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This paper proposes a new method for carrying out joint blind equalization and blind estimation of the bit error rate (BER) in
the output of baud-rate FIR equalizers. A simple test for assessing decision errors in the output of the decision device is derived.
A comparative study of several BER estimator methods is presented in terms of convergence rate and tracking capability of both
static and dynamic channels. Simulations not only validate theoretical results but also point out the effectiveness of the new
proposition in terms of low computational burden and accurate BER estimation. Finally, an application of the new proposition
for the detection and correction of misconvergence due to local minima issues is also presented.
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1. INTRODUCTION

The universal mobile telecommunication system (UMTS)
norm [1] is the major current trend in mobile communica-
tions. This norm aims at establishing a global mobile system,
wherein any terminal may communicate with any other ter-
minal. The terminals may be located anywhere on Earth, and
the terminals may also be mobile or not. At the same time,
the deployment of UMTS requires interconnection of several
different local telecommunication systems in order to pro-
vide the link between the two terminals. Of course, satellite
communications play an important role in UMTS since they
provide cost-effective international links [2, 3].

Three major characteristics of the UMTS are discussed in
the following [4].

(C1) Transmission rates currently present an increasingly
growing demand [1].

(C2) The communication channel is a time-variant system
of difficult characterization. In fact, temporal vari-
ations may be predicted with limited accuracy, and
models are quite dependent both on the spatial or time
scale [1]. In consequence, synchronization between
the two communicating terminals is quite problem-
atic due to severe fades, which requires special tech-
niques for assuring the system performance, for exam-
ple, adaptive transmission [5].

(C3) The management of a global communication system
as UMTS is quite complex since it may be divided in

several local subsystems. Recent work [6] pointed out
that, for assuring competitive quality, reliability, and
availability, UMTS wireless fault management should
employ an overlay system that continuously evaluates
the signal quality at the level of local subsystems. For
instance, [6] proposes a monitoring system based on
the estimation of the bit error rate (BER).

2. ADAPTIVE EQUALIZATION AND BUSSGANG
ALGORITHMS

This work focuses on blind equalization [7, 8]. In this case,
the equalizer update is carried out by means of an algorithm
which does not require the use of an exact copy of the trans-
mitted signal. The following reasons motivate this choice.

(R1) Blind techniques may enhance the transmission rates
since they do not require a training period of the
equalizer.

(R2) Blind techniques avoid the accurate synchronization
between transmitter and receiver, which is a stringent
requirement associated with the training period of su-
pervised equalization.

By respectively comparing (C1) and (C2) to (R1) and
(R2), we may conclude that blind techniques agree quite well
with the growing transmission rate demands as well as avoid-
ing the problematic synchronization associated with UMTS.
Particularly, among the several blind techniques, this work

mailto:destro@ufu.br


On the Blind Estimation of Baud-Rate Equalizer Performance 1449

focuses on Bussgang algorithms. This methodology consists
of a recursive optimization procedure, which is derived based
on the stochastic minimization of some cost function. This
cost function is defined according to some statistical crite-
rion. Bussgang algorithms present several interesting features
such as simple implementation, low computational burden,
and well-established theoretical results.

However, Bussgang algorithms do present drawbacks
which are mainly connected to the Bussgang cost functions.
In fact, it has been demonstrated in [8] that for practical
purposes, at least one of the local minima of all Bussgang
cost functions may be associated with a poor steady-state
equalization or even no equalization at all. This means that,
broadly speaking, Bussgang blind techniques cannot assure
all the time that equalization will take place. In consequence,
the performance of Bussgang equalizers is quite dependent
on the initial values assigned to the algorithm parameters.

Of course, if Bussgang equalizers are to be used in an
UMTS, then it is of paramount importance to develop meth-
ods to assess the equalizer performance, for example, the es-
timation of the BER in the output of the blind equalizer.
Such procedure is motivated by two major reasons. Firstly,
it enables to monitor, detect, and provide solutions for local
minima problems associated with the problematic learning
of Bussgang equalizers. Secondly, in view of UMTS charac-
teristic (C3), the BER in the output of a Bussgang equalizer,
which is associated with a system terminal, could be consid-
ered as a kind of signal quality measure at the level of a local
subsystem. As the equalizer performs joint blind equalization
and blind BER estimation, it is possible then to minimize the
complexity of the “Performance Manager” proposed in [6]
so that signal quality monitoring is partially carried out in a
local basis.

3. THEORETICAL FRAMEWORK

Consider in Figure 1 the classical mathematical model used
for the analysis of adaptive equalizers, where {h(n)}, {c(n)},
and {v(n)} denote, respectively, the impulsive response of the
channel, the linear equalizer, and the global system (channel
plus linear equalizer). Besides,

{
v(n)

} = {h(n)}∗ {c(n)}, (1)

where the operator “∗” is the discrete convolution.
Suppose that

(H1) the communication system model is baseband;
(H2) the signal-to-noise ratio (SNR) is high so that the ad-

ditive noise may be neglected;
(H3) the information signal x(n) is zero-mean, iid, and M-

PAM (whereM is the number of modulation levels);
(H4) the communication system is linear and stable.

Notice that, although hypothesis (H1), (H2), (H3), and
(H4) are restrictive, they have been extensively used in the
past [9, 10] in order to analyse adaptive equalization. Besides,
(H1), (H2), and (H4) are currently used [7, 8, 11] in order to
derive important results in the field of local minima analysis.
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Figure 1: Communication system model.

It may be demonstrated that the output of the linear
equalizer is given by

y(n) = x(n− d)± dist(n), (2)

dist(n) =

∣∣∣∑N+L−2
j=0
j �=d

v( j) · x(n− j)
∣∣∣

∣∣v(d)∣∣ , (3)

where d is equalization delay, dist(n) is distortion or inter-
symbol interference, N is channel model length, L is equal-
izer length, and v( j) is jth coefficient of the global system
{v(n)}.

The main goal of the linear equalizer is to recover the in-
formation signal, so that at the output of the decision device,
the “open-eye” condition is verified [11]

x̂(n) = x(n− d)⇐⇒ dist(n) <
Q

2
, (4)

e(n)
∆=



0; if x(n− d) = x̂(n)⇐⇒ dist(n) <

Q

2
,

1; if x(n− d) �= x̂(n)⇐⇒ dist(n) ≥ Q

2
,

(5)

where Q is the distance between two adjacent levels of the
M-ary PAM signal and e(n) is the equalization error or deci-
sion error. Notice that when (4) holds, the intersymbol inter-
ference dist(n) may be different from zero but the output of
the decision device is equal to the transmitted signal. In con-
sequence, no decision error has occurred (e(n) = 0). Con-
versely, if (4) does not hold, then a decision error has taken
place (e(n) = 1).

In the literature, (4) and (5) are rarely investigated. Most
articles emphasize the following condition [12], which states
that equalization is perfect as the intersymbol interference
(3) is zero,

y(n) = x(n− d), (6)

dist(n) = 0. (7)

Equations (6) and (7) are known in the literature as the
“zero-forcing (ZF) condition.”

4. PREVIOUSWORK

There are few works of literature devoted to the analysis and
development of estimators for the BER in the output of blind
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equalizers. In [13], the authors propose a binary hypothesis
test in order to detect errors due to an incorrect decision of
the equalizer. Although such technique is quite effective and
general, since it may be applied to both FIR and DFE equal-
izers, it presents high computational complexity and it does
not work “on-line.” In [14], the authors estimate the BER
at the equalizer output by means of a neural network which
computes the probability of wrong decisions. Although this
method may be applied to nonlinear channels, the authors
did not discuss the transient performance of the BER esti-
mates which may be influenced by local minima problems
connected with neural network learning.

In the most recent work of the author [15], a simple re-
cursive method is developed in order to estimate the BER at
the output of an adaptive equalizer. Such method is based
on the blind identification of the channel by means of a
high-order statistics (HOS) method followed by a simple
check procedure, which recognizes whether equalization er-
rors have taken place or not. The concept of “equalization er-
ror” is considered similar to “decision error,” that is, when the
output of the decision device of the equalizer is different from
the transmitted signal. This simple check procedure has been
derived based on the “open-eye condition” [8], whichmay be
considered as an alternative theoretical framework with re-
spect to the classical “zero-forcing” condition. The main idea
behind this check is based on the following reasoning: by es-
timating the channel model, we may use it along with the
equalizer coefficients in order to establish whether the eye is
open or not. If the eye is open, then there is no decision error.
Otherwise, an estimator of the BER is updated.

Although simulation results in [15] point out that the
new technique provides a BER estimator of simple imple-
mentation as well as a low computational burden (with re-
spect to the previous methods reported in [13, 14]), the new
method does present drawbacks. Since estimation of cumu-
lants is a time-consuming task, subject to error-propagation
effects, the convergence of the technique proposed in [15]
is slow and the absolute computational burden is still very
high. These drawbacks point out that the technique may not
be suitable for coping with the time variations of the mobile
channel.

5. BASIC RESULTS FOR ANALYSING THE OPEN-EYE
AND REVIEWOF THE PREVIOUSMETHOD

Since the distortion (3) is a function of the global system co-
efficients v( j) and since each coefficient v( j) is bounded due
to the stable character of {v(n)}, we may define an upper
bound for the distortion dist(n) which will be represented by
the symbol Sup{dist(n)}. (The operator Sup{(·)} represents
the maximum value of (·)).

Suppose that

(H5) the bound Sup{dist(n)} is derived by assuming the
worst case, that is, the distortion is maximum;

(H6) the bound is defined by taking into account just
the effects of the transmitted signal x(n) so that
Sup{dist(n)} is a function of {v(n)}.

Hypotheses (H5) and (H6) define a particular bound of
the distortion, and they were proposed in [11, 16] in order
to analyse the open-eye condition (4) and (5). In both arti-
cles, the authors study the worst case of maximumdistortion,
which enables to cope with the general situation wherein the
distortion may take any value lower than Sup{dist(n)}. This
reasoning justifies the use of (H5) and (H6).

In [15], the author demonstrated the following theorem.

Theorem 1 (see [15]). Suppose that (H1)–(H6) hold. Then,

∣∣v(d)∣∣ > (M − 1) · (N + L− 2) · Sup
j, j �=d

{∣∣v( j)∣∣}

=⇒ x(n− d) = x̂(n) =⇒ ê(n) =⇒ e(n) = 0,
(8)

∣∣v(d)∣∣ ≤ (M − 1) · (N + L− 2) · Sup
j, j �=d

{∣∣v( j)∣∣}

=⇒ x(n− d) �= x̂(n) =⇒ ê(n) = 1,
(9)

where Sup j, j �=d{|v( j)|} ( j = 0, 1, . . . , N + L − 2; j �= d)
is the maximum absolute value of the set of coefficients
{v(0), v(1), . . . , v(d− 1), v(d + 1), . . . , v(N + L− 2)} and ê(n)
is the estimation of the decision error.

Based on Theorem 1, the author proposed in [15] the fol-
lowing simple recursive procedure in order to estimate the
BER at the output of an adaptive equalizer (n denotes the it-
eration number). Notice that such method may be applied
on-line whereas the existing estimators of the literature are
not well suited for the recursive operation of the adaptive
equalizer.

Procedure 1 (see [15]). Given d, L,M, and N for n = 1 to the
total number of iterations, we

step 1: equalize the input signal and calculate the recov-
ered signal x̂(n);

step 2: estimate the channel model {ĥ(n)};
step 3: estimate the global system

{
v̂(n)

} = {ĥ(n)}∗ {c(n)}; (10)

step 4: from {v̂(n)}, select |v̂(d)| and Sup j, j �=d{|v̂( j)|};
step 5: compare |v̂(d)| with Sup j, j �=d{|v̂( j)|} according

to (8) and (9) and calculate ê(n);
step 6: update the following estimator of the BER (ex-

pressed in percentage):

BER(n) =
(
n− 1
n

)
· BER(n− 1) +

(
100
n

)
· ê2(n). (11)

Step 2 is performed by means of the blind identification
of the channel model, which is based on HOS theory, for
example, the “C(Q, k)” algorithm [17]. Therefore, the per-
formance of the new technique depends on the accuracy of
the estimated coefficients v̂( j), which result from the convo-
lution between the filter coefficients c(i) and the estimated
channel coefficients ĥ(i). Since convolution involves addi-
tions and multiplications, the accuracy of v̂( j) is quite low
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due to error propagation. This explains some limitations of
Procedure 1 [15].

6. NEW THEORETICAL RESULTS FOR THE OPEN-EYE
CONDITION

The following theorem, which is demonstrated in the ap-
pendix, establishes further relations between the equalizer
coefficients and the open-eye condition.

Theorem 2 (main result). Suppose that (H1)–(H6) hold. Be-
sides, suppose that 0 < d < L − 1. Label Supm{|h(m)|} (m =
1, . . . , N−1) as the maximum absolute value of the set of coeffi-
cients {|h(1)|, |h(2)|, . . . , |h(N − 1)|}. Define Supq{|c(q)|} as
the maximum absolute value of the set of filter coefficients c(q)
where q = 0, 1, . . . , L− 1 and q �= d. Then,

if
∣∣c(d)∣∣ > B ·

(
Sup
q

{∣∣c(q)∣∣}
)

=⇒ x(n− d) = x̂(n)

=⇒ ê(n) = e(n) = 0, q = 0, 1, . . . , L− 1, q �= d,

(12)

if
∣∣c(d)∣∣ ≤ B ·

(
Sup
k, k �=d

{∣∣c(k)∣∣}
)

=⇒ x(n− d) �= x̂(n)

=⇒ ê(n) = 1, q = 0, 1, . . . , L− 1, q �= d,

(13)

where B is a real constant depending on the channel model

B = S

S− Supm
{∣∣h(m)

∣∣} ,

S =
N−1∑
k=0

∣∣h(k)∣∣.
(14)

Notice that hypothesis 0 < d < L − 1 is a common prac-
tice in the equalization literature [7, 8]. In the following, we
discuss the validation of Theorem 2 in the context of an ap-
plication.

7. A NEW PROPOSITION FOR CARRYING OUT JOINT
BLIND EQUALIZATION AND BLIND BER
ESTIMATION

Based on Procedure 1, Theorem 2may be used to propose an
alternative method.

Procedure 2. Given d, L, M, and N for n = 1 to the total
number of iterations, we

step 1: equalize the input signal and calculate the recov-
ered signal x̂(n);

step 2: estimate the channel model {ĥ(n)} by means of
the “C(Q, k)” algorithm [17];

step 3: from {ĥ(n)}, select Supm{|h(m)|} and calculate B
according to (14);

step 4: compare |c(d)|with B·(Supk, k �=d{|c(k)|}) accord-
ing to (12) and (13) and calculate ê(n);

step 5: update the following estimator of the BER (ex-
pressed in percentage):

BER(n) =
(
n− 1
n

)
· BER(n− 1) +

(
100
n

)
· ê2(n). (15)

Notice that, in Procedure 2, the method avoids the con-
volution associated with step 3 of Procedure 1, thus decreas-
ing the error-propagation effects due to nonideal cumulant
estimation. In consequence, Procedure 2 presents a lower
computational burden and may lead to more accurate BER
estimation with respect to Procedure 1. The blind estimation
of the channel could be carried out by any HOS method,
for example, the “C(Q, k)” algorithm [17]. This technique is
chosen due to its low computational burden. The estimation
of the delay d should consider the truncated Z-transform
of the inverse system C(z). However, experimental results
pointed out that considering d as the half of the equalizer
length, according to the center-spike initialization method
[8], leads to reasonable results for any linear channel model.

It should be stressed that the performance of Procedure 2
is dependent both on the HOS channel estimator as well as
on the estimation of the equalization delay d. However, these
issues will not be addressed in this paper. In consequence, it
must be kept in mind that the performances of both Proce-
dures 1 and 2 are subject to problems associated with channel
model under/overestimation [18, 19], as well as with the es-
timation of the delay d.

8. SIMULATIONS AND RESULTS

8.1. General description and performance criteria

A comparison among Procedures 1 and 2, the neural network
described in [14], and the classical BER estimator, was car-
ried out. These four estimators are, respectively, labelled as
P1, P2, NN, and SP. The last one (classical estimator) is de-
fined as the average of decision errors obtained by comparing
the pilot signal x(n) to the recovered signal x̂(n) according to
(5). A linear filter of L = 33 taps has been used as equalizer
in all simulations along with the Sato algorithm [7], whereas
the radial-basis function network of method SP has 13 cen-
ters in all situations.

The transmitted signal x(n) is M-PAM. All simulations
and results presented are the average result of three situations
M = 2, 4, and 8. Channel models are presented in Table 1.
Model H1 has been used in [20] for assessing the viability of
video signal transmission through satellite according to the
European DVB (digital video broadcasting) norm, whereas
model H2 is nonminimum phase and is a standard model for
the simulation of neural network blind equalizers [21]. H3
has been used in [14] for testing the neural network which
implements method NN. Models H4 and H5 emulate a mo-
bile channel [22, 23] which switches periodically between
models H1/H2 and H3 at each 1000 iterations.

For all results reported in this paper, the step sizes of
all blind equalization algorithms have been set in order to
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Table 1: Channel models for equalization.

Model and reference Discrete-time impulse response

H1 (static) [18] H1(z) = 0.8 + 0.6z−1

H2 (static) [19] H2(z) = 0.35 + 0.87z−1 + 0.35z−2

H3 (static) [14]
H2(z) = 0.319 + 0.62z−1 + 0.634z−2+

0.323z−3 + 0.087z−4

H4 (dynamic)
[20, 21]

Switch between H1 and H3 at each 1000
iterations

H5 (dynamic)
Switch between H2 and H3 at each 1000
iterations

IterationsT

D

Plot 2: method SP (optimal)

Plot 1

BER

Figure 2: Performance criteria.

achieve the same steady-state BER as fast as possible. Exten-
sive simulation of several channel models, modulation types,
and considering several SNRs pointed out that equalization
takes place as the steady-state BER is lower than 5%. Besides,
all results are the average among 60 Monte Carlo runs.

Figure 2 presents the convergence of the BER estimators
and defines the three criteria used for assessing the perfor-
mance of the methods. Notice that classical estimator SP is
supposed to establish the “optimal” performance of all tech-
niques since it provides the exact calculation of the decision
errors. The first criterion is the convergence time T , which
corresponds to the number of iterations in order that the es-
timator attains its steady-state value. The second criterion
is the difference (D) between the steady-state value of the
estimated BER and the steady-state amplitude of the clas-
sical BER estimator (method SP). The third criterion is the
quadratic error (QE), which evaluates the average quadratic
difference between the value of the classical BER estimator
and the amplitude of the other BER estimators considering
all iterations of the convergence procedure. In Figure 2, QE is
calculated by averaging the quadratic difference between all
values of plot 1 (considering all iterations) and the respec-
tive values of plot 2 (considering all iterations). Hence, QE
characterizes the tracking capability of any BER estimation
method. A low value of QE means that the method closely
follows the optimal SP estimator throughout the iterations.

Table 2: Results for channel H1.

Criteria SNR (dB) SP (optimal) P1 P2 NN

Convergence
time T
(iterations)

40 1000 1500 1200 1100

20 1500 2100 1800 2000

15 1657 3000 2100 2780

10 2000 6000 2500 5000

Quadratic
error QE
(nondimen-
sional)

40 — 400 180 170

20 — 500 200 210

15 — 600 320 450

10 — 678 500 700

Difference D
(%)

40 — 20 5 15

20 — 27 6 20

15 — 29 10 26

10 — 30 30 40

Table 3: Results for channel H2.

Criteria SNR (dB) SP (optimal) P1 P2 NN

Convergence
time T
(iterations)

40 1100 1610 1210 1200

20 1600 2160 1550 2300

15 1800 4000 2000 5000

10 2300 6800 3000 7000

Quadratic
error QE
(nondimen-
sional)

40 — 500 190 182

20 — 600 250 250

15 — 700 345 475

10 — 750 620 900

Difference D
(%)

40 — 21 6 10

20 — 29 8 25

15 — 30 13 33

10 — 33 35 44

Notice that criteria convergence time (T) and QE charac-
terize the transient performance of BER estimators, whereas
the difference (D) characterizes the steady-state perfor-
mance.

8.2. Static channels

Tables 2, 3, and 4 present the results, wherein the step size of
all methods was kept constant during the adaptation. Careful
analysis of Tables 2, 3, and 4 points out that

(a) concerning convergence (criterion T), P1 presents a
slow convergence, whereas NN is disturbed by noise;

(b) concerning tracking capability (criterionQE), the neu-
ral network NN and P2 closely follow the optimal es-
timator for high SNR values. For low SNR scenarios,
all methods fail; however, P2 performance seems to be
robust with respect to SNR;

(c) concerning the accuracy of estimators (criterion D),
procedure P2 is the most accurate one for all situa-
tions.
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Table 4: Results for channel H3.

Criteria SNR (dB) SP (optimal) P1 P2 NN

Convergence
time T
(iterations)

40 1200 1700 1210 1200

20 1300 2200 1400 2300

15 2000 5000 1700 6400

10 2600 7200 5000 8000

Quadratic
error QE
(nondimen-
sional)

40 — 600 200 190

20 — 700 300 350

15 — 800 370 500

10 — 978 700 1200

Difference D
(%)

40 — 23 7 9

20 — 30 9 33

15 — 32 15 40

10 — 35 39 57

In brief, among the three estimators P1, P2, and NN,
the neural network and the method proposed in this paper
present approximately the same performance, and they are
able to track the optimal estimator SP. Considering the low
SNR scenario of 10 dB, procedure P2 presents the best per-
formance.

8.3. Dynamic channels

Figure 3 depicts the performance of the several estimators in
the case of the dynamic channel H4 for SNR = 30dB. Proce-
dure P2 and the neural network are able to track the optimal
estimator closely, whereas procedure P1 cannot manage this
channel. In this subsection, all algorithms were accelerated by
means of adaptive step sizes. In the beginning of the adap-
tation, the amplitude of the step size is set to a high value,
which is progressively decreased as learning takes place. The
rate of step-size amplitude reduction is controlled by differ-
ent laws, for example, exponential decrease or linear decrease
[7].

Tables 5 and 6 summarize the results. The conclusions
from Tables 5 and 6 are the same as for the last subsection.

8.4. Computational requirements

Table 7 presents the computational burden for the several
methods in terms of real additions and real multiplications
per iteration, which also includes the filtering operations as-
sociated with equalization (filtering of the incoming signal
u(n) and coefficients update). Special operations such as the
hyperbolic tangent of the neural network as well as the se-
lection process of step 3 of Procedure 2 are not considered.
Clearly, procedure P2 presents a reasonable computational
requirement, with respect to both the optimal SP and the
neural network.

Table 8 presents the computational burden in terms of
the average number of variables in memory for each tech-
nique. This quantity is associated with microprocessor data
memory and represents the total number of scalar quantities
which must be in memory in order to perform one iteration

300025002000150010005000
Iterations

0

5

10

15

20

25

B
E
R
(%

)

SP

P2

Neural net

Procedure 1

Figure 3: Equalization of the dynamic channel H4, SNR = 30dB.
Y axis: BER (%).

Table 5: Results for channel H4.

Criteria SNR (dB) SP (optimal) P1 P2 NN

Convergence
time T
(iterations)

40 400 650 450 500

20 500 700 600 650

15 600 900 630 820

10 700 990 870 870

Quadratic
error QE
(nondimen-
sional)

40 — 500 210 200

20 — 600 250 310

15 — 720 350 500

10 — 800 800 950

Difference D
(%)

40 — 21 6 12

20 — 44 8 25

15 — 45 11 40

10 — 50 30 60

of the algorithm. Results are quite similar as discussed in the
last paragraph.

It should be noticed that both Tables 7 and 8 were es-
timated for signal processors working in a serial mode (no
parallel processing).

9. APPLICATION TO LOCALMINIMA PROBLEMS

9.1. Presentation of the problem andmanagement
policy

The years 2000, 2001, 2002, and 2003 are characterized by a
maximum solar activity [24] which impairs satellite commu-
nications in terms of several effects. From all these, this pa-
per will focus on the well-known “SEU” (Single Event Upset)
[25, 26] which may lead to the change of bit values located at
any place in the memory unit on board the satellite. In [27],
the author has investigated the impacts of SEU on Bussgang
equalizers. Simulations pointed out that this technique may
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Table 6: Results for channel H5.

Criteria SNR (dB) SP (optimal) P1 P2 NN

Convergence
time T
(iterations)

40 455 710 460 600

20 600 850 700 730

15 700 950 710 850

10 930 990 900 900

Quadratic
error QE
(nondimen-
sional)

40 — 570 290 250

20 — 710 300 500

15 — 900 420 1100

10 — 1200 900 1500

Difference D
(%)

40 — 23 7 13

20 — 50 9 33

15 — 57 13 47

10 — 60 41 71

Table 7: Computational burden per iteration.

Method
Real
additions

Real
multiplications

Classical (SP) 35 37

Procedure P1 140 156

Procedure P2 90 102

Neural network (NN) 1400 1414

not enable a reasonable signal reconstruction quality, or even
no equalization at all, if the microprocessor routine does not
consider the influence of SEU. This subject is developed fur-
ther in the following.

Now, consider that the microprocessor implementing the
Bussgang equalizer undergoes a SEU due to a solar flare event
such that the value of one bit located at a place in the mem-
ory unit is changed. This SEU will influence the filter adap-
tation, and this effect could be modelled as a random slight
deviation imposed on the algorithm variables [26]. In [27],
these effects were analysed in detail, and it was pointed out
that the worst impact on the system performance takes place
as the SEU modifies C(n) by a random slight deviation of
amplitude ∆C(n),

C(n + 1) = {C(n) + ∆C(n)
}
+ µe(n) ·U(n), (16)

where C(n) denotes the vector containing the filter coeffi-
cients at iteration n, µ denotes the step size, e(n) denotes the
Bussgang error, and U(n) denotes the vector containing the
signal at the input of the equalizer at iteration n.

It should be stressed that (16) is a kind of mathematical
representation of the physical process leading to the change-
ment of bits in some registers (or in some part of the RAM) of
the microprocessor employed in the satellite receiver. Notice
that the SEU may change a different number of memory bits
each time that is called “severe upset” according to [25, 26].

Table 8: Number of variables in memory per iteration.

Method
Number of variables
in memory

Classical (SP) 70

Procedure P1 437

Procedure P2 135

Neural network (NN) 649

IterationsS1TS

Plot 2

Plot 1

∗BER

Figure 4: BER plots of blind equalizers. Plot 1 Standard; Plot 2 SEU
effect.

Notice also that the vector C(n) has length L where 32 < L <
264 for practical purposes [7]. In consequence, the worst im-
pact of a SEU on the Bussgang algorithm may lead to a bit
impairment so that

32 < B < 264, (17)

where B is the number of filter coefficients influenced at the
same time by the SEU which is associated with ∆C(n).

Figure 4 depicts two BER plots of a Bussgang equalizer.
Plot 1 is associated with a standard transient behaviour,
where the BER departs from a high value and gradually de-
creases to a very low magnitude in the steady state. However,
plot 2 illustrates the effect of a SEU, as discussed in [27]. If, by
any reason, the SEU takes place at time n = S, then the BER
suddenly presents a jump, increasing with high derivative in
a very short period of time. Then, as the algorithms runs, the
BER decreases again until the steady state is reached at time
S1 (Figure 4). The time period T = S1 − S is called “recov-
ery time” which corresponds to the time for the equalizer to
overcome the SEU effect.

The unusual behaviour of the BER in Figure 4 may be
explained as follows. The random slight deviation of am-
plitude ∆C(n) may drive the blind algorithm to a different
situation, which could be equivalent to the initialization of
the algorithm by means of a “nonoptimal” coefficient vec-
tor C(n = 0). If the algorithm departs from this “nonopti-
mal” initial condition, then the chances for achieving a low-
amplitude BER are quite high.
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Table 9: General procedure for the management of SEU effects on
Bussgang blind equalizers.

For each iteration n of the adaptive algorithm

# Estimate the BER(n)

# Estimate the BER derivative as follows:

D = BER(n)− BER(n− 1)

# If BER(n) > 50% and if D > 50% then =>
C(n + 1) = [0 0 0 · · · 1 · · · 0 0 0

]T

Clearly, based on the previous discussions, a simple way
to detect the SEU effect would be monitoring the BER am-
plitude and checking its time derivative. Then, if this deriva-
tive is higher than a fixed bound, we could take an action to
overcome the SEU effect. This countermeasure could be forc-
ing the blind algorithm to restart adaptation, beginning with
the optimal center-spike procedure [8]. Table 9 summarizes
these guidelines.

In Table 9, the bound 50% for D was established, based
on the experimental results presented in [27]. Notice that this
strategy enables to cope with SEU by means of an auxiliary
routine running on the microprocessor without any kind of
special microelectronic hardening technique.

9.2. Results and discussion

All simulations regarding the strategy of Table 9 were carried
out in a similar way as described in Section 8.1; however,
just models H1 and H2 were considered. Tables 10 and 11
present results obtained for several situations. For each situ-
ation (one channel model and one SNR), the following pro-
cedure was employed. First, the optimal convergence of the
algorithmwas established, supposing the center-spike initial-
ization [8]. As the algorithm achieves the steady state, the
vector C(n) is impaired so that a quantity of B filter coeffi-
cients undergo an SEU. Then, the recovery time “T” is eval-
uated as well as the steady-state BER (SS-BER).

The procedure discussed in the last paragraph was re-
peated at least 100 times for each situation. Each time cor-
responds to a different choice of the group of B filter coef-
ficients which undergo the SEU effect. All results of Tables
10 and 11 were calculated by taking the average among these
100 runs.

The results of Tables 10 and 11 may be summarized as
follows.

(a) Recovery times and SS-BER associated with channel 2
are always higher than their respective counterparts as-
sociated with channel 1.

(b) The recovery time and the SS-BER increase as B in-
creases.

(c) For B < 10, T and SS-BER increase as the SNR de-
creases. Conversely, for B > 10, T and SS-BER increase
as the SNR increases. The last conclusion means that,
when an extreme SEU effect takes place, additive noise
contributes to the system to quickly overcome the SEU
impact. This is, to some extent, a surprising result.

Table 10: Recovery time T (iterations ·103) as a function of B
(number of filter coefficients impaired by the SEU).

B Channel H1 Channel H2

40 dB 20 dB 40 dB 20 dB

1 14 16 15 22

2 15 17 16 25

3 16 20 19 27

4 19 20 20 30

5 20 23 27 31

6 21 26 29 34

7 21 29 30 34

10 32 30 37 35

15 37 30 40 38

20 39 30 43 38

25 40 30 45 40

30 43 38 50 45

33 45 43 55 47

It should be noticed from Table 11 that for B > 10, the
application of the new BER estimator to channel H2 does
not always lead the equalizer to a reasonable performance
since the SS-BER must be equal or less than 5% in order to
characterize perfect equalization. Such drawback of the SEU
management proposition points out some limitations, which
suggest that the “center-spike” initialization procedure [8] is
not always the best strategy for all channel models.

10. CONCLUSIONS

In this paper, a new theoretical relationship concerning the
open-eye condition was derived. The analysis was applied
to the evaluation of blind equalizer performance, leading
to a simple procedure which presents an interesting trade-
off between computational requirement, tracking capabil-
ity, and BER accurate estimation for both static and dy-
namic channels. Simulations validate the theoretical analy-
sis and point out that the proposed BER estimator could be
used for practical purposes (e.g., fault management in the
UMTS), performing local subsystem performance monitor-
ing. Notice that the new method could be used at the level of
subchannels in the context of multiuser communications. A
comparative simulation study of several BER estimators has
been carried out, pointing out that the neural network ap-
proach is not robust, as well as that the estimation of BER
for low SNR scenarios represents an interesting challenge. In
fact, it seems quite difficult to track the optimal estimator
when the SNR is under 10 dB. Finally, the theoretical results
were also successfully applied for the detection and manage-
ment of misconvergence associated with single-event upsets
of satellite communications. Current work addresses the ex-
tension of theory to complex modulations, multiuser com-
munications, and low SNR situations. Influence associated
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Table 11: Steady-state BER (%) as a function of B.

B Channel H1 Channel H2

40 dB 20 dB 40 dB 20 dB

1 1 1 3 3

2 1 1 3 3

3 1 1 3 3

4 1 1 3 3

5 1 1 3 4

6 1 1 4 5

7 1 1 4 5

10 3 1 6 5

15 3 2 6 5

20 3 2 7 6

25 4 3 8 6

30 4 4 9 8

33 5 4 10 9

with over/underestimation of the channel model order, as
well as the issue on the equalization delay estimation, are also
currently under study.

APPENDIX

DEMONSTRATIONOF THEOREM 2

Due to space limitations, just a sketched version of the
demonstration is presented. The main background for the
following analysis may be found in references [28, 29]. The
demonstration is divided into three steps. In the first one,
an expression for the maximum absolute value of coefficient
v(n) (where n = 0, 1, 2, . . . , N + L − 2 and n �= d) is derived,
whereas in the second step, an expression for the minimum
absolute value of coefficient v(d) is derived. In the third step,
the previous results are used to demonstrate (12). Demon-
stration of (13) is not provided since it follows a similar pro-
cedure as for (12).

Step (1): Themaximum absolute value of coefficient v(n)
(where n �= d)

According to (1) and the definition of discrete convolution,
the coefficient v(n) may be expressed as

v(n) = c(d) · h(n− d) +
L−1∑
k=0
k �=d

c(k) · h(n− k),

n = 0, 1, . . . , N + L− 2, n �= d.

(A.1)

Then, applying the triangle inequality to the module of
(A.1), we have

∣∣v(n)∣∣ =
∣∣∣∣∣∣∣c(d) · h(n− d) +

L−1∑
k=0
k �=d

c(k) · h(n− k)

∣∣∣∣∣∣∣ ≤ S1 + S2,

(A.2)

S1 = ∣∣c(d) · h(n− d)
∣∣; n = 0, 1, . . . , N + L− 2,

n �= d,
(A.3)

S2 =
∣∣∣∣∣∣∣
L−1∑
k=0
k �=d

c(k) · h(n− k)

∣∣∣∣∣∣∣ ≤
L−1∑
k=0
k �=d

∣∣c(k)∣∣ · ∣∣h(n− k)
∣∣.

(A.4)

Bounds for S1 and S2 are now established. Suppose that
0 < d < L−1 which is a common practice in the equalization
literature [7]. Beginning with (A.3) and taking into account
that n = 0, 1, . . . , N + L − 2, n �= d, then we conclude that
|h(n− d)|may take one of the following values:

∣∣h(n− d)
∣∣ ∈ {∣∣h(1)∣∣,∣∣h(2)∣∣, . . . ,∣∣h(N − 1)

∣∣}. (A.5)

Labelling Supm{h(m)}, m = 1, 2, . . . , N − 1 as the maxi-
mum absolute value of the set of coefficients {|h(1)|, |h(2)|,
. . . , |h(N − 1)|}, a maximal bound for S1 may be defined as
follows:

∣∣c(d) · h(n− d)
∣∣ = ∣∣c(d)∣∣ · ∣∣h(n− d)

∣∣
≤ ∣∣c(d)∣∣ · Sup

m

{∣∣h(m)
∣∣}. (A.6)

Turning to S2, notice that the main goal of the theorem is
to analyse the mathematical relationship between coefficient
c(d) and the other coefficients c(k), where k = 0, 1, . . . , L− 1
and k �= d. Label the maximum absolute value of all coef-
ficients c(k) as Supq{|c(q)|}, where q = 0, 1, . . . , L − 1 and
q �= d. Since Supq{|c(q)|} is a constant for any q and k, the
following inequality presents a bound for sum S2:

S2 ≤
L−1∑
k=0
k �=d

∣∣c(k)∣∣ · ∣∣h(n− k)
∣∣

≤
L−1∑
k=0
k �=d

Sup
q

{∣∣c(q)∣∣} · ∣∣h(n− k)
∣∣

≤ Sup
q

{∣∣c(q)∣∣} ·
L−1∑
k=0
k �=d

∣∣h(n− k)
∣∣.

(A.7)

Since n = 0, 1, 2, . . . , N + L − 2, n �= d; also, supposing
that 0 < d < N − 1, we notice that

L−1∑
k=0
k �=d

∣∣h(n− k)
∣∣ ≤

N−1∑
k=0

∣∣h(k)∣∣. (A.8)

Multiplying both sides of (A.8) by Supq{|c(q)|} and then
comparing to (A.7), it is possible to state that
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S2 ≤ Sup
q

{∣∣c(q)∣∣} ·
N−1∑
k=0

∣∣h(k)∣∣, q = 0, . . . , L− 1; q �= d.

(A.9)
Then, comparing (A.6) and (A.9) to (A.2), it is possible

to conclude that

∣∣v(n)∣∣ ≤ ∣∣c(d)∣∣·Sup
m

{∣∣h(m)
∣∣}+Sup

q

{∣∣c(q)∣∣}·
N−1∑
k=0

∣∣h(k)∣∣.
(A.10)

Notice that the choice of the maximum absolute value is
not unique. The works [26, 27] study an inequality closely
related to the expression (A.10). One possible maximum is
obtained by considering the equality signal in (A.10), which
is validated by the information theory calculations in [27].
So, the following maximum is chosen:

Sup
{∣∣v(n)∣∣} = ∣∣c(d)∣∣ · Sup

m

{∣∣h(m)
∣∣} + Sup

q

{∣∣c(q)∣∣}

·
N−1∑
k=0

∣∣h(k)∣∣,
(A.11)

where n = 0, 1, . . . , N + L − 2, n �= d, m = 1, 2, . . . , N − 1,
q = 0, 1, . . . , L− 1, q �= d.

Step (2): Theminimum absolute value of coefficient v(d)

The constant b is now defined as

b = (M − 1) · (N + L− 2), (A.12)

where M is the number of modulation levels of the signal
x(n), N is the channel model length, and L is the equalizer
length.

Since, in practice, M may take the values {2, 4, 8, 16, 32,
64, 128, 256}, then

M − 1 ≥ 1. (A.13)

In practice [7], it is common to use an equalizer length
which is higher than the channel length

1 ≤ N < L, L ≥ 2 =⇒ (N + L− 2) ≥ 1. (A.14)

So, combining (A.13) and (A.14), the integer b in (A.11)
obeys the following inequality:

b ≥ 1, for any practical value ofM, L, and N. (A.15)

The absolute value of coefficient v(d) is given by (A.2) for
n = d

∣∣v(d)∣∣ =
∣∣∣∣∣∣∣c(d) · h(0) +

L−1∑
k=0
k �=d

c(k) · h(d − k)

∣∣∣∣∣∣∣

≤ ∣∣c(d) · h(0)∣∣ +
∣∣∣∣∣∣∣
L−1∑
k=0
k �=d

c(k) · h(d − k)

∣∣∣∣∣∣∣.
(A.16)

Now consider the sum in the right side of (A.16). Com-
bining (A.4) and (A.7), supposing in this case that n = d, it
is possible to state that
∣∣∣∣∣∣∣
L−1∑
k=0
k �=d

c(k)·h(d−k)
∣∣∣∣∣∣∣ ≤ Sup

q

{∣∣c(q)∣∣}·
L−1∑
k=0
k �=d

∣∣h(d−k)∣∣. (A.17)

In the right side of inequality (A.17), the summationmay
involve all terms |h(k)|, k = 1, 2, . . . , N − 1, k �= 0. Then we
may conclude that
∣∣∣∣∣∣∣
L−1∑
k=0
k �=d

c(k) · h(d − k)

∣∣∣∣∣∣∣ ≤ Sup
q

{∣∣c(q)∣∣} ·
N−1∑
k=1

∣∣h(k)∣∣

≤ Sup
q

{∣∣c(q)∣∣} ·
N−1∑
k=1

∣∣h(k)∣∣

≤ Sup
q

{∣∣c(q)∣∣} ·
N−1∑
k=0

∣∣h(k)∣∣.

(A.18)

Since the constant b is an integer greater than or equal to
1 according to (A.15) and based on (A.18), we may conclude
that
∣∣∣∣∣∣∣
L−1∑
k=0
k �=d

c(k) · h(d − k)

∣∣∣∣∣∣∣ ≤ Sup
q

{∣∣c(q)∣∣} ·
N−1∑
k=0

∣∣h(k)∣∣

+ · · · + Sup
q

{∣∣c(q)∣∣} ·
N−1∑
k=0

∣∣h(k)∣∣

= b · Sup
q

{∣∣c(q)∣∣} ·
N−1∑
k=0

∣∣h(k)∣∣.
(A.19)

Comparison between (A.16) and (A.19) leads to the fol-
lowing inequality

∣∣v(d)∣∣ ≤ ∣∣c(d)∣∣ · ∣∣h(0)∣∣ + b · Sup
q

{∣∣c(q)∣∣} ·
N−1∑
k=0

∣∣h(k)∣∣.
(A.20)

From the previous inequality, notice that

Inf
{∣∣v(d)∣∣} ≤ ∣∣v(d)∣∣

≤ b · ∣∣c(d)∣∣ ·
N−1∑
k=0

∣∣h(k)∣∣

+ b · Sup
q

{∣∣c(q)∣∣} ·
N−1∑
k=0

∣∣h(k)∣∣,
(A.21)

where Inf{|v(d)|} represents the minimum absolute value of
v(d). Based on (A.21), it is possible to choose the minimum
absolute value of coefficient v(d) as

Inf
{∣∣v(d)∣∣} = b · ∣∣c(d)∣∣ ·

N−1∑
k=0

∣∣h(k)∣∣. (A.22)
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Again, we may argue that this is not the unique choice for
the minimum value. This issue is discussed in detail in refer-
ences [28, 29] which provide theoretical basis for the choice
in (A.22).

Step (3): Final demonstration
It is supposed that the following condition holds by hypoth-
esis:

∣∣c(d)∣∣ > B · Sup
q

{∣∣c(d)∣∣}, q = 0, . . . , L− 1, q �= d,

(A.23)

B = S

S− Supm
{∣∣h(m)

∣∣} , m = 1, 2, . . . , N − 1, (A.24)

S =
N−1∑
k=0

∣∣h(k)∣∣. (A.25)

Replacing (A.24) into (A.23) and reordering terms of the
inequality, we may get

S·∣∣c(d)∣∣ > ∣∣c(d)∣∣·Sup
m

{∣∣h(m)
∣∣}+S·Sup

q

{∣∣c(q)∣∣}. (A.26)

Since the constant b is an integer greater than or equal
to 1 according to (A.15), then we may multiply both sides of
(A.26) by b without changing the sign of the inequality

b·S·∣∣c(d)∣∣ > b·
(∣∣c(d)∣∣·Sup

m

{∣∣h(m)
∣∣}+S·Sup

q

{∣∣c(q)∣∣}
)
.

(A.27)
We recognize that the right side of (A.27) is exactly the

maximum absolute value of (A.11) and that the left side of
(A.27) is exactly the minimum absolute value of (A.22). In-
serting (A.11), (A.12), and (A.22) into (A.27), we get

Inf
{∣∣v(d)∣∣} > (M−1) · (N +L−2) ·Sup {∣∣v(n)∣∣}. (A.28)
Notice that

∣∣v(d)∣∣ > Inf
{∣∣v(d)∣∣}. (A.29)

From (A.29) and (A.28), we may write

∣∣v(d)∣∣ > (M − 1) · (N + L− 2) · Sup {∣∣v(n)∣∣}. (A.30)

Finally, using (8) of Theorem 1, we may conclude from
(A.30) that the eye is open. This completes the demonstra-
tion.
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