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This paper presents the theoretical development of a nonlinear adaptive filter based on a concept of filtering by approximated den-
sities (FAD). Themost common procedures for nonlinear estimation apply the extended Kalman filter. As opposed to conventional
techniques, the proposed recursive algorithm does not require any linearisation. The prediction uses a maximum entropy prin-
ciple subject to constraints. Thus, the densities created are of an exponential type and depend on a finite number of parameters.
The filtering yields recursive equations involving these parameters. The update applies the Bayes theorem. Through simulation
on a generic exponential model, the proposed nonlinear filter is implemented and the results prove to be superior to that of the
extended Kalman filter and a class of nonlinear filters based on partitioning algorithms.
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1. INTRODUCTION

This paper describes a recursive algorithm based on a non-
linear approach to parameter estimation. The most common
procedure applied for nonlinear estimation is the extended
Kalman filter (EKF) [1, 2, 3].

It is known that the nonlinear estimator for nonlinear
models does not provide a finite solution. By linearising
the state equations about the conditional means xk|k−1 and
xk|k, the EKF provides a solution in terms of minimal mean
square error to the original nonlinear problem. A number of
other procedures have also been applied including partition-
ing approaches, statistical linearisation, maximum a poste-
riori, least square criteria, and functional approximation of
conditional state density [3, 4, 5, 6, 7].

Crucially, finite models or filters that completely define
physical systems are rare [8, 9]. Nevertheless, the state distri-
butions depend on a finite number of parameters, which are
recursively computed as the observed data arrive [10, 11, 12].
The computation of a finite number of pertinent parameters
is a common procedure for the definition of approximated
probability distributions. As nonlinear state space models
rarely yield explicit or analytic distributions from output
measurements, the distribution normally has to be approx-
imated [12].

This paper presents the theoretical development of a sim-
ple method of approximation [13]. In the following, the pro-
posed nonlinear adaptive filter may be referred to as the FAD

filter. The approach uses a maximum entropy principle to
approximate the filtering equations arising from a state
model with nonlinear equations. The probability density
functions (pdf) created by applying the entropy principle are
of an exponential type and depend on a finite number of
parameters. The nonlinear filtering leads to recursive equa-
tions involving these parameters. The use of the maximum
entropy approximation closes the nonlinear equations of the
filter; that is the exponential-type family of distributions un-
der consideration is stable for nonlinear equations.

At each time instant k, the FAD filter estimates the con-
secutive a priori and a posteriori state probability density
functions given past and current observations. The loga-
rithms of the pdfs are linear combinations of several func-
tions, ϕ1, . . . , ϕn, chosen according to some specific criterion.
The prediction uses maximum entropy subject to constraints
related to the functions ϕ. The update applies the Bayes the-
orem.

2. MAXIMUM ENTROPY PRINCIPLE

Let µ be a probability over the measurable space (Rn,�n) and
P a probability law absolutely continuous with respect to µ
and of Radon-Nikodym density

dP

dµ
= p(x), almost surely. (1)
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Proposition 1. Let ϕ0 = 1, ϕ1, . . . , ϕn be (n + 1) real-valued
functions in the Hilbert space. Then, the maximum entropy

H(x) = −
∫
ln p(x)p(x)dµ(x) (2)

subject to the real-valued constraints, for all i = 1, . . . , n,

li =
∫
ϕi(x)p(x)dµ(x) (3)

gives rise to an exponential-type density function,

p(x) = exp

[
λ0 +

n∑
i=1

λiϕi(x)

]
, (4)

where the real coefficients λ0, . . . , λn are Lagrange multipliers
that are evaluated from the constraints.

Proof. We use the method of the Lagrange multipliers and
introduce λ1, . . . , λn adjustable constants called the Lagrange
multipliers in order to maximise the expression

K = H(x) +
n∑
i=1

λili

=
∫
−p(x) ln p(x)dµ(x) +

n∑
i=1

∫
λiϕi(x)p(x)dµ(x)

=
∫ [− ln p(x) + λ1ϕ1(x) + · · · + λnϕn(x)

]
p(x)dµ(x).

(5)

Using the calculus of variations, the solution for p(x) is
given by

∂

∂p(x)

[− ln p(x) + λ1ϕ1(x) + · · · + λnϕn(x)
]
p(x) = 0. (6)

Thus,

− ln p(x) + λ1ϕ1(x) + · · · + λnϕn(x)− 1 = 0. (7)

Observing that p(x) is a probability density function and
denoting the constant-valued function equal to 1 by ϕ0, a
new constraint appears

l0 =
∫
ϕ0(x)p(x)dµ(x) = 1. (8)

Therefore, we can substitute λ0ϕ0(x) for −1 in (7) and
solving for p(x) gives an exponential type density function

p(x) = exp

[ n∑
i=0

λiϕi(x)

]
. (9)

Due to the maximum entropy principle, the method in-
herently approximates all probability distributions with ex-
ponential type density functions. The Lagrange multipliers
λi vary with the family of densities under consideration and
are computed at each update and prediction.

3. NONLINEARMODEL

We choose to pursue the derivation in the scalar case and
discrete time, k ∈ N, for simplicity purposes. Nonlinear state
models are often given by equations of the form

zk+1 = g
(
zk
)
+wk,

yk = h
(
zk
)
+ vk,

(10)

where {zk} and {yk} are the state and observation processes,
g and h are some nonlinear functions. The noise sequences
{wk} and {vk} are assumed to be white having any distribu-
tion.

Let xk be a state defined by

xk = h
[
zk
]

(11)

with h locally injective, we can write at time instant k + 1

xk+1 = f
(
xk, wk

)
, (12)

yk = xk + vk, (13)

where the nonlinear function f is defined by

f
(
xk, wk

) = h
{
g
[
h−1
(
xk
)]

+wk
}
. (14)

Thus, the filter uses the nonlinear model defined by (12)
and (13) where xk and yk are the state and observation, re-
spectively. The noise processes are mutually independent,
and independent of the state, for all k ∈ N .

4. NONLINEAR FILTER

The FAD filter approximates, at each time instant k, the con-
ditional pdfs of the state xk given the past or present obser-
vations through expression (4). We start with the prediction
that uses the state equation (12) to predict the conditional
density pk+1|k(x|y) of the state xk+1 given the observation up
to time instant k, y = (y1, . . . , yk).

4.1. Prediction

The prediction introduces several constraints li, i ∈ N ,

li = E
[
ϕi
(
xk+1

)] =
∫
R
ϕi(x)pk+1|k

(
x|y)dx (15)

upon the state xk+1 given y = (y1, . . . , yk).
The functions ϕi define the information retained to de-

scribe the state distribution at time instant k+1. For example,
a function indicator over an interval defines a constraint that
is the probability of observing the state xk+1 in that interval; a
function power of xk+1 defines a constraint that is a moment
of the state variable.

The state equation (12) is used to evaluate the con-
straints. It precisely defines the transfer of random variables
from time instant k to instant k + 1. Thus,

li =
∫∫

ϕi
[
f
(
xk, wk

)]
pk|k

(
x|y)dx pw(w)dw, (16)
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where pw denotes the exponential pdf of the state noise ex-
pressed as in (4).

The determination of the constraints relies on the cal-
culation of multiple integrals. These integrals can easily be
computed by numerical integration based on polynomial in-
terpolation. However, in most applications analytical expres-
sions can be derived.

Note from the state equation that the dynamic behaviour
is not retained by this mean in its entirety. A study of the state
equation without noise reveals the properties of the asymp-
totic or limit distribution as k approaches infinity. In most
cases, the density has several maxima (even infinite), that is,
it is multimodal. In practice, we pay particular attention to
the number of local maxima in order to elaborate the a pri-
ori exponential-type density from the functions ϕi that must
be chosen accordingly. Some practical examples of bi-, tri-,
and five-modal density functions may be found in areas of
application such as motion compensated video compression
and medical image analysis [13, 14, 15].

The density predicted is the density that maximises the
entropy subject to the constraints resulting from (16). The
density created is of an exponential type as in (4). The La-
grange multipliers in the density are determined from the
constraints by solving the system of (n + 1) nonlinear equa-
tions

li = E
[
ϕi
(
xk+1

)]
. (17)

Depending on the nature of the distributions, analytical
expressions may exist. The case of Gaussian approximation is
derived in Section 5. The Lagrange multipliers vary with the
family of densities under consideration and are computed at
each prediction and update.

4.2. Update

At each time instant k, the update uses the observation equa-
tion (13) to estimate the a posteriori density pk|k(x|y) of the
state xk given the past observations up to yk−1 and the actual
observation yk = η, y = ((y1, . . . , yk−1), yk).

By hypothesis, the density of the state xk and the noise wk

given the past observations, are of an exponential type as in
(4). Applying the Bayes rule to the observation equation (13)
gives the conditional density of the state, which remains as an
exponential-type withoutmodification of the functions ϕi as,
in this particular case, the observation equation is linear.

The conditional density pk|k(x|y), given the observations
up to yk = η, is defined by

pk|k
(
x|y) = Cpk|k−1

(
x|y)pv(η− x), (18)

where C is the normalisation constant

C−1 =
∫∫

pk|k−1(α, β)pv(η − α)dαdβ. (19)

The densities in (18) being as in (4), equating the coef-
ficient of the like terms in ϕi provides a very simple update
of the Lagrange multipliers in the state density. The complete
derivation is shown in Section 5 using Gaussian approxima-
tion.

5. IMPLEMENTATION

In its simplest form and for comparison purposes with tech-
niques such as extended Kalman, the approach can be ap-
plied to the particular case of Gaussian approximation. In
this case, the Lagrange multipliers in the pdf are easily ob-
tained from the constraint. The Gaussian case is presented as
a didactic example.

Gaussian approximation

A Gaussian distribution has a density function

p(x) = 1√
2πσ

exp

(
− 1

2

(
x −m

σ

)2)

= exp
(
− 1

2
ln
(
2πσ2

)− m2

2σ2
+

m

σ2
x − 1

2σ2
x2
)

= exp
(
λ0 + λ1x + λ2x

2),
(20)

where m and σ denote the mean and standard deviation, re-
spectively.

It can be seen from the above expression that the Gaus-
sian density is of an exponential type. The logarithm of the
pdf is linearly developed from the basis functions

ϕ0(x) = 1, ϕ1(x) = x, ϕ2(x) = x2. (21)

In that particular case, the constraints, li, correspond
to the moments up to second order of the Gaussian den-
sity. Thus, numerical computation of integrals of the form
E[ϕi(X)], where X is a random variable, is avoided.

Therefore, expressions for the constraints in terms of the
Lagrange multipliers exist and are given by

l0 =
∫
eλ0+λ1x+λ2x

2
dx =

√
− 2π
2λ2

eλ0−λ
2
1/4λ2 , λ2 < 0,

l1 =
∫
x · eλ0+λ1x+λ2x2dx = − λ1

2λ2
· l0,

l2 =
∫
x2 · eλ0+λ1x+λ2x2dx =

(
λ21
4λ22

− 1
2λ2

)
· l0.

(22)

Normalising the constraints yields the statistical charac-
teristics of the Gaussian distribution

m = l1
l0
, σ2 = l2

l0
−m2, (23)

wherem is the mean and σ2 is the variance.
Thus, the Lagrange multipliers in the pdf are defined in

terms of the moments by

λ2 = − 1
2σ2

,

λ1 = m

σ2
,

λ0 = −1
2
ln
(
2πσ2

)
+ ln l0 − m2

2σ2
.

(24)
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Generic exponential model

The algorithm is implemented on a generic exponential
model. The results are compared to those given in [4] for
the same exponential model where the extended Kalman fil-
ter and a class of adaptive nonlinear filter (ANLF) based on
partitioning algorithms were implemented.

The state model is given by

zk+1 = 1.7 exp
(− 2z2k

)
+wk,

yk = z3k + vk.
(25)

Before implementing the FAD filter, we modify the above
model so as to obtain a linear observation equation. Fol-
lowing the transformation given in Section 3, the resulting
nonlinear model is

xk+1 =
(
1.7 exp

(− 2x2/3k

)
+wk

)3
, (26)

yk = xk + vk, (27)

where the noise processes are mutually independent and in-
dependent of the state. The state andmeasurement noises are
taken to be Gaussian distributed with zero mean and vari-
ance Q = 1, R = 0.5, and densities

pw(w) = N(0, 1) = exp
(
β0 + β1w + β2w

2),
pv(v) = N(0, 0.5) = exp

(
µ0 + µ1v + µ2v

2), (28)

where β and µ are the Lagrange multipliers of the respective
densities.

For comparison purposes, the initial state x0 is set to zero
and is Gaussian with density

p0|0(x) = N(0, 0.25) = exp
(
λ0 + λ1x + λ2x

2). (29)

Note that, due to the model transformation used, the x-
state trajectory will span over a range of values that is equal
to that of the z-state trajectory to the power 3. Therefore,
the nonlinear filter will have to track huge jumps in state
value.

5.1. Prediction

The prediction of the conditional density pk+1|k(x|y), given
past observations y = (y1, . . . , yk), requires the determina-
tion of the constraints

l0
(
k + 1|k) =

∫
pk+1|k

(
x|y)dx,

l1
(
k + 1|k) =

∫
x · pk+1|k

(
x|y)dx,

l2
(
k + 1|k) =

∫
x2 · pk+1|k

(
x|y)dx.

(30)
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Figure 1: State estimation. Generic exponential model.

Using the state equation (26), the constraints are evalu-
ated in terms of the actual form

l0
(
k + 1|k) =

∫∫
pk|k

(
x|y)pW (w)dx dw,

l1
(
k + 1|k) =

∫∫ (
1.7 exp

(− 2x2/3
)
+w

)3
×pk|k

(
x|y)pW (w)dx dw,

l2
(
k + 1|k) =

∫∫ ((
1.7 exp

(− 2x2/3
)
+w

)3)2
×pk|k

(
x|y)pW (w)dx dw.

(31)

5.2. Update

Considering the actual observation yk = η and (27), the con-
ditional density pk|k(x|y) given the observations up to time
instant k results from (18)

pk|k
(
x|y) = Cpk|k−1

(
x|y)pv(η− x). (32)

The expansion of the densities gives,

pk|k
(
x|y) = Ceλ0(k|k−1)+λ1(k|k−1)x+λ2(k|k−1)x

2
eµ0+µ1(η−x)+µ2(η−x)

2
.

(33)

A simple addition of the coefficient of the like powers in
x yields the updated Lagrange multipliers of the conditional
density function,

λ0
(
k|k) = λ0

(
k|k − 1

)
+ µ0 + µ1η + µ2η

2,

λ1
(
k|k) = λ1

(
k|k − 1

)− µ1 − 2µ2η,

λ2
(
k|k) = λ2

(
k|k − 1

)
+ µ2.

(34)

5.3. Results

The x-state trajectory is shown in Figure 1, where the actual
states xk and their estimate xk|k are displayed. It is evident
from Figure 1 that the FAD filter can easily track jumps in
the state trajectory where an EKF would fail.
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Figure 2: Error performance of the FAD filter. Generic exponential
model (100 time samples over 50 runs).

Table 1: Average NRMS error comparison.

EKF ANLF (pr) ANLF (fil) FAD

ANRMS 1.2 0.73 0.47 0.15

In [4], the authors compare the EKF to an ANLF formu-
lation with predicted estimates for the innovations and one
with filtered estimates. Both involved a bank of 10 subfilters.
The performances were evaluated in terms of normalised
root mean square error (NRMSE) of 100 time samples over
50 runs

NRMS(k) =
√√√ MSE(k)
(1/50)

∑
50 x

2
k

, (35)

where the MSE is defined as

MSE(k) = 1
50

∑
50

[
xk − xk|k

]2
. (36)

In [4], the authors found that the NRMS error for the
EKF was always greater than 0.6. For the ANLF with pre-
dicted estimates for the innovation, the NRMS error varies
within the interval 0.4 and 1. Finally, for the ANLF with fil-
tered estimated estimates, the NRMS error varies within the
interval 0.3 and 0.6.

For comparison purposes, the performance of the filter is
evaluated in terms of normalised root mean-square error as
is done in [4]. Figure 2 displays the NRMS(k) resulting from
50 runs of the proposed filter. Over all, the performance of
the proposed filter is superior to the performance of the EKF
and both ANLFs.

In [4], the authors also give the values of the average nor-
malised RMS error (average over 100 values) for the EKF,
the ANLF (predicted) and the ANLF (filtered). We compare
these values to the average NRMS error obtained with the
FAD filter.

The values shown in Table 1, again, confirm the superi-
ority of the FAD filter over the others.

6. CONCLUSION

This paper has presented the theoretical development of a
nonlinear adaptive filter based on a concept of filtering by
approximated densities (FAD). The proposed recursive al-
gorithm uses a maximum entropy principle subject to con-
straints to approximate the filtering equations arising from
nonlinear state space models.

The approach approximates the state distributions
through parameterised exponential density functions. The
filter updates and predicts the conditional densities given
past and actual observations. The prediction uses the entropy
principle, and the update of the Bayes theorem.

The simulation results presented on a generic exponen-
tial model prove the ability of the proposed approach to work
with highly nonlinear system dynamics. The performance
of the filter is superior to the performance found in [4] by
the authors on the same exponential model for the extended
Kalman filter and two adaptive nonlinear filters based on
partitioning algorithms, one formulated with predicted es-
timates for the innovations and the other with filtered esti-
mates.

The proposed approach has also been applied to non-
linear models involving time-varying Markovian parameters
for applications such as motion estimation [14] in motion
compensated video compression, and mammography [15],
both involving multimodal Gaussian distributions. Further
research is currently being conducted for synthetic aperture
radar processing.

Other developments not yet published demonstrate the
applicability of the approach in a purely nonlinear, non-
Gaussian, nonstationary context.
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