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We first develop a reduced-rank minimum mean square error (MMSE) detector for direct-sequence (DS) code division multiple
access (CDMA) by forcing the linear MMSE detector to lie in a signal subspace of a reduced dimension. While a reduced-rank
MMSE detector has lower complexity, it cannot outperform the full-rank MMSE detector. We then concentrate on the blind
reduced-rank MMSE detector which is obtained from an estimated covariance matrix. Our analysis and simulation results show
that when the desired user’s signal is in a low-dimensional subspace, there exists an optimal subspace so that the blind reduced-
rank MMSE detector lying in this subspace has the best performance. By properly choosing a subspace, we guarantee that the
optimal blind reduced-rank MMSE detector is obtained. An adaptive blind reduced-rank MMSE detector, based on a subspace
tracking algorithm, is developed. The adaptive blind reduced-rank MMSE detector exhibits superior steady-state performance
and fast convergence speed.
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1. INTRODUCTION

The major limitation on the performance and channel ca-
pacity of direct-sequence (DS) code division multiple ac-
cess (CDMA) system is the multiple-access interference
(MAI) due to simultaneous transmissions. The conventional
matched filter (MF) detector cannot suppress MAI effec-
tively, and it suffers from the near-far problem. Since CDMA
is not fundamentally MAI limited [1], multiuser detection
(MUD) techniques can substantially improve the perfor-
mance of a CDMA system. While the optimal multiuser
detector, which is essentially a maximum-likelihood (ML)
sequence detector, has prohibitive complexity, many other
multiuser detectors with relatively low complexity such as
decision feedback detector, successive or parallel interference
canceler, and linear multiuser detectors have been developed
[1]. The linear decorrelator removes all cross-correlations
between active users and thereby eliminates MAI at the price
of enhancing noise [2]. The linear minimum mean square
error (MMSE) detector is the optimal linear detector that

maximizes signal-to-interference ratio (SIR) [3, 4]. The blind
MMSE detector proposed in [5] minimizes the receiver’s
mean output energy (MOE) while constraining the response
of the desired user to a constant. It was shown that MOE and
MMSE are directly related and minimizing one is equivalent
to minimizing the other [5]. In [6], both blind decorrelator
and blind MMSE detector were derived in terms of the signal
space parameters; and an adaptive blind MMSE detector was
developed, based on a subspace tracking algorithm [7]. It was
shown that the blind adaptiveMMSE detector obtained from
the signal space parameters has much better steady-state per-
formance compared with the blind MOE detector [6]. While
blind MUD in [6] mainly focuses on Gaussian channel, the
subspace approach to blind MUD in [6] has been extended
to multipath channels [8, 9].

The blind MMSE detector proposed in [6, 8, 9] lies
in the whole signal space. In this paper, we first investi-
gate the reduced-rank MMSE detector that lies in a sub-
space of the signal space under the assumption that the de-
tector has all active users’ information. In CDMA systems,
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active users typically transmit with different powers; thus,
the desired user may lie in a subspace that has a lower di-
mension than the signal space. When this subspace is per-
fectly known by the detector, the received data can be pro-
jected onto this subspace to provide a sufficient statistic for
detecting the desired user’s bits. When the desired signal
lies in the whole signal subspace, it may still be possible
to choose a lower-dimensional subspace so that the perfor-
mance loss is negligible. Note that MUD, based on the pro-
jected signal in a low-dimension subspace, has lower com-
plexity and better convergence speed if adaptive MUD is
considered.

Since the desired user may not have the knowledge of
other users’ spreading codes and powers, a blind multiuser
detector is well motivated for a mobile user to suppress MAI.
The blind MMSE detector in [6] is constructed from the
signal space parameters which are computed from an esti-
mated covariance matrix of the received signal. In this paper,
based on the estimated covariance matrix, we study all possi-
ble blind MMSE detectors lying in different subspaces [10]
and observe that there always exists an optimal subspace,
in which the blind reduced-rank lies, achieves the highest
SIR. Suppose that the dimension of the signal subspace is K .
While the blind MOE detector in [5] is full rank, the blind
MMSE detectors in [6, 8, 9] are rank-K MMSE detectors in
the context of our general blind reduced-rank MMSE detec-
tors with different ranks. It was observed that the blind rank-
K MMSE detector outperforms the blind full-rank MOE
detector [6]. By changing the rank and properly selecting
a subspace, we can obtain the optimal blind reduced-rank
MMSE detector that achieves the highest SIR. Since the blind
rank-K MMSE detector is only a special case of our blind
reduced-rank MMSE detector, our optimal blind reduced-
rank MMSE detector achieves better or the same perfor-
mance compared with the blind rank-K MMSE detector. The
reduced-rank MMSE detector for DS-CDMA, based on the
multistage Wiener filter in [11], was analyzed in [12] un-
der the assumption that the covariance matrix is known. Our
reduced-rank MMSE detector uses the cross spectral metric
(CSM) approach in [13] to select a subspace, and we focus
on the blindMMSE detector which uses an estimated covari-
ance matrix.

The rest of this paper is organized as follows. In Section 2,
after presenting the signal model for DS-CDMA and briefly
introducing the linear MMSE detector, we derive a reduced-
rank MMSE detector which lies in a specific subspace of
the signal space. We also develop the method to choose the
best subspace among the subspaces of the same dimension.
Section 3 analyzes the performance of the blind reduced-
rank detector which is obtained from the estimated covari-
ance matrix. An adaptive blind reduced-rank MMSE de-
tector, based on a subspace tracking algorithm, is devel-
oped in Section 4. Section 5 presents analytical and sim-
ulation results to demonstrate the performance of blind
reduced-rank MMSE detectors with different ranks. Com-
paring these results reveals the advantage of the optimal blind
reduced-rank MMSE detector. Conclusions are drawn in
Section 6.

2. SIGNALMODEL AND REDUCED-RANK
MMSE DETECTOR

In this section, we present the signal model for DS-CDMA.
After describing the conventional MMSE detector, we derive
our reduced-rank MMSE detector. While derivation in this
section assumes that the detector has all active users’ infor-
mation, we will concentrate in the remaining of this paper on
the blind MMSE detector which has only the desired user’s
information.

2.1. Signalmodel

We consider a DS-CDMA system with K users simultane-
ously transmitting over an additive white Gaussian noise
(AWGN) channel. The received baseband signal can be mod-
eled as

r(t) =
K∑
k=1

Ak

∞∑
i=−∞

bk(i)sk
(
t − iT − τk

)
+ n(t), (1)

where Ak is the received signal amplitude of user k, bk(i)
is the information-bearing bit of user k in the ith bit in-
terval, sk(t) is the normalized spreading waveform whose
support is over the bit interval [0, T], τk is the propaga-
tion delay with respect to the receiver, and n(t) is zero-
mean AWGN with power spectral density σ2. We assume
that {bk(i)} is a set of independent equiprobable ±1 random
variables.

The spreading waveform sk(t) is expressed as

sk(t) = 1√
N

N−1∑
j=0

sk[ j]ψ
(
t − jTc

)
, t ∈ [0, T], (2)

where {sk[0], sk[1], . . . ,sk[N−1]} is the signature sequence of
±1’s assigned to the kth user, ψ(t) is a normalized chip wave-
form of duration Tc, and N = T/Tc is the processing gain.
If the transmitted signal passes through a multipath channel,
we have the same signal model as (1) by replacing sk(t) with
the effective spreading waveform which is given by convolu-
tion of sk(t) with channel impulse response. If all users are
synchronous, that is, τ1 = τ2 = · · · = τK = 0, it is then suf-
ficient to consider the received signal during one bit interval,
and the received signal model becomes

r(t) =
K∑
k=1

Akbksk(t) + n(t), t ∈ [0, T]. (3)

Since, given the received signal in n symbol intervals, an
asynchronous system of K users can be viewed as equiva-
lent to a synchronous system with (n + 1)K − 1 users [3],
above synchronous signal model is general enough to sub-
sume asynchronous signal model. Hence, throughout this
paper, we will restrict our attention to the synchronous sig-
nal model (3). It is worth pointing out here that the work in
this paper can be extended to multipath channel by incor-
porating blind channel identification in [8, 9] or by using a
minimum variance detector [14].
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Passing the received signal r(t) through the chip-matched
filter ψ(T − t) and sampling at chip rate, we obtain an N-
vector within a bit interval

r =
K∑
k=1

Akbksk + n, (4)

where sk = (1/
√
N)[sk[0], sk[1], . . . ,sk[N − 1]]T is the nor-

malized spreading code of the kth user, and n is a white Gaus-
sian noise vector with zero-mean and covariancematrix σ2IN
(IN denotes theN×N identity matrix). We can also write the
received signal vector in a compact matrix form as

r = SAb + n, (5)

where S = [s1, s2, . . . , sK ], A = diag(A1, A2, . . . , AK ), and b =
[b1, b2, . . . , bK ]T .

2.2. MMSE detector

Suppose that the desired user is user 1, then the linear MMSE
detector c for detecting this user’s information bit minimizes
the mean square error MSE = E{(b1 − cTr)2} and can be
found as [3]

c = C−1p, (6)

where p = E{b1r} = A1s1 is the cross-correlation between b1
and r, and the covariance matrix C is given by

C = E
{
rrT
} = SA2ST + σ2IN . (7)

The decision on b1 is given by b̂1 = sign(cTr), where
sign(x) = 1 if x > 0, and sign(x) = −1 if x < 0. The covari-
ance matrix C can also be expressed in terms of its eigenvalue
decomposition

C = UΛUT =
[
Us Un

][Λs

Λn

][
UT

s

UT
n

]
, (8)

where U = [
Us Un

]
, Λ = diag(Λs,Λn); Λs = diag(λ1, . . . ,

λK ) contains the K largest eigenvalues of C in descending or-
der, and Us =

[
u1 · · · uK

]
contains the corresponding or-

thonormal eigenvectors; Λn = σ2IN−K and Un contains the
N −K orthonormal eigenvectors with the eigenvalue σ2. The
range space of Us is called signal space since it has the same
range as S. The range of Un is called noise space.

Since s1 is orthogonal to the noise space, it is easily shown
that the full-rankMMSE detector in (6) can also be expressed
in terms of the signal space parameters

c = UsΛ
−1
s UT

s p, (9)

and mean square error is written as

MSE = 1− pTUsΛ
−1
s UT

s p. (10)

It is observed from (9) that the MMSE detector c is a vector
lying in the signal space.

2.3. Reduced-rankMMSE detector

Now, suppose that we restrict our linear detector to lie in a
subspace of the signal space. The following result gives the
linear MMSE detector under such restriction.

Proposition 1. Suppose that the matrix Ur contains r (r ≤ K)
columns of Us and Λr consists of corresponding eigenvalues.
The rank-r MMSE detector, that lies in the range space of Ur ,
is given by

cr = UrΛ
−1
r UT

r p, (11)

and the mean square error is found as

MSEr = 1− pTUrΛ
−1
r UT

r p. (12)

Proof. Let w = [w1, w2, . . . , wr]T and cr = Urw, then the
mean square error is calculated by

MSEr = E
{(
b1 − cTr r

)2}
= cTr Ccr − 2cTr p + 1

= wTUT
r CUrw − 2wTUT

r p + 1.

(13)

Derivative of MSEr with respect to w is found as

∂(MSEr)
∂w

= 2UT
r CUrw − 2UT

r p. (14)

Letting it be equal to the 0 vector, we obtain

w = (UT
r CUr

)−1
Urp = Λ−1r Urp. (15)

Here, we use the fact that the eigenvectors are orthonormal.
The rank-r MMSE detector in (11) follows from (15). Sub-
stitutingw in (15) into (13), we obtain the mean square error
in (12).

The rank-r MMSE detector can also be obtained as fol-
lows. The projection matrix for the range space of Ur is
Pr = UrUT

r . The projection of the received signal to the range
of Ur is r1 = Prr. Then, the linear MMSE detector based on
r1 is cr1 = C−11 p1, where C1 is the covariance matrix of r1
and p1 is the cross-correlation between r1 and b1. It is easily
shown that cr1 is the same as cr in (11).

Comparing (10) and (12) reveals that themean square er-
ror of a reduced-rank detector is greater than or equal to that
of the full-rank detector. Hence, a reduced-rank MMSE de-
tector cannot outperform the full-rankMMSE detector when
the covariance matrix is perfectly known. Typically, the re-
ceived signal powers of different users are different, which
is true especially in the downlink. Then, the desired user
may lie in a subspace of the signal space. In this case, if we
choose Ur so that the desired user is in the range of Ur , the
reduced-rank MMSE detector has the same performance as
the full-rank MMSE detector. If the desired user lies in the
whole signal space for a given rank, we can choose the best
subspace using the CSM approach to subspace selection in
the context of a generalized sidelobe canceler [13]. We define
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a quantity Qi as

Qi =
∥∥sT1 ui∥∥2

λi
, (16)

where Qi can be viewed as the normalized energy of user 1
projected onto the ith eigenvector. Then, MSE in (10) can
also be expressed as

MSE = 1− A2
1

K∑
i=1

Qi. (17)

It is apparent from (17) that the optimal rank-r MMSE de-
tector lies in the subspace spanned by the r eigenvectors cor-
responding to the r largest Qi [13].

In the above derivation of the reduced-rank MMSE de-
tector, it is assumed that the covariance matrix is known.
In practice, a user knows his own spreading code but does
not have the knowledge of other users’ codes. In this case,
the covariance matrix is estimated from a limited number of
data samples; and the full-rank or reduced-rank MMSE de-
tector can be blindly implemented based on the estimated
covariance matrix without knowing other users’ spreading
codes. In the rest of the paper, we will focus on the blind
reduced-rank MMSE detector. Using numerical and simula-
tion results in Section 5, we will show that there exists an op-
timal blind reduced-rankMMSE detector which achieves the
best performance among all MMSE detectors with different
ranks.

3. BLIND REDUCED-RANKMMSE DETECTOR
AND PERFORMANCE ANALYSIS

In this section, we present the blind reduced-rankMMSE de-
tector and analyze its steady-state performance in terms of
the mean square error at the detector output.

3.1. Blind reduced-rankMMSE detector

When M samples of data vector {rm}Mm=1 are available, the
covariance matrix can be estimated by

Ĉ = 1
M

M∑
m=1

rmrTm. (18)

We assume that {rm}Mm=1 are independent identically dis-
tributed (i.i.d.), which is true when the system is in steady-
state, that is, there are no users exit or enter the system.
Let Λ̂ = diag(λ̂1, . . . , λ̂N ) contain the eigenvalues of Ĉ in
descending order and Û = [û1, . . . , ûN ] contain the corre-
sponding eigenvectors. Based on Λ̂, the dimension of the sig-
nal subspace can be determined using information-theoretic
criterion such as the Akaike information criterion (AIC)
[15]. Suppose that the dimension of the signal space is K ,
let Λ̂s contain the K largest eigenvalues, and Ûs contain the
corresponding eigenvectors. Given 0 < r ≤ K , a blind rank-r
MMSE detector is then found from (11) as

ĉr = ÛrΛ̂
−1
r ÛT

r p, (19)

where Ûr comprises r columns of Ûs and Λ̂r consists of cor-
responding eigenvalues. If we calculate Q̂i = ‖sT1 ûi‖2/λ̂i, the
optimal rank-r MMSE detector can be constructed from r
eigenvectors corresponding to the r largest Q̂i. Without con-
fusing with an arbitrary rank-r MMSE detector in (19), we
denote the optimal rank-r MMSE detector as ĉr . To deter-
mine the optimal rank for the reduced-rank MMSE detector,
we apply the decided bits to each of {ĉr}Kr=1 and estimateMSE
at each detector’s output. The optimal rank corresponds to ĉr
with the smallestMSE. The details of determining the dimen-
sion of the signal space using AIC and the optimal reduced-
rank MMSE detector in decision-directed mode will be pre-
sented in the adaptive blind reduced-rank MMSE detector in
Section 4.

Remark 1. When the covariance matrix is known as we dis-
cussed in Section 2, the nonblind reduced-rank MMSE de-
tector may have performance loss compared to the full-rank
MMSE detector. However, when blind MMSE detector is
considered, the estimation error in covariance matrix causes
estimation error in the signal space and corresponding eigen-
values. Hence, a blind reduced-rankMMSE detector, lying in
a properly selected subspace, can outperform the blind full-
rank MMSE detector which will be shown in the analysis re-
sults and simulations in Section 5.

Remark 2. The detector ĉr in (19) does not need to know
the interfering user’s information. If the signal amplitude A1

of the desired user is unknown to the detector, we can em-
ploy ˆ̄cr = ÛrΛ̂−1r ÛT

r s1 as a blind detector, which has the same
output SIR as ĉr and is applicable to any constant-modulus
(CM) constellation. Based on the CM property, we can es-
timate the signal amplitude A1 by Â1 =

∑NA
m=1 | ˆ̄cTr rm|/NA,

where NA is the number of data to estimate A1. Using Â1 and
decided bits, we obtain an estimate of MSE as

∑NMSE
m=1 (b̂1(m)−

Â1 ˆ̄cTr rm)
2/NMSE for each of { ˆ̄cr}Kr=1, where NMSE is the num-

ber of symbols used to estimate MSE. The optimal reduced-
rank detector ˆ̄cr is the one that has the smallest MSE. Hence,
the adaptive algorithm developed in Section 4 is also appli-
cable to ˆ̄cr .

Remark 3. It is worth pointing out an alternative method to
choose a near-optimal rank for ĉr or ˆ̄cr without using decided
bits. Let K1 be the number of nonzero entries in {Qi}Ki=1,
which is the dimension of the subspace in which s1 lies. Based
on {Q̂i}Ni=1, we can estimate K1 using AIC. If the estimate of
K1 is K̂1, the reduced-rank detector is then constructed from
K̂1 eigenvectors corresponding to the K̂1 largest Q̂i. The sim-
ulation results in Section 5 show that the rank-K1 MMSE de-
tector is not necessarily optimal, but its performance is close
to that of the optimal reduced-rank MMSE detector. The ad-
vantage of this method of choosing subspace for the reduced-
rank detector is that the detector is not required to use de-
cided bits to determine the optimal rank and may avoid the
problem of unreliable decision.
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3.2. Performance analysis

First, we briefly review the asymptotic statistics of the eigen-
values and eigenvectors of the sample covariance matrix. Let
∆λi = λ̂i − λi and ∆ui = ûi − ui. If {rm}Mm=1 are i.i.d.
Gaussian and all elements of {λi}Ki=1 are distinct, we then
know from [16, page 340] that {∆λi,∆ui}Ki=1 are asymptot-
ically normal with zero-mean and {∆λi}Ki=1 is asymptoti-
cally independent of {∆ui}Ki=1, as M → ∞. The elements of
{∆λi}Ki=1 are mutually independent, and the variance of ∆λi
is σ2i = 2λ2i /M + O(1/M2); the covariances of {∆ui}Ki=1 are
given by [16, page 340]

Ei j =



1
M

N∑
n=1
n�=i

λiλn(
λi − λn

)2 unuTn +O
(

1
M2

)
, i = j,

− λiλj

M
(
λi − λj

)2 u juTi +O
(

1
M2

)
, i �= j.

(20)

Although our data vector rm is not Gaussian, the above statis-
tic of eigenvalues and eigenvectors of the covariance matrix
holds true due to the following reason. The derivation of
the statistic of {∆λi,∆ui}Ki=1 relies on asymptotic normality
of the sample covariance matrix [16, page 454]. It is shown
that when data vector is i.i.d. Gaussian, the sample covari-
ance matrix is asymptotically normal by central limit theo-
rem [17]. Since the central limit theorem does not require
the data vector to be Gaussian and {rm}Mm=1 to be i.i.d in our
case, we know that Ĉ is asymptotically normal; and thus, the
above statistic of {∆λi,∆ui}Ki=1 also holds true for any i.i.d.
data vector.

The blind rank-r detector ĉr is a random vector depend-
ing on the estimated eigenvalues and eigenvectors, and the
mean square error conditioned on ĉr is also a random vari-
able. Our objective is to obtain the mean of the conditional
mean square error which is a goodmeasure of the MMSE de-
tector’s performance. The approach is based on the second-
order Taylor series expansion of the conditional mean square
error.

The mean square error conditioned on ĉr is given by

�MSEr = 1 + ĉTr Cĉr − 2ĉTr p. (21)

The second-order Taylor series expansion of �MSEr around
the point P = {ui, λi}ri=1 is given by

�MSEr =MSEr +
r∑

i=1
∆uTi gi +

r∑
i=1

∆λi fi +
1
2

r∑
i=1

r∑
j=1

∆λi∆uTi hi j

+
1
2

r∑
i=1

r∑
j=1

∆λi∆λjFi j +
1
2

r∑
i=1

r∑
j=1

∆uTi Hi j∆u j ,

(22)

where the vector gi is the gradient of �MSEr along ûi at point
P, fi is the first partial derivative of �MSEr with respect to λ̂i
at point P, Fi j is the second partial derivative of �MSEr with

respect to λ̂i and λ̂ j at point P, and the elements of vector hi j

and matrix Hi j are given by

[
hi j
]
m =

∂2�MSEr
∂λ̂i∂û j(m)

∣∣∣∣
P
,

[
Hi j
]
mn =

∂2�MSEr
∂ûi(m)∂û j(n)

∣∣∣∣
P
.

(23)
Taking expectation of �MSEr with respect to {∆λi,∆ui, i =
1, . . . , r}, we obtain

�MSEr =MSEr +
1
2

r∑
i=1

σ2i Fii +
1
2

r∑
i=1

r∑
j=1

tr
(
Hi jE ji

)
, (24)

where tr(·) denotes trace of the matrix in parentheses. Here,
we use the fact that means of ∆λi and ∆ui are zero, elements
of {∆λi}ri=1 are mutually independent, and {∆λi}ri=1 are in-
dependent of {∆ui}ri=1. Derivation of Hi j and Fii is given the
appendix. In Section 5, we will evaluate MSE in (24) numer-
ically. The numerical results based on the analysis in this sec-
tion, along with simulations, will clearly show the advantage
of the optimal blind reduced-rank MMSE detector.

4. ADAPTIVE REDUCED-RANKMMSE DETECTOR
BASED ON SUBSPACE TRACKING

To implement the blind reduced-rank MMSE detector, we
need to compute the eigenvectors and eigenvalues of the sam-
ple covariance matrix. This can be achieved by performing
singular value decomposition (SVD) or eigenvalue decom-
position (EVD) on the sample covariance matrix. Classical
batch EVD and batch SVD algorithms [18] are computa-
tionally demanding. In order to overcome this difficulty, a
number of adaptive algorithms for subspace tracking have
been developed [7, 19, 20]. In [6], the projection approxima-
tion subspace tracking (PASTd) algorithm in [7] was used
for blind adaptive multiuser detection. While PASTd algo-
rithm has low-computational complexity (O(NK)), its con-
vergence speed is very slow. In a CDMA system, users enter or
leave the system randomly, and thus, the signal space changes
dynamically. Hence, we need a fast convergence algorithm
to track variations of the signal space. Furthermore, to find
the optimal reduced-rankMMSE detector, orthogonal eigen-
vectors are required. However, the basis for the signal space
tracked by PASTd are not orthogonal. For these reasons, in-
stead of using PASTd, we use the subspace tracking algo-
rithm in the reduced-rank adaptive filter named LORAF 1
in [20], which has a fast speed to track orthogonal eigenvec-
tors. The subspace tracking algorithm in LORAF 1 has com-
putational complexity of O(NK2). Since the subspace track-
ing algorithm in LORAF 1 cannot track the dimension of the
signal space, we combine the rank tracking method in [21]
with this algorithm. After briefly reviewing the adaptive sub-
space tracking algorithm in LORAF 1, we will incorporate
rank tracking into this algorithm and develop our adaptive
reduced-rank MMSE detector.

Suppose that we know the dimension of the signal
space K . Let U0 be an N × K matrix with orthonormal
columns, and denote the covariance matrix at time t as Ct .
The following orthogonal iteration generates a sequence of



1370 EURASIP Journal on Applied Signal Processing

matrix {Ut} [18]

At = CtUt−1, (25)

At = UtRt , (26)

where Ut and Rt are the factors of a skinny QR decomposi-
tion of the matrix At. Assuming that Ct does not change in
time, we can show that the sequence of the triangular matrix
{Rt} will converge towards the diagonal matrix of K domi-
nant eigenvalues, and the sequence of recursion matrix {Ut}
will converge towards the matrix of K corresponding eigen-
vectors [18]. In our case, Ct is defined by Ct =

∑t
i=1 βt−irir

T
i ,

where 0 < β ≤ 1 and Ct is calculated recursively according to
Ct = βCt−1 + rtrTt . When Ct is updated at time t, we can cal-
culate Ut and Rt using (25) and (26). A key step towards the
fast subspace tracking algorithm is the orthogonal projection
of the actual recursion matrix Ut onto the previous subspace
spanned by the columns of Ut−1,

Ut = Ut−1Θt + ∆t , (27)

whereΘt = UT
t−1Ut and ∆t is orthogonal to the column space

of Ut−1. The update equation (25) becomes

At = βAt−1Θt−1 + rtzTt + βCt−1∆t−1, (28)

where zTt = UT
t−1rt. Only the last term requires O(N2K) op-

erations, but it can be neglected without any performance
penalty [20]. This results in the O(NK2) recursion for a di-
rect updating of matrix At,

At = βAt−1Θt−1 + rtzTt . (29)

The fast subspace tracking algorithm consists of (26) and
(29), where the diagonal elements of Rt comprise K dom-
inant eigenvalues and Ut contains corresponding eigenvec-
tors.

Now wemodify this algorithm to track both rank and the
signal space as follows. Suppose that the rank at time t − 1
is Kt−1, we track Kt−1 + 1 dominant eigenvalues {λti}Kt−1+1

i=1
and corresponding eigenvectors in Ut at time t. Projecting
received signal onto the orthogonal complement space to the
span of Ut, we obtain x = (I − UtUT

t )rt. From x, we recur-
sively calculate σ2t = βσ2t−1+xTx/(N−Kt−1−1) and let λti = σ2t
for i = Kt−1 + 2, . . . , N . Based on the estimated eigenvalues
{λti}Ni=1, we can estimate the rank of the signal space using
the AIC [15]. The quantity AIC is defined as

AIC(k) = (N − k)L ln
(
α(k)

)
+ k(2N − k), (30)

where L = 1/(1− β) and α(k) is given by

α(k) =
(∑N

i=k+1 λ̂
t
i

)
/(N − k)(∏N

i=k+1 λ̂
t
i

)1/(N−k) . (31)

The estimated rank is given byKt = argmin0≤k≤N−1 AIC(k)+
1. If Kt < Kt−1, we remove the last columns from matrix Ut

and update Kt = Kt−1−1. If Kt > Kt−1, we add x/σ2t to matrix
Ut as its last column and let Kt = Kt−1 + 1.

After the eigenvectors and corresponding eigenvalues are
obtained, we can find the optimal reduced-rank MMSE de-
tector. The estimate ofQi in (16) is given by Q̂i = ‖sT1 uti‖2/λti .
For every rank 0 < r ≤ Kt, the optimal rank-r MMSE de-
tector ĉr is obtained, using the r eigenvectors and eigenval-
ues corresponding to the r largest Q̂i. Applying the recently
decided bits to each of Kt reduced-rank detectors {ĉr , r =
1, . . . , Kt}, we can estimate the mean square error at the out-
put of each reduced-rank detector. The optimal reduced-
rank MMSE detector is the one having the smallest mean
square error. Mathematically, if MSE(r) is the MSE at the
output of ĉr , the optimal reduced-rank MMSE detector is
given by

co = arg min
{ĉr}Ktr=1

MSE(r). (32)

The proposed adaptive reduced-rankMMSE detector is sum-
marized in Table 1, in which forgetting factor is chosen to be
β = 0.995, and NMSE = 10 recently decided bits are used to
estimate MSE. In the initializing stage, choosing a rank less
than the dimension of the signal space may not be reliable
because MSE cannot be estimated accurately. So, the rank-Kt

MMSE detector should be used in this stage. After that, since
the optimal reduced-rank MMSE detector is chosen from all
MMSE detectors with different ranks, it has the best possible
steady-state performance and the fastest convergence speed
if the signal space is disturbed when a user exits or enters
the system. This is confirmed by the simulation results in
Section 5.

5. SIMULATION AND ANALYSIS RESULTS

In this section, we provide some simulation examples and
numerical results based on the analysis in Section 3 to
demonstrate the performance of the reduced-rank MMSE
detector. For a given rank r ≤ K , the optimal blind rank-r
MMSE detector is chosen to lie in the subspace spanned by
r eigenvectors corresponding to the r largest Q̂i as discussed
in Section 3. In simulations, we also show the performance
of the MMSE detectors constructed from r > K eigenvectors
of the sample covariance matrix, where r − K eigenvectors
are arbitrarily chosen from N −K eigenvectors spanning the
noise space. The performance measure for simulation is SIR.
Since the distribution of a linear MMSE detector’s output is
approximately Gaussian [22], the output SIR translates eas-
ily into an equivalent bit error probability. In analysis results,
the performancemeasure is mean square error which is given
by (24). Gold sequences are used as spreading codes. Unless
otherwise stated, the processing gain is N = 31 and the data
plotted are averaged over 400 independent runs. The number
of data samples used to estimate covariancematrix is denoted
asM. User 1 is assumed to be the desired user; SNR is defined
as SNR = A2

1/σ
2 and is chosen as SNR = 20dB in all plots.

Example 1 (simulation of a single user system). The optimal
detector in the single user case is the MF detector. However,
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Initialization U0 = IN ; Θ0 = IN ; A = 0N ; K0 = N − 1; β = 0.995;
σ2
0 = 0;NMSE = 10

Update Kt−1 + 1 eigenvectors in Ut and N eigenvalues
{
λti
}N
i=1

zt = UT
t−1rt

At = βAt−1Θt−1 + rtzTt

At = UtRt : QR factorization

Θt = UT
t−1Ut

x = rt −UtUT
t rt

σ2
t = βσ2

t−1 + xTx/
(
N − Kt−1 − 1

)
{
λtk = Rt(k, k)

}Kt−1+1
k=1 ,

{
λtk = σ2

t

}N
k=Kt−1+2

Update the rank of signal subspace Kt

FOR k = 1 : N − 1 DO

α(k) = [∑N
i=k+1 λ

t
i /(N − k)

]
/
(∏N

i=k+1 λ
t
i

)1/(N−k)
AIC(k) = (N − k) ln

[
α(k)

]
/(1− β) + k(2N − k)

END

Kt = argmin0≤k≤N−1 AIC(k) + 1

IF Kt < Kt−1, then

Kt = Kt−1 − 1

Ut = Ut

(
:, 1 : Kt−1

)
At = At

(
:, 1 : Kt−1

)
Θt = Θt

(
1 : Kt−1, 1 : Kt−1

)
ELSE IF Kt > Kt−1 THEN

Kt = Kt−1 + 1

Ut =
[
Ut , x/σ2

t

]
At =

[
At , x

]
θt =

[
θt
0
0
1

]
END

Choose the optimal reduced-rank MMSE detector co

calculate {Q̂i}Kt
i=1, and generate a matrix V whose first column v1

corresponds to the largest {Qi}Kt
i=1 and second column v2 corre-

sponds to the second largest {Qi}Kt−1
i=1 , and so on. Let ηi be the eigen-

value corresponding to vi

ĉ0 = 0

FOR r = 1 : Kt DO

ĉr = ĉr−1 + vkvTk p/ηk

MSE(r) = 0

FOR i = 1 : NMSE DO

MSE(r) =MSE(r) +
(
b̂t−i − ĉTr rt−i

)2
END

END

co = argmin{ĉr}Ktr=1
MSE(r)

b̂t = sign
(
cTo rt

)
Algorithm 1: The adaptive algorithm for the reduced-rankMMSE
detector.
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Figure 1: SIR of MMSE detectors. N = 31, K = 1, SNR = 20dB.

an MMSE detector designed for suppressing MAI is likely to
operate in a single user environment because a user does not
have other active users’ information. The simulated perfor-
mance of a single user system is plotted in Figure 1. Since
the noise-free signal has rank 1, the performance of all de-
tectors with different ranks is the same when the covari-
ance matrix is known. When the covariance matrix is esti-
mated, we see that the optimal blind reduced-rank MMSE
has rank 1. If we use more eigenvectors other than the one
corresponding to the largest Q̂i to construct the MMSE de-
tector, we get more noise than the desired signal at the out-
put of the detector, which degrades the performance. We also
observed from Figure 1 that the number of samples M used
to estimate the covariance matrix affects the performance of
rank-r (r > 1) detectors. For example, SIR at the full-rank
MMSE detector output is 7 dB for M = 200, and 14dB for
M = 1000.

Example 2 (simulation of 10 user systems). In Figure 2, nine
interference users’ SNRs are 10 dB. This may be the case
in which there is only one user in the cell but there exists
inter-cell interference. From the SIR curve of the MMSE de-
tector with known covariance matrix, we see that the sig-
nature of the desired user lies in a two-dimensional sub-
space, and most of the desired user’s energy is in a one-
dimensional subspace. Hence, a rank-1 blind MMSE detec-
tor has the best performance. In Figure 3, there are five weak
interfering users and four strong interfering users. The opti-
mal blind reduced-rank MMSE detector has rank 2. Figure 4
is for the perfect power control case, where nine interfering
users have the same power as the desired user. In this case,
rank-K MMSE detector has the best performance since the
signature of the desired user is in the whole signal space.
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Figure 2: SIR of MMSE detectors. N = 31, K = 10, SNR = 20dB,
(K − 1) interferences’ SNRs 10dB.
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Figure 3: SIR of MMSE detectors. N = 31, K = 10, SNR = 20dB,
(K − 1) interferences’ SNRs are 10 dB, 10 dB, 10 dB, 10 dB, 10 dB,
20 dB, 30 dB, 30 dB, 40 dB.

All simulations show that the MMSE detectors whose rank
are greater than K perform worse than the rank-K MMSE
detector. Figure 5 compares the performance of the opti-
mal reduced-rank MMSE detector, the rank-K MMSE de-
tector, and the full-rank MMSE detector when the number
of samples used to estimate the covariance matrix changes.
The users’ powers are the same as in Figure 3. We observe
that the optimal reduced-rank MMSE detector needs about
half number of samples to achieve the same performance as
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Figure 4: SIR of MMSE detectors. N = 31, K = 10, SNR = 20dB,
(K − 1) interferences’ SNRs 20dB.
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Figure 5: SIR of MMSE detectors. N = 31, K = 10, SNR = 20dB,
(K − 1) interferences’ SNRs are 10 dB, 10 dB, 10 dB, 10 dB, 10 dB,
20 dB, 30 dB, 30 dB, 40 dB.

the rank-K MMSE detector, which implies that the optimal
reduced-rank MMSE detector has much faster convergence
speed. On the other hand, given anM, the optimal reduced-
rank MMSE detector has higher SIR than both rank-K and
full-rank MMSE detectors. This demonstrates that, given an
effective window size to estimate the covariance matrix, the
optimal reduced-rank MMSE detector has the best steady-
state performance.
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Figure 6: MSE of MMSE detectors. N = 31, K = 10, SNR = 20dB.
(K − 1) interference users’ SNRs are 8.4dB, 8.8dB, 9.2dB, 9.6dB,
10 dB, 10.4dB, 10.8dB, 11.2dB, 11.6dB.

Example 3 (analytical results). In this example, we compare
simulation results with analytical results. There are K = 10
users in the system. SNRs of different users are chosen to be
different so that the ten largest eigenvalues of the covariance
matrix are different, which is necessary in the analysis. The
number of samples used to estimate the covariance matrix
is M = 1000, and simulation results are obtained by averag-
ing over 2000 independent runs. In Figure 6, nine interfering
users have low power. Both simulation and analytical results
show that a rank-1 blind MMSE detector has the smallest
MSE; whereas, when the covariance matrix is known, rank-
K MMSE detector has the best performance. In Figure 7,
there are both weak and strong interfering users, and a rank-
2 blindMMSE detector has the best performance. This shows
the advantage of the optimal reduced-rank MMSE detector.
In Figure 8, interfering users’ powers are close to that of the
desired user. The signature of the desired user is in the whole
signal space. Therefore, the rank-K blindMMSE detector has
the smallest MSE. In any case, we can always choose a rank-r
MMSE detector with 0 < r ≤ K to achieve the best perfor-
mance.

Example 4 (simulation of the adaptive reduced-rank MMSE
detector). In this example, we use the adaptive algorithm
developed in Section 4 to simulate the performance of
the adaptive reduced-rank MMSE detector in a dynamic
multiple-access channel. The simulation results are depicted
in Figure 9. Processing gain is N = 15 and forgetting factor
is β = 0.995. At t = 0, there are K = 10 users in the system;
among nine interfering users, there are six 10-dB users, one
20-dB user, one 30-dB user, and one 40-dB user. At t = 2000,
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Figure 7: MSE of MMSE detectors. N = 31, K = 10, SNR = 20dB.
(K − 1) interference users’ SNRs are 8 dB, 9 dB, 10 dB, 11 dB, 12 dB,
20 dB, 30 dB, 31 dB, 40 dB.
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Figure 8: MSE of the MMSE detectors. N = 31, K = 10, SNR =
20dB, (K − 1) interference users’ SNRs are 16 dB, 17 dB, 18 dB,
19 dB, 20 dB, 21 dB, 22 dB, 23 dB, 24 dB.

a 40-dB user enters the channel; at t = 4000, two 40-dB users
exit the channel. The optimal reduced-rank MMSE detector
is simulated after first 50 iterations by using tenmost recently
decided bits to estimate the mean square error. We see that
the optimal reduced-rank MMSE detector has approximate
2 dB advantage over the rank-K MMSE detector, the rank-K
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Figure 9: Performance of the adaptive reduced-rank MMSE detector in a dynamic multiple-access.

MMSE detector has slightly higher SIR than the full-rank
MMSE detector in steady-state, and the adaptive algorithm
has a fast convergence speed when users enter or exit the sys-
tem.

6. CONCLUSIONS

We developed a blind reduced-rank MMSE detector for DS-
CDMA by using an estimated covariance matrix of the re-
ceived signal and forcing the linear MMSE detector to lie in
a subspace of the signal space. Our analysis and simulations
show that there exists an optimal blind reduced-rank MMSE
detector that achieves the highest SIR among all MMSE de-
tectors with different ranks. By properly selecting a subspace,
we guarantee that the optimal blind reduced-rank MMSE
detector is obtained adaptively. The adaptive blind reduced-
rank MMSE detector exhibits superior steady-state perfor-
mance and fast convergence speed in comparison with its
full-rank counterpart.

APPENDIX

DERIVATION OFHi j AND Fii

Denote the last two terms in (21) as T1 = ĉTr Cĉr and T2 =
2ĉTr p. We first derive the first and second partial derivatives
of T1. The gradient of T1 along ûi is given by

g1i = ∂T1

∂ûi
= 2

∂ĉTr
∂ûi

Cĉr

= 2

λ̂i

(
pûTi + pT ûiIN

)
Cĉr .

(A.1)

If we define zi = (2/λ̂i)Cĉr and Xi = ûipT + pT ûiIN , then g1i
can be expressed as g1i = XT

i zi. Since we have

∂zTi
∂û j

= 2

λ̂iλ̂ j

XT
j C, (A.2)

the Hessian matrix of T1,H1 ji, is given by

H1 ji = ∂gT1i
∂û j

∣∣∣∣
P
= ∂zTi

∂û j
Xi

∣∣∣∣
P
= 2

λiλj
XT

j CXi i �= j,

H1ii = ∂gT1i
∂ûi

∣∣∣∣
P
= ∂

(
zTi Xi

)
∂ûi

∣∣∣∣
P

=
(
∂zTi
∂ûi

Xi +

[
∂xTi1
∂ûi

zi, . . . ,
∂xTiN
∂ûi

zi

])∣∣∣∣∣
P

=
(
2

λ̂2i
XT
i CXi +

[
Y1zi, . . . ,YNzi

])∣∣∣∣∣
P

= 2
λ2i
XT
i CXi +

2
λi

[
Y1Ccr , . . . ,YNCcr

]
,

(A.3)

where {xi j , j = 1, . . . , N} are columns of matrix Xi and ma-
trices {Y j , j = 1, . . . , N} are defined as

Y j = P j + p( j)IN , (A.4)

with P j being a matrix whose jth column is vector p and
other columns being zero vectors. The term T1 can also be
expressed as
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T1 = pT
r∑
j=1

û j ûTj

λ̂ j

C
r∑
j=1

û j ûTj

λ̂ j

p

= pT

 ûiûTi
λ̂i

+
r∑
j=1
j �=i

û j ûTj

λ̂ j

C

 ûiûTi
λ̂i

+
r∑
j=1
j �=i

û j ûTj

λ̂ j

p

= 1

λ̂2i
pT ûiûTi Cûiû

T
i p +

2

λ̂i
pT ûiûTi C

r∑
j=1
j �=i

û j ûTj

λ̂ j

p

+ pT
r∑
j=1
j �=i

û j ûTj

λ̂ j

C
r∑
j=1
j �=i

û j ûTj

λ̂ j

p.

(A.5)

From (A.5), the first partial derivative of T1 with respect to λ̂i
is given by

∂T1

∂λ̂i
= − 2

λ̂3i
pT ûiûTi Cûiû

T
i p−

2

λ̂2i
pT ûiûTi C

r∑
j=1
j �=i

û j ûTj

λ̂ j

p, (A.6)

and then, the second partial derivative of T1 with respect to
λ̂i is found as

∂2T1

∂λ̂2i

∣∣∣∣
P
= 6

λ4i
pTuiuTi Cuiu

T
i p +

4
λ3i
pTuiuTi C

r∑
j=1
j �=i

u juTj
λj

p.

(A.7)
It is easily shown that the second term in (A.7) is equal to
zero and uTi Cui = λi. Thus, we have

∂2T1

∂λ̂2i

∣∣∣∣
P
= 6

λ3i
pTuiuTi p. (A.8)

Next we determine the derivatives of T2 that can also be
expressed as

T2 = 2
r∑

i=1

(
pT ûi

)2
λ̂i

. (A.9)

Gradient of T2 along ûi is given by

g2i = ∂T2

∂ûi
= 4

λ̂i
pT ûip. (A.10)

From (A.12), we have H2i j = ∂gT2i/∂û j = 0 for i �= j, and H2ii

is found as

H2ii = ∂gT2i
∂ûi

∣∣∣∣
P
= 4

λi
W, (A.11)

where the ith column of matrix W is p(i)p. The second
derivative of T2 with respect to λ̂i at point P is given by

∂2T2

∂λ̂2i

∣∣∣∣
P
= 4

(
pTui

)2
λ3i

. (A.12)

Finally, Fii in (24) is given by Fii = ∂2T1/∂λ̂
2
i |P − ∂2T2/∂λ̂

2
i |P ,

andHi j in (24) is given byHi j = H1i j −H2i j .
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