa) PV (Hjlxy)

The assumption of conditional independence is approached
for equal a-priori probabilities of the phonemes or words, re-
spectively, depending on the place of fusion. It is not actually
fulfilled since equal weights on both streams correspond to
weights of 0.5 instead of 1.

In addition to the intermediate setting, when the audio
and video stream contribute equally to the recognition, two
more distinct settings of the weights exist. When the SNR is
very low, the estimation in the audio path completely fails.
Therefore, the final a posteriori probability should only de-
pend on the video features, which is achieved

Pswe, (Hilxa, xv) = P(Hilxy), (6)

with A = 0.

Similarly, for very high SNR, the estimation in the audio
path is in general much better than the one in the video path
and consequently

Pswp, (Hilxa, xv) = P(Hilx4), (7)

with A = 1.

The most common recognition systems are based on
Gaussian Mixture Hidden Markov Models (GM/HMM).
These produce likelihoods instead of a posteriori probabil-
ities. Weighting of these likelihoods corresponds to a weight-
ing of (1) [9, 10, 16]. This approximates the assumption of
conditional independence, independent of the a-priori prob-
abilities.

Equal weights of 0.5 instead of 1 entails that not the prod-
uct of the probabilities but the square root of the product is
evaluated when both the audio and the video stream have the
same weight. To resolve this problem, we modify the param-
eterization of the Standard Weighted Product. We introduce
the parameters « and f3, which depend both on a third pa-
rameter ¢ according to

0, c< -1,
a=+1+¢c —-1<c<0,
1, c=0,
(8)
1, c=<0,
B=41-¢ 0<c<],
0, c=1,
yielding
. P (H:|x4 )PP (H;|x
Pswe, s (Hilxa, xv) = Hi1x ) 27 (Hilxy ) 9)

Z?jzlp“(HﬂXA)pﬁ(HﬂXv)'

Similarly to A in the previous parameterization, the parame-
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F1GURE 3: Dependence of the parameters « and f on the fusion pa-
rameter c.

ter ¢ varies with the SNR, and it determines the contribution
of the audio and video streams to the final probability.
When ¢ = 0 the a posteriori probabilities from the au-
dio and video path, both have the same weight as @ = 1 and
B = 1 (see also Figure 3). For ¢ < —1 (at very low SNR),
a = 0, = 1 and for ¢ = 1 (when only the audio signal
carries information), « = 1, § = 0. Hence this takes the situ-
ations into account, where we only want to rely on one of the
two streams. In contrast to the original parameterization of
the Standard Weighted Product to which we want to refer as
SWP), this implementation will be referred to as SWPqg.

2.3. Geometric Weighting

A concept integrating class conditional independence of au-
dio and video data expressed in (1) and the idea of noise de-
pendent stream weighting expressed in (5) is the Geometric
Weighting [22]

P*(H;|x4) PP (H;|xv) _

g(a, B).  (10)

Paw (Hilxa, xv) =

f)terﬂ—l (Hz)
The normalization factor
el ) = 1 (an
’ 2?’:1(p“(HﬂXA)p/j(Hj\Xv)/pﬁﬁ_l(Hj))
is determined by evaluating the condition
N A
> Pow (Hilxa, xv) = 1. (12)

J

Factors only dependent on x4 and xy are eliminated by the
normalization. The result of the sum in (11) is independent
of H; and hence ¢ only depends on the fusion weights a and

B.

For the Geometric Weighting we solely employed the pa-
rameterization with « and f3 as defined in (8). Consequently,
for ¢ = 0 the assumption of conditional independence as
stated in (1) is fulfilled when equal weight is put on the audio
and video stream. Similar to the description in the previous
section for ¢ = —1 the final probability only depends on the
a posteriori probability of the video stream and for ¢ = 1 it
only depends on the audio stream (see also Figure 3).

2.4. Full Combination

Findings in human speech perception showed that the error
rate for phoneme recognition using the full frequency range

is approximately equal to the product of the error rates us-
ing only nonoverlapping frequency sub-bands [23, 24]. This
is known as the so-called Product of Errors (POE) Rule. Mo-
tivated by this rule, multistream recognition systems were
built, which decompose the speech signal in multiple sub-
bands, perform an identification of the phoneme for each
sub-band, and then combine the results [25]. In general, the
performance gain of this approach was not very high in noise
and was countered by a loss of performance on clean speech.
The loss on clean speech is alleviated by the so-called Full
Combination (FC) approach [26]. Here phoneme identifica-
tion is performed for all combinations of sub-bands, includ-
ing also the full frequency range, and the identification re-
sults are then combined linearly.

When applying this concept to audio-visual recognition
we have to consider two input streams. Taking all combina-
tions of the input streams plus the empty stream containing
only the a-priori probabilities into account we have a total
of four streams: the audio, the video, the combined audio-
visual and the empty stream. Hence three ANNs have to
be trained to generate the corresponding probabilities. The
weighting of the streams is performed by a linear combina-
tion of the a-priori and a posteriori probabilities according
to

Prc(Hilxa, xv) = a1P(Hilxa, xv) + a2P (Hi|x4) (13)
+asP(H;|xy) + a,P(H)).

In order to reduce the number of neural networks to be
trained on each independent stream (which grows exponen-
tially with the number of streams), the so-called Full Combi-
nation Approximation (FCA) was introduced [26]. Here class
conditional independence is assumed between the streams
and hence the identification result for a combination of
streams can be derived from the identification results of the
individual streams (compare to (2)). Then the a posteriori
probability of the combined audio-visual stream is evaluated
according to

P(H;lxa) P(Hilxv)
P(H;)
+ a3ﬁ(H,‘|Xv) + a413(H,-),

"N + azp(Hile)

Prca(Hilxa, xv) = a1

(14)

with # as defined in (4). The first term in (14) results from
the postulation of class conditional independence, and the
other terms ensure the same behavior as Geometric Weight-
ing when only one of the streams is reliable. The a; are the
weights with which the individual streams contribute to the
final probability. They are setto a; = a - 8, a; = a(1 — f3),
as = (1 —a)f,anday, = (1 — ) - (1 — ), with a and
as given in (8). When the estimation process for the differ-
ent probabilities is not consistent, and hence the sum over all
probabilities does not equal one, an independent normaliza-
tion for each stream is necessary. At ¢ = 0 the assumption
of conditional independence is fulfilled. Similarly for ¢ = 1
and ¢ = —1 all the weight is assigned to the audio or video



1264

EURASIP Journal on Applied Signal Processing

Stream reliability

RASTA- Audio
'JW ‘W") pp | 7| ANN \ l

AV

— /\ fusion
| a;} N Chroma- N Video

" key ANN

— HMM |—

F1GURE 4: Implementation of the SI audio-visual speech recognition
system.

stream, respectively. In our implementation, the degrees of
freedom of the FCA and the Geometric Fusion are limited to
one. This might not be optimal but a multidimensional op-
timization with multiple degrees of freedom would be much
more costly to perform.

3. THE RECOGNITION TASK

As a common task to evaluate the presented fusion schemes
we have chosen the recognition of continuously uttered En-
glish numbers. This task comprises many of the problems
of continuous speech recognition, whilst still being not too
costly to implement. One of the distinct features of a con-
tinuous recognition task is the necessity to discriminate be-
tween speech segments and silence passages, which is espe-
cially problematic in noisy speech. Due to the very limited
availability of audio-visual speech data, we had to record a
new database to train our system.

3.1. The audio-visual database

For the recording of the database, selected utterances from
NUMBERS95 [27] were chosen and repeated by a single na-
tive English-speaking male subject. The database contains
1712 sentences or 6432 words. It was subdivided into two
subsets of similar size for training and final recognition. Syn-
chronous recordings of the speech signal and video images
of the head and mouth region at 50 frames per second were
taken. Recordings were made on BETACAM video and stan-
dard audio tapes and A/D converted with 8 kHz off-line.

3.2. Therecognition system

Our audio-visual speech recognition system is based on
a hybrid Artificial Neural Network/Hidden Markov Model
(ANN/HMM) structure. ANN/HMM hybrid systems repre-
sent an alternative concept for continuous speech recogni-
tion to pure HMM systems giving competitive recognition
results [28]. As already mentioned in the previous section,
our system follows an SI architecture (see Figure 4). The im-
plementation of our system was carried out using the tool
STRUT from TCTS lab Mons, Belgium [29].

The emphasis of our research lies on the fusion of the au-
dio and video data during the recognition process which re-
quires large amounts of data to obtain meaningful results.
Therefore, following [16], we rely on geometric lip features
and simplify the extraction of the features significantly by

FIGURE 5: One exemplary image from the database with the ex-
tracted lip parameters visualized. The numerical values are given
in pixels.

a chroma key process. The chroma key process requires color-
ing the speakers lips with blue lipstick. Due to the coloring,
the lips can then be located easily, and their movement pa-
rameters can be extracted in real time. As lips parameters,
the following were chosen:

(i) outer lip width (OW);
(ii) inner lip width (IW);
(iii) outer lip height (OH);
(iv) inner lip height (IH);
(v) lip surface area (LS);
(vi) inner mouth area surrounded by lips (IM).

In Figure 5 the results of the feature extraction are visualized.
The detected lip boundaries and the corresponding numeri-
cal values in pixels are given. The extracted video parameters
were linearly interpolated from the original 50 Hz to 8 kHz,
in order to be synchronous with the audio data. Following
the interpolation, each lip parameter was low-pass filtered to
remove high frequency noise introduced by the parameter
extraction and to further smooth the results of the interpola-
tion. Audio feature extraction was performed using RASTA-
PLP [30].

To take temporal information into account, several suc-
cessive time frames of the audio and video feature vectors are
presented simultaneously to the input of the corresponding
ANNs. The concept of visemes was not used. Each acous-
tical articulation is assumed to have a synchronously gen-
erated corresponding visual articulation. Hence the recog-
nition process is based on phonemes. Individual phonemes
are modeled via left-to-right HMM models. The number of
states of the HMMs used to represent the different phonemes
was adapted to the mean length of the corresponding
phoneme. Word models were generated by the concatena-
tion of the corresponding phoneme models. Recognition is
based on a dictionary with the phonetic transcription of 30
English numbers. Complete sentences containing a sequence
of numbers were presented to the system during the recog-
nition process. The sentences consist of free format numbers
making a grammar model unnecessary.

Training of the ANN's was in all cases performed on clean
data. During our recognition tests we added 5 different types
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TaBLE 1: Average of the relative error in percent for audio alone recognition and the fusion schemes Standard Weighted Product (SWP)
parameterized with A (SWP)) and a and 8 (SWPeg), Geometric Weighting (GW), Full Combination (FC), Full Combination Approximation
(FCA), and Unweighted Bayesian Product (UBP) over all noise types and SNR levels. Additionally the 95% confidence interval for the relative

error is given.

Method Audio SWP, SWP,s

UBP FC FCA GW

Errore 137.6+26 00x- -09=x24

9.2x2.1

-22+23 -289+x20 -302=x20

of environmental noise at 12 different SNR levels to the au-
dio signal, resulting in 60 different test conditions. Adding
noise to the recorded signal instead of adding it during the
recordings does not take into account the changes in articula-
tion speakers produced when background noise is presented
[31] and therefore generates somehow nonrealistic scenar-
ios. On the other hand it opens the possibility to test ex-
actly the same utterances in different noise conditions and
tremendously facilitates the recordings of the data. As addi-
tive noise we have chosen white noise, noise recorded in a car
at 120 km/h and babble noise and two types of factory noise
taken from the NOISEX database [32]. Noise was only added
to the audio signal. We considered the video stream to be of
constant quality and did not alter the video signal through-
out the tests.

4. EVALUATION OF THE FUSION SCHEMES

The first step in the evaluation is to compare the fusion
schemes under identical conditions using a manual setting
of the optimal weights.

4.1. Manual weight adaptation

Throughout this first stage of evaluation, the fusion parame-
ter ¢ in the Standard Weighted Product with « and 8 param-
eterization (SWP,g), the FCA and the Geometric Fusion was
adapted manually at each SNR level in order to get the best
possible recognition score. During a test in a particular noise
condition, the fusion parameter was held constant over all
frames. Tests in that particular noise condition with different
settings of the fusion parameter were repeated until the min-
imum Word Error Rate (WER) was reached. For the Standard
Weighted Product with its original parameterization, the pa-
rameter A instead of ¢ was adapted to each noise scenario.

In the following evaluation of the different fusion
schemes, we will use the Relative Word Error Rate (RWER)
instead of the WER. The reference point of the RWER is
the WER resulting from a fusion according to the Stan-
dard Weighted Product with the original A parameteriza-
tion (SWP,) for the corresponding noise scenario. The
RWER(SNR, n) at a given noise type n and SNR level is de-
fined as

WERfusion (SNR: 11) - WERref (SNR; 11)

RWER(SNR, n) = WER,f(SNR, n)

(15)

To take all noise conditions into account the mean relative
error for a particular fusion scheme over all noise conditions

was calculated

1

== > RWER(SNR, n). (16)
(

SNR,n)

e

An improvement compared to the Standard Weighted Prod-
uct results in a negative RWER.

Table 1 compares the different mean relative errors. Both
the FC and the FCA were implemented but due to the very
poor performance of the identification network trained on
the combined clean audio and video features in noise, re-
sulting from a training on clean data, the performance of
the FC was significantly worse than that of the FCA. For the
Standard Weighted Product a parameterization with & and f8
is compared to the original parameterization with A, which
serves as the reference point for the evaluation of the relative
error. Parameterization with « and 3, which results in equal
weights of 1 at ¢ = 0 instead of 0.5 at A = 0.5, leads to a small
but consistent improvement over all noise types.

The results are given in detail in Figure 6 and Table 2,
which show the graphical and numerical results, when car
noise was added to the audio signal. For comparison, also
the scores for the audio and video stream alone are given.
Due to its poor performance, the FC is not included in this
comparison. The SWP, is included to serve as a reference
point. From Figure 6 and Tables 1 and 2, it follows that all
weighted fusion schemes are able to fulfill the basic postula-
tion of audio-visual recognition. This postulation states that
the audio-visual score should always be better or equal to
the audio or video score alone [18]. From a useful fusion
scheme we further expect that it is able to generate synergy
effects from the joint use of audio and video data in a way
that the resulting error rates are significantly lower than the
error rates from either stream alone. The Standard Weighted
Product rather yields poor performance and shows only little
gain from the joint use of audio and video data. Geometric
Weighting and FCA give very similar results, which are much
better for audio-visual recognition at medium SNR than au-
dio or video recognition alone. For low SNRs the Geometric
Weighting performs slightly, though not significantly better,
than the FCA, but gives identical results for medium and high
SNR. The Unweighted Bayesian Product is the only fusion
scheme which does not fulfill the basic postulation. At very
low SNR values, the recognition scores drop below those of
the video channel alone, whereas at medium and high SNR
values the scores are very similar, or identical, to those of the
Geometric Weighting or the FCA.

Due to its superior performance, we only employed the
Geometric Weighting in the following tests.
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FIGURE 6: Word error rates for each individual stream and for
audio-visual recognition with different fusion schemes. The fusion
parameter was set by hand. Car noise was added to the audio chan-
nel.

TaBLE 2: Comparison of the word error rates in percent for recog-
nition with different fusion schemes, when car noise is added (WER
on video alone is 22.1%).

—12dB  —-6dB 0dB 6dB 12dB Clean
Audio 98.4 76.9 28.4 5.9 1.5 0.8
SWP, 22.1 22.1 19.8 4.6 1.4 0.8
UBP 67.5 32.6 8.8 2.1 1.0 0.7
FCA 22.1 21.6 8.8 2.0 0.8 0.6
Geometric 22.1 20.5 8.7 2.0 0.8 0.6

4.2. Automatic weight adaptation

For a real-time scenario, the setting of the weights has to
be performed automatically depending on the noise level.
A prerequisite to this is the estimation of the reliability of
the audio stream during the fusion. The reliability estima-
tion can follow two different approaches, either relying on
the statistics of the a posteriori probabilities or directly on
the speech signal. We will first present two measures based
on the distribution of the a posteriori probabilities and will
then also present a measure based on the speech signal.

4.2.1 Audio stream reliability estimation methods
Entropy of a posteriori probabilities

The distribution of the a posteriori probabilities at the out-
put of the ANN carries information on the reliability of the
input stream to the ANN. If one distinct phoneme class
shows a very high probability and all other classes have a
low probability, this signifies a reliable input. Whereas, when
all classes have quasi equal probability the input is very
unreliable. This information is captured in the entropy of
the estimated a posteriori probabilities P(Hjx|xax) for the

occurrence of the phoneme H;, given the acoustic feature
vector X,k at time frame k [16, 33, 34]. The average entropy
of the a posteriori probabilities over all frames is

=% Z ZP(HnHXAk)lng (Huklxak),  (17)

klnl

where N is the number of phonemes and K the number of
frames. We want to control the fusion process based on the
entropy. Therefore a mapping between the value of the en-
tropy and the fusion parameter ¢ has to be established. Ex-
periments showed that for this mapping it is necessary to ex-
clude segments where the pause is the most likely state, due to
many false identifications of pauses at low SNR levels. There-
fore only those frames, where the silence state is not amongst
the 4 most probable phonemes, are taken into account for
the calculation of the entropy.

Dispersion of a posteriori probabilities

A measure similar to the entropy is the dispersion of the a
posteriori probabilities [16, 34]

11<
2 M- 1) (Mfl)

M
M M
> > (log (P(Hpklxax)) -

m=1]=m+1

log (P(Hilxak))),

(18)

where the probabilities ﬁ(Hm,kle,k) are sorted in descend-
ing order, beginning with the highest one. Hence the differ-
ence between the M most likely phonemes is calculated and
summed up. In our setup the best results were obtained for
M = 3. As for the entropy, only frames where a silence is not
among the 4 most likely phonemes are taken into account.

Voicing index as audio reliability measure

It is known that speech contains many harmonic compo-
nents, whereas in many everyday life situations background
noise is nonharmonic. Thus the lower the ratio of the en-
ergy of the harmonic to the nonharmonic components is,
the more noise is present in the signal. A measure to asses
this relation is the so-called voicing index [35]. The voicing
index gives the conditional probability of a speech segment
to be clean enough to be recognized when the harmonicity
index R of this speech segment is known.

For the calculation of the harmonicity index, the speech
signal is segmented into overlapping frames of 1024 sam-
ple values length and each speech segment is pre-emphasized
and demodulated. The demodulation is performed by a rec-
tification followed by a filtering with a trapezoidal band-
pass filter. The cut-off frequencies of the band-pass filter are
[0,90, 350, 1000] Hz and hence cover the range of possible
pitch values. After demodulation, the autocorrelation func-
tion of the speech segment is calculated. Inside a time win-
dow of the possible pitch values ([1/350, 1/90] s) the max-
imum value of the autocorrelation function is picked. We
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FIGURE 7: Relation between the fusion parameter ¢ and the WER,
when adding car noise at 12 SNR levels ranging from —12dB to
clean speech. The dashed line connects the points of minimum
WER at a given SNR.

derive the value of the harmonicity index R by the nor-
malization of this maximum value by the zero time-lag of
the autocorrelation function, representing the mean energy
of the demodulated speech frame. When setting a thresh-
old for the signal to be “clean enough to be recognized” at
an SNR level of 0dB, the corresponding conditional prob-
ability, and hence the voicing index, can be formulated as
P(SNR > 0dBJ|R). For the evaluation of this conditional
probability we use an estimate of the conditional probability
density function. We added white noise at 0 dB SNR to 288
sentences of the database, and we compiled a bi-dimensional
histogram of the relationship between the local SNR value
(in each 1024 bins time frame) and the harmonicity index. A
sigmoidal mapping function between the harmonicity R and
the voicing index is derived from this histogram and used to
estimate the conditional probability.

Similar to the previous criteria, the voicing index was
evaluated only in those segments where the pause was not
amongst the 4 most probable phonemes. First tests of the
use of the voicing index for the fusion in audio-visual speech
recognition are reported in [36].

4.2.2 Evaluation of global audio stream weights

After the definition of the various measures to be used in the
estimation of the reliability of the audio stream, the ques-
tions at hand are: how sensitive are the recognition results to
variations of the fusion parameter ¢, and how consistent are
the reliability measures over different noise types and SNR
levels?

To answer the first question we can have a look at
Figure 7. Here the recognition results are plotted for ¢ vary-
ing between —1 < ¢ < 1. As additive noise, car noise at 12
SNR levels was used. The points of minimum WER used for
the manual weight adaptation in Section 4.1 are connected
by a dotted line in Figure 7. The goal of the automatic adap-
tation is now to find the mapping between the reliability es-
timation measure and the fusion parameter ¢, which results
in the same minimum WERs in all noise conditions. As can
be seen in the figure, there are large regions where the WER

does not increase significantly over a wide range of values of
the fusion parameter c. On the other hand, there are also re-
gions at low SNR where small variations of the fusion param-
eter have a strong impact on the WER. In general, Figure 7
demonstrates that the fusion is not very sensitive to the set-
ting of ¢ for SNR> 0 dB, and hence an automatic choice of ¢
should at least give reasonable results for these SNR values.

The next question is the sensitivity of the audio reliabil-
ity estimation measures to different noise types. To test this
sensitivity, we used all 5 noise types at 12 SNR levels each
and calculated the average value of the corresponding relia-
bility measure (entropy, dispersion, voicing index) over the
whole test set for a given noise scenario. In Figure 8 we plot-
ted the value of the reliability measure over the different op-
timal settings (i.e., the minimum WER = f(c) points) of the
fusion parameter c. Each point of the curves corresponds to
one of the 12 SNR values and each of the first five curves cor-
responds to one noise type. If the criteria were independent
of the noise type, all points of the curve would lie on one
continuously decreasing (for the entropy) or increasing (for
the dispersion and the voicing index) curve. This is obviously
not the case. Nevertheless, the curves lie more or less close to-
gether, which indicates that the variation of the criteria with
the noise type is rather small. Exceptions are the babble noise
in the case of the dispersion and white noise for the voicing
index.

If we want to have a reliability measure that does not de-
pend on the noise type, we have to search for a mapping be-
tween the reliability measure ¢ and the fusion parameter ¢
which is optimal in a minimum error sense. Our optimiza-
tion criterion for the mapping c(@) is the minimization of
the squared relative word error over all noise types n and all
SNR levels [37]

1

f:_

> RWER(SNR, n)?%, (19)
60

SNR,n)

with the relative word error

WERmin (SNR, Vl) - WERmeasure (SNR; I’l)

RWER(SNR, 1) = WERmin(SNR, 1)

(20)

WERneasure is the error rate obtained when using one of
the reliability measures to control the fusion process, and
WERp,, is the minimum error rate when setting the fusion
parameter manually (as defined in Section 4.1). The map-
ping between the reliability measure ¢ and the fusion param-
eter ¢ is approximated by a sigmoidal function

h

1+g-exp(o+d) ~L (21)

c(o) =

where A, g, and d are the parameters which define the shape
of the sigmoidal function being subject to the optimization.
The results of the optimization for each criterion can be seen
in Figure 8. The sigmoidal mapping function is visualized as
a dashed line. During the optimization the parameters g and
d are evaluated following a gradient descent algorithm where
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FIGURE 8: Relation between the three criteria and the fusion param-

eter ¢ for five different noise types at varying SNR.

the unknown derivative is approximated by the difference
quotient. The optimization procedure was repeated with dif-

of h yielding the minimum error in these optimizations are
reported here. We want to point out, that the distance of the
sigmoidal curve to the other curves in Figure 8 is not a di-
rect measure for the quality of the fit. As a consequence of
the minimization of the word errors, the optimal sigmoidal
fit is the one which causes variations of the fusion parameter
¢ from the optimal value which induces the smallest increase
in word error. Hence, in regions where variations of ¢ cause
only a small increase of the word error, the distance of the
sigmoidal curve and the curves resulting from the reliability
criteria can be significant, whereas the resulting word error
rates are still very close to optimal.

4.2.3 Evaluation of adaptive audio stream weights

So far word error rates were calculated for a setting of the fu-
sion parameter ¢ being constant in one noise condition. The
average value of the reliability measure was calculated in this
noise condition and a global value of ¢ for this noise condi-
tion was selected accordingly. This assumes that the whole
test set is known at recognition time, which of course is un-
realistic in a real life recognition system. Rather it is neces-
sary to calculate the correct setting of the fusion parameter
instantaneously for each frame. This also opens the possi-
bility to cope with nonstationary noise and variations of the
SNR of the speech signal. We therefore repeated the tests in
the previous section with audio stream weights adapted on a
frame by frame basis. To reduce the influence of estimation
errors, the values of the fusion parameter were smoothed
over time with a first order recursive filter with a cut off fre-
quency of 0.6 Hz. Table 3 compares the results of the opti-
mization for the different criteria, when the value of the fu-
sion parameter is fixed over the whole test set (Global) and
when it is varied (Frame Dependent). As for the previous
recognition results, the average RWER is based on the results
obtained with SWP, and hence evaluated according to (15)
and (16). In Figure 9 the results of the automatic fusion, the
manual setting of the fusion parameter, and the fusion us-
ing the Unweighted Bayesian Product are compared. For the
automatic fusion the voicing index was chosen as the relia-
bility measure and its evaluation was performed on a frame
by frame basis. The curve corresponding to the global evalua-
tion of the voicing index is almost identical to the frame-wise
evaluation and therefore not included in the plot.
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5. DISCUSSION

In the previous sections, we presented different weight
combination and estimation schemes of audio and video
a posteriori probabilities in an audio-visual recognition task.
Different tests were carried out to assess the performance of
the different weighting schemes. In all tests, we used 5 differ-
ent types of noise at 12 SNR levels each to obtain results not
limited to one special scenario.

5.1. Performance of weight combination schemes

In the first test, the free parameters of the weighting schemes
were adapted manually to each noise condition. Three of
the presented weighting schemes, namely the Unweighted
Bayesian Product, the FCA, and the Geometric Weighting,
are based on the assumption of class conditional indepen-
dence of audio and video features. The fourth one, Stan-
dard Weighted Product, only approximates this assumption
for equal a-priori probabilities of the phonemes, which was
not the case in our tests. Furthermore, the parameterization
of the Standard Weighted Product is characterized by having
a sum of weights equal to one. So, when both streams have
equal weights of 0.5, the square root of the two a posteriori
probabilities is taken instead of the product as for the other
methods. In order to have weights equal to 1 on both streams
in the equal weight condition (as for Geometric Weighting),
we changed the parameterization of the Standard Weighted
Product from A and (1 — 1) to « and 3, respectively. This led
to a small, but consistent, improvement in comparison to the
original form.

Yet the main result of this first comparison is the clear su-
perior performance of the weighting schemes following the
assumption of class conditional independence over the Stan-
dard Weighted Product, thanks to the introduction of the a-
priori probabilities. Especially the FCA and the Geometric

Weighting showed very similar results, where one reason is
the similarity of the two algorithms (FCA is based on arith-
metic weighting). Both attain the pure a posteriori probabil-
ities when all weight is put on either channel and produce
the a posteriori probability following class conditional in-
dependence for equal weights. They differ only in the way
the probabilities are weighted, apart from these three special
cases. The results indicate a small but not very significant ad-
vantage of the Geometric Weighting for low SNR values and
equal performance for the other values. Therefore we only
took the Geometric Weighting into consideration in the suc-
ceeding experiments.

5.2. Performance of audio stream reliability measures

The next test was designed to reveal the performance of the
weighting scheme found best in the previous test in a more
realistic scenario, where the adaptation of the weights is done
automatically and not by hand. In the first step of the com-
parison we investigated a static case, where we first evaluated
the reliability measure over the whole dataset and then per-
formed the fusion with the setting of the fusion parameter
corresponding to the measure. The mapping of the reliability
measure to the fusion parameter took a wide range of noise
conditions into account. For the mapping a fit in the mini-
mum error sense between the value of the measure in a par-
ticular noise condition and the corresponding optimal fusion
parameter was established. The results showed that large im-
provements compared to the audio-only recognition can be
achieved under all noise conditions investigated, however for
low SNR values the WERSs are still too high to achieve useful
recognition. An open question is how the optimized map-
ping generalizes to new, previously unseen, noise conditions.
The consistency of the results (see Figure 8) proposes a pos-
sibility for generalization, even though final answers can only
be found by tests in noise conditions not present during the
design of the mapping.

In the last step of the comparison, we made the transi-
tion from the unrealistic static case, where the whole test set
has to be known before determination of the fusion parame-
ter, to an evaluation of the measure on a frame by frame ba-
sis. In general, we expected an increase in performance from
the fact that a frame-level fusion is able to take variations of
the SNR during one utterance and from one utterance to the
other into account and it is capable to cope with nonstation-
ary noise (like babble or factory noise). On the other hand,
the limitation of the estimation interval of the reliability cri-
teria to one frame has a high impact on the quality of the
estimation. This effect was alleviated via smoothing the val-
ues with a first order recursive filter, although this reduces
the ability to quickly adapt to intensity variations. The re-
sults of the frame-wise adaptation showed that both effects,
the larger flexibility and the lesser precision seem to trade
off one another. The results of the frame dependent evalua-
tion are very similar to those evaluated on the whole test-set
(see Table 3). Even though there was no performance gain
from the frame-wise evaluation, the results show that the re-
liability estimation criteria are applicable to a realistic system.
Both, the entropy and the voicing index, showed only small
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Ficure 10: Confusion matrix of the phoneme identification from the audio stream at —6 dB when car noise was added to the signal, showing
percentage of each phoneme on the y-axis identified as phonemes on the x-axis.

deviations from the optimum values. In the global evalua-
tion the results of the entropy criterion were better than those
of the voicing index, but in the more realistic frame-wise
adaptation the entropy criterion deteriorated more than the
voicing index. The voicing index, however, gave less consis-
tent results for babble noise (which contains many harmonic
components) and white noise (which has no harmonic com-
ponents) than the entropy. The dispersion, especially in the
frame-wise adaptation, was not competitive to the other cri-
teria. To summarize, the entropy and the voicing index cri-
terion can be used efficiently to control the adaptive fusion
process.

5.3. Unweighted Bayesian Product versus adaptive
weights

One interesting result of our comparison is the good perfor-
mance at medium to high SNR of the Unweighted Bayesian
Product, which does not require any weighting and hence no
reliability estimation either. As can be seen in Figure 6, the
performance of the Unweighted Bayesian Product is almost
identical to that of the Geometric Weighting for medium and
high SNR values (e.g., SNR = 0dB), whereas for low SNR
values (e.g., SNR < 0dB), the performance sharply decreases.

For SNR > 0 dB, audio and video channels carry comple-
mentary phonetic information which is well fused by Bayes’
rule [20]. For SNR < 0dB there is a gain for the weighting
principle, and Bayes’ rule seems to start producing wrong re-
sults. Decreasing audio stream reliability results a-priori in
an increase of the entropy of the corresponding categoriza-
tion results, which is also exploited in the stream reliability
criterion based on the entropy. This should result in a flat-

tening of the distribution of the probability values and a cor-
responding increase in its entropy. In the extreme case, where
the stream under consideration does not contribute any in-
formation, the output distribution of this stream becomes
a uniform distribution. During fusion the uniform distribu-
tion does not interfere with the distribution of the reliable in-
put stream, as the product of the uniform distribution does
not alter the shape of the second distribution. Consequently,
the phonetic identification is not impaired by the unreliable
stream. If this is true, why can we then observe a sharp de-
crease of performance at low SNR?

To answer this question, we should have a look at
the confusion matrix of the phoneme identification. In a
confusion matrix, the elements of the matrix determine the
percentage of the stimuli on the y-axis as being identified
as the output class on the x-axis. For the confusion matrix
in Figure 10, car noise at —6 dB was added to the audio
signal.? Already a first quick look on the main diagonal
of the confusion matrix reveals that the distribution of
errors is clearly nonuniform. There are phonemes which
are identified very well, and others which show only poor
identification scores. The silence state “sil” obviously plays
a special role. With increasing noise level more and more
phonemes are confused with the silence state. This is partly
taken into account in the mapping between the fusion
parameter ¢ and the stream reliability measures by the fact
that only segments, where the silence is not among the 4
most likely states, are used for the evaluation of the criteria.

2The phonetic symbols follow the ARPABET notation.
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Figure 11: Confusion matrix of the phoneme identification from the video stream, showing percentage of each phoneme on the y-axis

identified as phonemes on the x-axis.

Both the entropy and the dispersion criteria are improved by
this modification. Furthermore also the phonemes “s,” “n,”
and “i” attract many other phonemes. On the other hand,
there are phonemes which are very poorly recognized and
hardly any other phoneme is confused with them (e.g., “z”
and “e:”). It follows from this analysis that the distribution
of the a posteriori probabilities does not flatten but rather
build certain peaks at some attractor phonemes and dips at
phonemes which are hardly identified or confused.

Though, to impair the audio-visual recognition, not only
an increase of errors in the audio stream has to occur, but
these errors also have to be correlated with those commit-
ted in the video stream. The combination according to Bayes’
rule is able to compensate for uncorrelated errors to a certain
degree. Therefore, to judge the consequences of the deforma-
tion of the audio a posteriori probability distribution, it is in-
dispensable also to look at the video stream confusion matrix
visualized in Figure 11. Comparing the two confusion matri-
ces demonstrates that the phonemes confused in the audio
stream (“s,” ”’n,” and “1”) also lead to confusions in the video
stream. In the video stream the silence state also is the origin
for many confusions. Hence the errors of phonetic identifi-
cation in the audio and video stream are correlated, and in
this case Bayes’ rule is not able to perform a compensation.

It appears that in both confusion matrices the domi-
nant cause for confusions is the silence state, but not equally.
At —6dB 75% of the phonemes are confused in the audio
stream with the silence state. In the video stream, only 22%
are misleadingly recognized as pauses.> When fusing audio

3The distinction of speech from pauses in the video stream is not trivial
as many nonarticulatory lip movements are part of continuous speech and
are easily confused with a real utterance.

TABLE 4: Mean relative error for GW with voicing index evaluated
on a frame by frame basis and unweighted Bayesian product. The er-
rors are calculated over all noise types and SNR levels and for SNR =
0dB and SNR < 0dB, separately. Additionally, the 95% confidence
interval for the relative error is given.

GW/voicing index UBP
All noise conditions -26.7 + 2.0 9.2+ 2.1
SNR > 0dB -394 +29 —-35.0 £ 3.0
SNR < 0dB —-1.1+1.5 97.6 = 1.7

and video following the Unweighted Bayesian Product, this
strong preference for pauses at noisy audio leads to a con-
fusion of 43% of the phonemes with pauses. Whereas when
Geometric Weighting is used to weight the audio and video
probabilities this confusion drops to 24%. The weighting has
the tendency to select the modality having less confusion
with the silence state.

Nevertheless, at medium SNR levels, the performance of
the Unweighted Bayesian Product is very close to that of the
Geometric Weighting. To further quantify this, in Table 4, in
addition to the mean RWER of the Geometric Weighting and
the Unweighted Bayesian Product over all noise conditions,
also the mean RWER of the Unweighted Bayesian Product
for SNR levels above and below 0 dB is given (all three evalu-
ated according to (15) and (16)). From this evaluation it can
be seen that the difference of performance between the UBP
and the GW increases largely for SNR < 0 dB. Regardless of
the remaining performance difference, there are applications
where the SNR is typically higher than 0dB, and a loss of
performance is counterbalanced by a simple and intrinsically
stable implementation.
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6. CONCLUSION

Our objective was to compare a number of schemes for an
adaptive combination of audio and video a posteriori proba-
bilities estimated by an ANN for an audio-visual recognition
task under different noise conditions. In a first test we looked
at the effectiveness of different weight combination schemes
for audio and video data. The results demonstrated that a
multiplicative combination respecting class conditional in-
dependence of the streams gives the best results. Next, we
compared different criteria for an adaptive estimation of
the audio stream reliability using the Geometric Weighting
method. The performance of both, the criterion based on the
entropy of the a posteriori probabilities and the one based on
the ratio of the harmonic to the nonharmonic components in
the speech signal, was very close to the best achievable perfor-
mance determined by a manual adjustment. We showed that
an adaptive weighting scheme based on the entropy and the
voicing index can be built yielding consistent performance
in various noise conditions. Finally, we investigated if a con-
stant weight on the audio and video stream in all noise con-
ditions would give comparable performance to the adaptive
weighting. The test we made showed that when the SNR is
higher than 0 dB, the Unweighted Bayesian Product performs
as well as Geometric Weighting, so weighting, fixed or adap-
tive, is unnecessary. Whereas for SNR values below —3 dB
performance losses are tremendous if no weighting is per-
formed. An analysis of the confusion matrices showed that
the confusion of all phonemes with the silence state is the
main cause of the failure of the Unweighted Bayesian Prod-
uct for SNR < 0 dB. We remark that this is related to the con-
tinuous speech recognition task and the problem of speech
detection in noise. Therefore an algorithm (namely FCA
and GW) incorporating Bayes’ rule, which performs well for
SNR = 0dB, and a weighting principle, being dominant for
SNR < 0dB, seems to be optimal. The weighting globally
performs as a switch between the two modalities, favoring
the one having less confusions with the silence state. This
complements Bayes’ rule, when this type of confusion oc-
curs.

All tests are based on a database with a single male
speaker whose lips were colored in blue, to facilitate the
lip feature extraction. Most of the tests were repeated on a
database with a single female speaker where no additional
coloring of the lips was used [38]. The results of these tests
are comparable to those reported here.
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