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The minimum output energy (MOE) receiver has been developed for multiuser detection when multipath distortion is present.
Its performance has been shown to be very close to the minimum mean square error (MMSE) receiver at high signal-to-noise
ratio. However, due to the additive noise, the constraint vector required to construct the MOE receiver is a biased estimate of the
channel vector. Thus, the MOE receiver exhibits degraded performance. To mitigate the noise effect, the constraint cost function
is modified to obtain a modified MOE (MMOE) receiver in this paper, leading to a significantly improved channel estimate and
detection performance. It is also revealed that the MMOE method converges to the well-known subspace method under certain
conditions. In addition to the additive noise, imperfect estimation of the output data covariance matrix also causes performance
loss and it is studied in details based on perturbation theory.
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1. INTRODUCTION

The rapidly growing demands for integrated wideband/
broadband services have created considerable research inter-
est in developing new wireless communication technologies
[1, 2]. Among several options for the implementation of the
air interface of future wideband wireless systems, direct se-
quence (DS) code division multiple access (CDMA) spread
spectrum has emerged as a leading technology due to its
intriguing features. It allows many users to simultaneously
share the finite amount of available spectrum with minimal
coordination, thus increase the system capacity. It also ex-
hibits exceptional robustness to jamming, interception and
multipath fading. Additionally, it provides much flexibility
in system design and implementation by its unique spread-
ing mechanism. This technology will continue to thrive in
multiuser systems and will further establish its dominance in
the future wideband wireless networks.

In a DS/CDMA system, multiuser interference (MUI) is
a typical obstacle to be obviated in detection of input sig-
nals. Substantial efforts have focused on multiuser detection
[3, 4, 5, 6]. Although the optimal receiver is well recognized
to be the maximum likelihood sequence estimator (MLSE)
[7], linear detectors receive considerable attention. Their low
complexity, ease of implementation, and acceptable perfor-
mancemake them so attractive in many applications. Among
those linear detectors, blind solutions are particularly suit-
able for a bandwidth constrained system. Without multi-
path fading, a blind minimum mean square error (MMSE)

detector can be implemented under certain constraints [8].
If multipath propagation occurs, a direct blind MMSE re-
ceiver has been reported [9] which requires a noise subspace
from the eigenvalue decomposition (EVD) of a data covari-
ance matrix. Subspace methods not only provide sufficiently
good channel estimates even for a short data record, but also
yield MMSE detectors [10, 11, 12, 13].

Constrained minimum output energy (MOE) ap-
proaches [14, 15] and subsequently developed robust meth-
ods [16, 17] and provide direct detection techniques in the
presence of unknown multipath distortions. These blind
MOEmethods minimize the output energy (or power) of the
receiver subject to certain constraints to guarantee no can-
cellation of the desired signal. Constraints can be parame-
terized and optimized in order to optimally combine signals
from different paths. The MOE receiver proposed in [15] ap-
proaches the blind MMSE receiver at high signal-to-noise
ratio (SNR), making it an attractive blind solution. How-
ever, due to the presence of additive white Gaussian noise
(AWGN), the constraint vector has been shown to be a bi-
ased estimate of the channel vector. The bias, in terms of the
vector norm, is proportional to the noise power. Thus, some
performance loss from the MOE receiver is induced when
compared with the MMSE receiver. Detailed study on the
noise effect has been performed in [15].

In order to mitigate the noise effect and obtain an un-
biased channel estimate, we modify the constrained cost
function adopted in [15] by removing the contribution of
the noise (parameterized by the noise power) to the data

mailto:dxu@ee.ucr.edu


1378 EURASIP Journal on Applied Signal Processing

covariance matrix. Following the procedure of constrained
MOE optimization, a new solution is similarly derived. It is
shown that the resulting modified MOE (MMOE) receiver
significantly outperforms the MOE receiver by properly se-
lecting an adjusting parameter pertaining to the noise power.
Meanwhile, if the MMOE method is applied to estimate the
channel parameters, it is closely related to the subspace-based
channel estimationmethod, for example, [10]. Under certain
conditions on the choice of the parameter, it will be revealed
that these two methods employ approximately the same cost
function, leading to a convergent solution. In such a case, the
MMOE receiver also coincides with the MMSE receiver.

Besides the additive noise, imperfect estimation of the
output data covariance matrix based on a finite number of
data samples also degrades the detection performance. Some
preliminary results have been reported in [18]. In practice,
only finite number (N) of snapshots are collected for pro-
cessing. Since the MOE receiver employs the second order
statistics of the channel output which are estimated from the
received data, the accuracy of covariance estimation depends
on the available data record. Due to this estimation error, the
optimal constraint vector is perturbed to be dependent on
N . It will finally convey an error to the receiver’s parameters
and result in performance loss of MOE-based detection. Al-
though some simulation results are provided in [15], lack of
analytical results also motivates us to further study the effect
ofN on the performance of theMOEmethod in detail in this
paper.

It is easily observed that perturbation exists in the esti-
mated data covariance matrix. This quantity is essential for
the behavior of the constrained cost function optimized in
theMOEmethod. Once the objectivematrix in the cost func-
tion gets perturbed, one of its eigenvectors, which is the opti-
mal constraint vector, is perturbed. Hence, the performance
of the receiver will degrade for a finite N . Based on pertur-
bation analysis [19, 20] and the analytical expression of the
MOE receiver, the performance of the perturbed receiver, in
terms of the output signal-to-interference-plus-noise ratio
(SINR), can be evaluated for different N and further com-
pared with that of the ideal MOE receiver. Our analytical re-
sults are of much theoretical importance in predicting the
system performance for any given set of system parameters.
All those results are verified by computer simulations.

The paper is organized as follows. Section 2 presents a
DS/CDMA system to be studied. After a brief review of the
MOE multiuser detection method in Section 3, our modi-
fied MOE method is proposed and analyzed in Section 4 by
taking into account the noise effect. Effect of finite data sam-
ples is investigated in Section 5. Numerical examples are then
provided in Section 6 to justify our analyses and conclusions
are drawn in the last section.

2. SYSTEMMODEL

Consider a DS/CDMA communication system with J users.
User j ( j = 1, . . . , J) has a zero-mean and i.i.d. information,
bearing sequence wj(n) to transmit whose variance is σ2wj

=
E{‖wj(n)‖2}. Each symbol is spread by a periodic spreading

sequence cj(k) (k = 0, . . . , P−1) of period P. Then the signal
after spreading is given in [15]

s j(n) =
∞∑

l=−∞
wj(l)cj(n− lP). (1)

Let the chip sequence be transmitted through a linear chan-
nel with a baseband impulse response gj(n). Then the re-
ceived discrete-time signal y(n) at the chip rate receiver due
to user j becomes

yj(n) =
∞∑

m=−∞
gj(m)s j

(
n− dj −m

)
=

∞∑
l=−∞

wj(l)hj
(
n− dj − lP

)
,

(2)

where dj is the delay of user j in chip periods,

hj(n) =
∞∑

m=−∞
gj(m)cj(n−m). (3)

After considering all users and AWGN with zero-mean and
variance σ2v = E{‖v(n)‖2}, the received signal becomes

y(n) =
J∑
j=1

yj(n) + v(n). (4)

Assume 0 ≤ dj < P and the receiver is synchronized to our
desired user—user 1 (d1 = 0). The channel gj(n) has maxi-
mum order q � P [15]. After collecting P measurements in
a vector, a vector form input/output relation follows

y(n) =
J∑
j=1

y j(n) = h1w1(n) +Hiwi(n) + v(n), (5)

where h1 = [h1(0), . . . , h1(P − 1)]T is the signature vector of
user 1, wi(n) is an interference vector including intersymbol
interference (ISI) and MUI, Hi is the signature matrix with
columns representing signature waveforms of corresponding
symbols in wi(n), v(n) is an AWGN vector. Based on (3), the
signature vector of w1(n) can be decomposed as h1 = Cg1
where C is a code filtering matrix corresponding to the de-
sired user and g1 is its unknown channel vector

C =


c1(0) 0
...

. . . c1(0)
...

...
c1(P − 1) · · · c1(P − q − 1)

 ,

g1 =


g1(0)
...

g1(q)

 .
(6)

This structure of the user’s signature has been exploited in
[15] to design an MOE receiver which will be first briefly re-
iterated next.
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3. MOE-BASEDMULTIUSER DETECTION

When multipath distortion exists in a communication sys-
tem, an MOE receiver f is obtained by minimizing its output
power subject to parameterized constraints g as [15]

min
f

fHRf , subject to CH f = g, (7)

where R = E{y(n)yH(n)}. In (7), g is a constraint vector
containing q + 1 unknown constraints. Under multiple con-
straints, the power of the desired symbol becomes a constant.
Therefore, minimization of the output power is equivalent
to minimization of interference plus noise. For a given g, the
optimal receiver can be derived, based on the Lagrange mul-
tiplier method

f0 = R−1C
(
CHR−1C

)−1
g, (8)

while the minimum output power becomes

�min = gH
(
CHR−1C

)−1
g. (9)

In order to obtain an optimal constraint vector, it is proposed
to maximize �min [15], that is, to maximize the power of the
signal component after the interference has been suppressed
in the first step. It is then transformed into the following
problem:

g0 = arg min
‖g‖=1

gHAg, A
∆= CHR−1C. (10)

Therefore, g0 is the eigenvector of A associated with its min-
imum eigenvalue λ. With g0, the MOE receiver in (8) irre-
spective of a positive scalar 1/λ becomes

f0 = R−1Cg0. (11)

It can be observed from (11) that if g0 is replaced by g1,
then f0 becomes the MMSE solution after ignoring a pos-
itive scalar. Unfortunately, such an MOE receiver exhibits
near-optimal performance [15] compared with the MMSE
receiver mainly due to the fact that g0 is a biased estimate of
g1. As revealed therein, the first-order discrepancy between
g0 and g1 is proportional to the noise power σ2v . If the noise
power is reduced in the output covariance matrix, the es-
timate of g1 is expected to be improved. Finally, the detec-
tion performance will approach that of the MMSE receiver.
In Section 4, we will mitigate this noise effect by modifying
the optimization cost function and develop a corresponding
criterion.

4. MITIGATION OF NOISE INMOE-BASEDMULTIUSER
DETECTION

4.1. Modified optimization criterion

The contribution of noise exists in the data covariance ma-
trix R. We reconstruct a cost function by alleviating the noise

contribution1

min
θ̄

θ̄
H
R̄θ̄, subject to CH θ̄ = ḡ, (12)

where R̄ = R − ασ2v I. Parameter α quantifies the extent of
noise mitigation and should satisfy 0 ≤ α < 1 such that the
modified covariance matrix R̄ is positive definite. Its effect
will be discussed later. Vector θ̄ is a pretended receiver be-
cause it filters the denoised data which is difficult to obtain
in practice. The main objective in this step is to formulate an
optimization problem which guarantees a better solution for
our channel estimate, upon which a practical MMSE receiver
can be built. The optimal “receiver” from (12) becomes

θ̄0 = R̄−1C
(
CH R̄−1C

)−1
ḡ, (13)

while the minimum output power has a form

�min = ḡH
(
CH R̄−1C

)−1
ḡ. (14)

Following the similar procedure described in Section 3, ḡ is
obtained by

ḡ0 = arg min
‖ḡ‖=1

ḡH Āḡ, Ā
∆= CH R̄−1C. (15)

Once optimal solution ḡ0 is obtained, our MMOE receiver is
forced to take a similar form as (11)

f̄0 = R−1Cḡ0 (16)

instead of being constructed from R̄. However, it is noticed
that both R̄ and R are required to obtain f̄0 since R̄ affects ḡ0.
In practice, R can be easily estimated from the received data
vectors. But the noise power is not known a priori, rendering
estimation of R̄more difficult. We may proceed to obtain an
estimate of σ2v from the smallest eigenvalue of the estimated
data covariance matrix R̃. Then choose α as close to one as
possible but ensure that R̄ does not become rank deficient. It
may also be feasible to treat ασ2v as a new parameter and pre-
select its value based on some preliminary knowledge about
the noise level in a practical system.

Next we will study how parameter α affects our channel
estimator ḡ0 and the performance of the receiver f̄0. In par-
ticular, the channel estimation error and the output SINR of
the MMOE receiver will be derived and compared with the
MOE-based approach.

4.2. Performance of theMMOEmethod

According to (15), (16), and our definition for R̄, the perfor-
mance of the modified channel estimator (constraint vector)
and the MMOE receiver are highly dependent on the choice
of α. For notational convenience, define β = (1 − α)σ2v . A
procedure similar to [15] will be taken in the following anal-
ysis. First, under the assumption that β is small, we express
the optimal constraint vector as a power series of β. Thus, the

1Quantities with “ ” above are for the modified method.
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channel estimation error can be compared with [15]. It will
be revealed that the error is significantly reduced. Then we
will derive the SINR as a function of α and show that SINR is
also improved due to more accurate channel estimate.

To achieve our goal, we similarly perform EVD on R and
R̄ [15]

R =
[
Vs Vn

][Λs 0
0 0

][
VH
s

VH
n

]
+ σ2v I,

R̄ =
[
Vs Vn

][Λs 0
0 0

][
VH
s

VH
n

]
+ βI,

(17)

where Λs = diag{λ1, . . . , λξ}, Vs, and Vn span the signal and
noise subspaces, respectively.2 In parallel with [15, Lemmas
1 and 2], we first present the following results. For simplicity,
assume ‖g1‖ = 1.

Lemma 1. The objective matrix Ā in (15) after being scaled by
β can be expressed by a power series of β, similarly as matrix A
by a power series of σ2v ,

βCH R̄−1C = A0 + βA1 − β2A2 +O
(
β3
)
, (18)

σ2vC
HR−1C = A0 + σ2vA1 − σ4vA2 +O

(
σ6v
)
, (19)

where matrices A0, A1, and A2 are defined as3

A0 = CHVnVH
n C,

A1 = CHVsΛ
−1
s VH

s C,

A2 = CHVsΛ
−2
s VH

s C.

(20)

Lemma 2. If Ā = CH R̄−1C satisfies (18), then its minimum
eigenvalue γ̄min and eigenvector ḡ are given by

γ̄min = 1
σ2w1

− βgH1 A2g1 − βgH1 A1A
†
0A1g1 +O

(
β2
)
, (21)

ḡ0 = g1 − βA†0A1g1 +O
(
β2
)
. (22)

Meanwhile, the following holds:

σ2w1
gH1 A1g1 = 1, (23)

where † denotes the pseudo-inverse.

These two lemmas can be similarly proved as in [15]. Ac-
cording to Lemma 2, the first-order bias in channel estimate
becomes

∆ḡ ≈ −(1− α)σ2vA
†
0A1g1, (24)

where β has been replaced by its definition (1−α)σ2v . Noticing
the bias ∆g from the MOE method

2We have dropped and will drop the subscripts for all identity matrices I
which can be easily identified from the context.

3For clarity later, the matrix A2 is defined to be positive definite which is
opposite to that in [15].

∆g ≈ −σ2vA†0A1g1, (25)

the channel estimation errors from the MMOE method and
the MOE method are related to each other by ‖∆ḡ‖ ≈ (1 −
α)‖∆g‖. Recalling that 0 ≤ α < 1, ‖∆ḡ‖ is thus reduced, such
that ‖∆ḡ‖ < ‖∆g‖. Especially when α approaches 1 (from the
left) α→ 1−, ‖∆ḡ‖ � ‖∆g‖ and ‖∆ḡ‖ → 0.

With these results, an interesting observation can be eas-
ily made. The MMOE method is closely related to the sub-
space method, for example, [10]. In fact, as α → 1−, β → 0.
It is known that scaling a matrix by a constant scalar does
not alter eigenvectors of the matrix. According to (18), the
objective matrix of the MMOE method (scaled by β) con-
verges to A0 which is exactly the one used in the subspace
method to estimate channel parameters. Therefore, the con-
straint vector can be well treated as an estimate of g1. The
difference between the MMOE solution and the subspace so-
lution diminishes as β → 0. It is thus not surprising that the
performance of the MMOE receiver improves, as shown by
the following proposition.

Proposition 3. The SINRs of the MMSE receiver, the MOE re-
ceiver, and the proposed MMOE receiver are given by

SINRmmse = 1 +O
(
σ2v
)

σ2v σ2w1
gH1 A2g1 +O

(
σ4v
) , (26)

SINRmoe = 1 +O
(
σ2v
)

σ2v σ2w1
gH1 A2g1 + σ2v σ2w1

gH1 A1A
†
0A1g1 +O

(
σ4v
) ,
(27)

SINRmmoe= 1 +O
(
σ2v
)

σ2v σ2w1
gH1 A2g1+(1−α)2σ2v σ2w1

gH1 A1A
†
0A1g1+O

(
σ4v
) .

(28)

Proof. See Appendix A.

According to this proposition, we immediately obtain the
following results in parallel with [15, Proposition 4], which
measure the performance degradation of the MOE receiver
and the MMOE receiver relative to the MMSE receiver, re-
spectively

SINRmmse

SINRmoe
−→ 1 + η as σ2v −→ 0,

SINRmmse

SINRmmoe
−→ 1 + η̄ as σ2v −→ 0,

(29)

where

η = gH1 A1A
†
0A1g1

gH1 A2g1
, η̄ = (1− α)2η. (30)

It is clear that the MMSE receiver provides the best perfor-
mance because η > 0 and η̄ > 0. However, since 0 ≤ α < 1,
we get η̄ ≤ η. Therefore, if α is chosen to be non-zero,
performance improvement of the MMOE receiver over the
MOE receiver [15] is always guaranteed. The extent of im-
provement depends on α and system parameters which are
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indicated by quantities g1,A0,A1, andA2. In particular, when
α approaches unity, η̄ → 0 which indicates that the MMOE
receiver approaches the MMSE receiver. These analytical re-
sults will be verified by our computer simulations.

Besides the additive noise, imperfect estimation of the
data covariance matrix also causes performance degradation
of the MOE receiver and will be studied in Section 5.

5. PERFORMANCE LOSS INMOE-BASEDMULTIUSER
DETECTION DUE TO IMPERFECT COVARIANCE
ESTIMATION

As observed from (10) and (11), g0 and f0 depend on R. If
it is perturbed, then f0 gets perturbed. We will denote a per-
turbation by preceding the corresponding quantity by δ, and
perturbed quantity with ˜

δf0 = f̃0 − f0, δR = R̃− R. (31)

In practice, R is estimated by sample average R̃ =
(1/N)

∑N
n=1 y(n)yH(n). Perturbation arises in the estimated

data covariance matrix when it is estimated fromN data vec-
tors [19]. Although R̃ converges to R as N → ∞, a pertur-
bation δR due to finite N will cause matrix A perturbed and
finally the MOE solution. Matrix δR is a random variable
due to randomness of R̃. It has zero-mean E{δR} = 0. Here,
we are interested in a perturbed eigenvector of A after per-
turbation in R, and investigate how N affects the MSE of the
estimate of the constraint vector and the performance of the
MOE receiver.

According to (10), A depends on R−1. Under small per-
turbation assumption (largeN) and using Taylor’s expansion
up to the first order, (R + δR)−1 is approximated by

(R + δR)−1 ≈ R−1 − R−1δRR−1. (32)

Then the first-order perturbation of A is

δA ≈ −CHR−1δRR−1C. (33)

Due to δA, g0 and associated eigenvalue λ are perturbed with
perturbations δg0 and δλ, respectively. It can be found that
[19]

δg0 ≈ −(A− λI)†δAg0. (34)

Substituting (33) in (34), δg0 is related to δR by

δg0 ≈ (A− λI)†CHR−1δRf0, (35)

where (11) has been used. Therefore, the covariance of chan-
nel estimate becomes

E
{
δg0δgH0

} ≈ (A− λI)†CHR−1E
{
δRf0fH0 δR

}
R−1C(A− λI)†.

(36)
The MSE of the estimate of the constraint vector is then the
trace of matrix E{δg0δgH0 }. Meanwhile, considering (11) and
(32), the perturbation in theMOE receiver due to δR and δg0

has a form

δf0 ≈ R−1Cδg0 − R−1δRf0. (37)

Substituting (35) in (37), δf0 is related to a random variable
δR by

δf0 ≈ A3δRf0, (38)

where

A3
∆= [R−1C(A− λI)†CH − I

]
R−1. (39)

It also has a zero-mean E{δf0} = 0. The performance of the
MOE receiver will be affected by δf0. If we adopt the SINR as
a performance measure and define it as

S̃INR
∆= σ2w1

E
{∥∥f̃H0 h1∥∥2}
E
{
f̃H0 Ri f̃0

} , Ri = R− σ2w1
h1hH1 , (40)

then after replacing f̃0 by f0 + δf0 and noticing that E{δf0} =
0, it is perturbed to be

S̃INR = σ2w1

∥∥fH0 h1∥∥2 + E
{
δfH0 h1h

H
1 δf0

}
fH0 Rif0 + E

{
δfH0 Riδf0

} . (41)

Observe that

E
{
δfH0 h1h

H
1 δf0

} ≈ fH0 E
{
δRAH

3 h1h
H
1 A3δR

}
f0,

E
{
δfH0 Riδf0

} ≈ fH0 E
{
δRAH

3 RiA3δR
}
f0.

(42)

To evaluate these two quantities, it suffices to determine the
following general-form quantity

B
∆= E{δRDδR}, (43)

where D can be replaced by AH
3 h1h

H
1 A3 or AH

3 RiA3. Simi-
larly, if D is replaced by f0fH0 , then (36) can be evaluated as
well. Matrix B depends on the second-order statistics of δR.
Therefore, it will finally rely on up to the fourth-order statis-
tics of the received data since δR is related to the second-
order information of the output. It is shown in Appendix B
that for a given data model, statistical properties of the in-
put, and additive noise, B can always be evaluated according
to (B.20) in Appendix B.

It is clear that both the MSE and S̃INR depend on 1/N .
They also depend on the signal and noise powers. The effect
of N will be tested and compared with our analytical results
by simulations.

6. SIMULATIONS

We simulate a 10-user CDMA system with equal power and
binary inputs. Gold sequence of length 31 is used for each
user. The receiver is synchronized to user 1 while other de-
lays are uniformly distributed in [0, 30]. Channel order is
set to be 3 for each user. Channel coefficients are randomly
selected from the interval [−1,+1] and the corresponding
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Figure 1: Comparison of data-length effect on the channel estima-
tion error for different methods.

channel vector is then normalized. Totally 10 dB AWGN is
added to the input. Totally 100 independent realizations are
performed to obtain the average results.

We test the performance of the proposedMMOEmethod
in different scenarios and compare it with the MOE method
and the subspace method. The data length effect in terms of
the number of received data vectors (N) is first examined.
Figure 1 presents the MSE of channel estimation. The dash-
dotted line is for the MOE method, the solid line represents
the proposed method with α = 0.7, and the dashed line is for
the subspace method. It can be seen that for a large N , the
MMOEmethod is much better than theMOEmethod, and is
close to the subspace method. Therefore, modification of the
MOE optimization criterion leads to improvement in chan-
nel estimation. With these estimated channel parameters, the
corresponding receivers exhibit different output SINRs, as
shown in Figure 2. It is clear that the MMOE receiver gives
higher SINRs than the MOE receiver and similar SINRs as
the blind MMSE receiver.

Next, we test the noise effect when the input SNR varies
from 0dB to 50dB. In Figure 3, we compare the experimental
results of channel estimation errors for the MMOE method
(solid line) and the MOE method (dash-dotted line) with
corresponding analytical results based on (24) with α = 0.7
(0’s) and (25) (×’s), respectively. It can be observed that the
proposed method always outperforms the MOE method by
almost 10 dB. This difference agrees with the factor (1 − α)2

in a logarithm scale as predicted by (24) and (25). It is
also clear that the experimental results are highly consis-
tent with the analytical results at high SNR upon which
our approximation is based. Similarly, the output SINRs of
the MMOE receiver and the MOE receiver are compared
with the MMSE receiver and the SINR ratios plotted in
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Figure 2: Comparison of data-length effect on the output SINR for
different methods.
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Figure 3: Channel estimation improvement of the MMOEmethod
over the MOE method for different SNRs.

Figure 4. The analytical results are obtained from the recip-
rocals of (29). The solid line represents the experimental ra-
tio SINR(ḡ)/ SINRmmse of the proposedMMOEmethod, and
×’s represent its convergence level 1/(1+ η̄). The dash-dotted
line is the experimental ratio SINR(g)/ SINRmmse of theMOE
method, and ×’s stand for its convergence level 1/(1 + η).
The consistency between the experimental result and the an-
alytical result for each method is obvious when SNR is high.
However, the difference between theMMOEmethod and the
MOE method is evident.
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Figure 4: SINR improvement of the MMOE receiver over the MOE
receiver for different SNRs.

It has been shown analytically that the parameter α has a
significant effect on the performance of the MMOE method.
When α = 0, the MMOE method degrades to the MOE
method. When α → 1−, the MMOE method approaches the
subspace method if channel estimation is of our interest, or
the MMOE receiver becomes the MMSE receiver if detection
is performed. These claims can be verified by our simulation
results for the channel estimation error in Figure 5 and the
output SINR in Figure 6. SNR is still set to be 10dB. Parame-
ter α varies from 0 to 1. Around α = 1, we set α = 0.999 to ap-
proximate 1 in order for the required matrix to be invertible.
In Figure 5, the experimental result from theMOEmethod at
α = 0 coincides with the experimental result for the MMOE
method as the dash-dotted line overlaps with the solid line.
As α increases, the difference between these two methods in-
creases, especially when α approaches 1. Again, the analyti-
cal result agrees with the experimental result for the MMOE
method. Figure 6 clearly shows the relationship among the
MMOE receiver, the MOE receiver, and the MMSE receiver.
It thus suggests that α should be selected to be as close to 1 as
possible.

Performance loss from imperfect covariance estimation
is further investigated for theMOEmethod. The effect ofN is
tested for a range from 100 to 104 and corresponding SINRs
are shown in Figure 7 with SNR = 10dB. The dashed line
represents the theoretical value (limit) as N → ∞, dashed-
dotted line is from our analysis by (41), and solid line is based
on simulation. It is observed that whenN reaches 2×103, the
simulation result converges to the analytical one. SINR con-
vergence is due to the convergence of the constraint vector
to its optimal solution, as plotted in Figure 8, in terms of the
MSE. The dashed line is our analytical result in (36) while the
solid line is from our experiment. The point where the solid
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Figure 5: Effect of parameter α on the channel estimation error for
the MMOE method.
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receiver.

line converges to the dashed line is approximately the same
as that in Figure 5.

7. CONCLUSIONS

This paper provides detailed study on the MOE method
when perfect estimation of the data covariance matrix is im-
possible. The performance of the MOE receiver, in terms of
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Figure 7: Data-length effect on the output SINR of the MOE re-
ceiver.
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Figure 8: Data-length effect on the constraint estimation of the
MOE method.

the output SINRs with respect to the number of received data
vectors, is examined both analytically and experimentally.
Due to the additive noise, the MOE receiver suffers from per-
formance degradation compared with the blind MMSE re-
ceiver. Therefore, a modified MOE (MMOE) method is pro-
posed by introducing a parameter α in the MOE constrained
optimization criterion whose effect is throughly investigated.
It is shown that significant improvement is achievable by
properly selecting this parameter. It is also demonstrated that

the MMOEmethod is closely related to the subspace method
and exhibits agreement when α→ 1−. In such a scenario, the
MMOE receiver also converges to the MMSE receiver.

APPENDICES

A. PROOF OF PROPOSITION 3

The SINRs of the MMSE receiver and the MOE receiver in
(26) and (27) are direct results from [15, Appendix B]. Now,
we derive (28) in details.

According to our input/output data model (5), the out-
put SINR of our modified MOE receiver f̄0 is given by the
ratio of the signal power to the interference plus noise power

SINRmmoe =
σ2w1

f̄H0 h1h
H
1 f̄0

f̄H0 Rf̄0 − σ2w1
f̄H0 h1h

H
1 f̄0

, (A.1)

where f̄H0 Rf̄0 is the total output power. Substituting (16) into
(A.1), we relate SINRmmoe to the optimal constraint vector as
follows:

SINRmmoe=
σ2w1

ḡH0 CHR−1Cg1gH1 CHR−1Cḡ0
ḡH0 CHR−1Cḡ0 − σ2w1

ḡH0 CHR−1Cg1gH1 CHR−1Cḡ0
.

(A.2)

Based on (19) and (22) and noticing that VH
n Cg1 = 0, we

have

ḡH0 C
HR−1Cg1 = gH1 A1g1 − βgH1 A1A

†
0A1g1

− σ2v ḡ
H
0 A2g1 +O

(
σ4v
)
,

(A.3)

where the fact that β = (1 − α)σ2v is in the order of σ2v has
been employed. Using (23) and noticing that gH1 CHR−1Cḡ0
is the Hermitian of (A.3), we then obtain the quantity in the
numerator of SINRmmoe

ḡH0 C
HR−1Cg1gH1 C

HR−1Cḡ0 = 1
σ4w1

− 2β
σ2w1

gH1 A1A
†
0A1g1

− 2σ2v
σ2w1

gH1 A2g1 +O
(
σ4v
)
.

(A.4)

Similarly, according to (19) and (22) and noticing that
VH
n Cg1 = 0, we can find the first term in the denominator

of SINRmmoe,

ḡH0 C
HR−1Cḡ0 = gH1 A1g1 +

(
β2

σ2v
− 2β

)
gH1 A1A

†
0A1g1

− σ2v g
H
1 A2g1 +O

(
σ4v
)
.

(A.5)

After considering (23), (A.5) becomes

ḡH0 C
HR−1Cḡ0 = 1

σ2w1

+
(
β2

σ2v
− 2β

)
gH1 A1A

†
0A1g1

− σ2v g
H
1 A2g1 +O

(
σ4v
)
.

(A.6)
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Substituting (A.4) and (A.6) into (A.2), we have

SINRmmoe= 1 +O
(
σ2v
)

σ2v σ2w1
gH1 A2g1+(β2/σ2v )σ2w1

gH1 A1A
†
0A1g1+O

(
σ4v
) .

(A.7)
After replacing β by (1− α)σ2v , (28) follows.

B. DERIVATION OFMATRIX B

For notational convenience, denote y(n) in (5) by yn, and
v(n) by vn. We rewrite (5) in another form

yn = Hwn + vn, (B.1)

where

H = [h1,Hi
]
, wn =

[
w1(n),wT

i (n)
]T
. (B.2)

Substituting δR by R̃− R, we obtain

B = E{R̃DR̃} − RDR. (B.3)

Assume N data vectors are mutually independent for our
derivation purpose. It can always be made possible by taking
only those N vectors which are not contributed by common
inputs, although data vectors consecutive in time may be de-
pendent on each other due to channel span. Then

E{R̃DR̃} = 1
N
C1 +

(
1− 1

N

)
RDR, (B.4)

where C1
∆= E{ynyHn DynyHn }. Therefore,

B = 1
N

(
C1 − RDR

)
. (B.5)

According to (B.1), ynyHn can be expanded into four terms

ynyHn = HwnwH
n H

H +HwnvHn + vnwH
n H

H + vnvHn . (B.6)

The noise vn has been assumed to be zero-mean white Gaus-
sian. It is independent of the input sequence which is i.i.d.
with zero-mean, variance Γ, and finite fourth-ordermoment.
Since E{vnvHn } = σ2v I, E{wnwH

n } = Γ. Only the following
terms survive in C1,

C1 = HC2HH + C3 +HE
{
wnwT

n

}
HTDTE

{
v∗n v

H
n

}
+ E
{
vnvTn

}
DTH∗E

{
w∗nw

H
n

}
HH + σ2v tr(D)HΓHH

+ σ2v tr
(
DHΓHH

)
I + σ2vHΓHHD + σ2vDHΓHH,

(B.7)

where tr denotes the trace of a matrix, superscript “∗” de-
notes complex conjugate

C2
∆= E
{
wnwH

n H
HDHwnwH

n

}
,

C3
∆= E
{
vnvHn Dvnv

H
n

}
.

(B.8)

The last four terms in C1 are deterministic quantities. The
first four terms are dependent on the statistical properties of
the transmitted signal and the noise. Here as an example, we
restrict our attention to a typical scenario: the transmitted
symbols from different users are taken from real finite al-
phabets and have equal power, and the noise is also real. For
all other cases, we can follow the similar procedures detailed
next. However, we will not enumerate them for our concise
presentation.

We denote the variance of the input by σ2w and its fourth
order moment bym4w. Then

Γ = E
{
wnwT

n

} = σ2wI, E
{
vnvTn

} = σ2v I. (B.9)

To easily evaluate C2 and C3, we perform vec operations first
to combine corresponding terms, similarly as [21]. Then re-
verse operations unvec are applied to obtain these matrices

C2 = unvec
[
C4 vec

(
HHDH

)]
, (B.10)

C3 = unvec
[
C5 vec(D)

]
, (B.11)

where the property of vec has been applied [22], and

C4
∆= E
{(
wnwT

n

)⊗ (wnwT
n

)}
,

C5
∆= E
{(
vnvTn

)⊗ (vnvTn )}. (B.12)

Then it can be verified that [21]

C4 =
(
m4w − 3σ4w

)
X1 + σ4wX2 + σ4wI, (B.13)

where

X1 = diag
{
a1aT1 , . . . , aLa

T
L

}
,

aTl =
0, . . . , 0, 1︸︷︷︸

lth element

, 0, . . . , 0


1×L

,

X2 =
[
X̃i, j
]
L×L, X̃i, j = aiaTj + a jaTi ,

(B.14)

and L is the length of the input vector wn. Similarly, we can
evaluate C5. Since the second-order and fourth-order mo-
ments of a white Gaussian process are related, we obtain

C5 = σ4vX3 + σ4v I, (B.15)

where

X3 =
[ ˜̃Xi, j

]
P×P,

˜̃Xi, j = bibTj + b jbTi ,

bTl =
0, . . . , 0, 1︸︷︷︸

lth element

, 0, . . . , 0


1×P

,
(B.16)

and P is the length of the data vector (or the noise vector vn).
Substituting (B.13) in (B.10) and (B.15) in (B.11), respec-
tively, we obtain

C2 = C6 + σ4wH
HDH,

C3 = unvec
[
σ4vX3 vec(D)

]
+ σ4vD,

(B.17)
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where

C6 = unvec
{[(

m4w−3σ4w
)
X1+σ4wX2

]
vec

(
HHDH

)}
. (B.18)

Observe that

R = σ2wHHT + σ2v I. (B.19)

Substituting (B.9) and (B.17) in (B.7) first, then (B.7) in
(B.5), we obtain

B = σ2wσ
2
v

N

(
HHTDT +DTH∗HH

)
+
σ2wσ

2
v

N

[
tr(D)HHH + tr

(
DHHH

)
I
]

+
σ4v
N

unvec
[
X3 vec(D)

]
+

1
N
HC6HH,

(B.20)

which is our desired result.
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