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This paper presents a new statistical approach to the blind estimation of linear multiple-input multiple-output (MIMO) channels
with finite impulse response. A matrix pencil is constructed from a set of fourth-order cumulant matrices of the channel output
signals. The MIMO channel impulse responses can then be efficiently estimated from the generalized eigendecomposition of this
cumulant matrix pencil. Randomweighting is applied in the matrix pencil construction to improve the reliability of the algorithm.
The proposed new method requires a relaxed channel identifiability condition and is robust in the sense that it does not require
the exact knowledge of the MIMO channel order.
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1. INTRODUCTION

In recent years, blind estimation of multiple-input multiple-
output (MIMO) linear channels has become a well-known
research problem in multichannel communications and sig-
nal recovery. Satisfactory solutions of this problem can find
diverse applications in areas such as multiuser detection, ar-
ray signal processing, speech processing, and multichannel
biomedical signal recovery.

The key objective of blind MIMO channel estimation is
to determine the unknown matrix channel impulse response
without direct training or knowledge of the channel input
signals. The receiver must rely on the statistical informa-
tion from the channel output signals. When the channel is
a memoryless system, the problem is often known as blind
source separation (or independent component analysis) with
the goal of directly extracting source signals from the instan-
taneous mixtures without explicitly identifying the mixing
matrix [1, 2, 3]. On the other hand, many multiuser systems
must deal with dynamic channels that are characterized by
a convolutive model. Once the dynamics of the MIMO sys-
tem are estimated, techniques previously used in blind source
separation of memoryless systems can be employed subse-
quently for individual signal separation.

Most existing approaches to blind channel estimation
rely on the use of either second-order statistics (SOS) or
higher-order statistics (HOS) of the channel output sig-
nals. As two equally important directions, second-order and
higher-order methods have different characteristics suitable
for different application scenarios. Compared with HOS
methods, SOS methods may provide better performance for
shorter data records [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18]. They also require a subsequent source separation
step after identifying the channel dynamics. On the other
hand, the proper use of HOS information allows blind iden-
tification of a wider class of MIMO channels. HOS methods
can directly resolve the inherent unitary ambiguity in SOS
channel estimation. Considering channels without excessive
diversity, in this work, we present an HOS approach to blind
channel estimation.

There are many well-known HOS blind identification
methods for single-input single-output (SISO) and MIMO
systems. An incomplete list of works include [19, 20, 21,
22, 23, 24, 25, 26, 27, 28]. Specifically, Giannakis et al. [22]
generalized their original “GM method” to MIMO systems.
Swami and his colleagues [23] presented a unified framework
to define cumulants of vector processes for arbitrary orders
and developed parameter estimation algorithms for causal
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and noncausal multichannel AR, MA, and ARMA models.
In [24], Tong proposed a new eigen-structure based idea
under a very general channel identifiability condition. Us-
ing an indirect approach of inverse criteria, Tugnait [26, 27]
proposed two nonlinear algorithms that iteratively recover
one user signal at a time before estimating its corresponding
channels.

In this paper, our goal is to develop a simple method
that can estimate a large class of MIMO channels. A matrix
pencil is a powerful tool and has been successfully applied
in the fields of blind source separation and array processing
[1, 29, 30, 31]. Motivated by the SOS matrix pencil algo-
rithms for the blind separation of nonstationary or colored
signals [30, 31], we develop an HOS approach to the blind
estimation of MIMO channels driven by white stationary in-
put signals. In a previous work [32], we developed a matrix
pencil-based algorithm for blind identification of SISO sys-
tems. Here, the work in [32] is generalized toMIMO channel
estimation. The channel identifiability condition of the new
method is weaker than some existing higher-order methods,
for example, [22, 26, 27], but is still stronger than the con-
dition given in [24]. In addition, this matrix pencil method
exhibits some robustness to errors in channel order estima-
tion.

Our paper consists of the following parts: Section 2 de-
scribes the problem formulation and its basic assumptions.
Section 3 outlines the principle of channel estimation from
the cumulant matrix pencil, and Section 4 presents the al-
gorithm in details. Section 5 provides simulation exam-
ples that illustrate the performance advantages of the pro-
posed algorithm compared with some existing algorithms
[26, 33].

2. PROBLEM FORMULATION

2.1. Systemmodel and basic assumptions

We consider the discrete-time model of a linear MIMO sys-
tem with m input users and p outputs. The ith channel out-
put signals xi(n) is given by

xi(n) =
m∑
j=1

q∑
k=0

hi j(k)s j(n− k) +wi(n), 1 ≤ i ≤ p, (1)

where hi j(n) represents the channel impulse response be-
tween the jth channel input and the ith channel output and
wi(n) denotes additive Gaussian noise at the ith channel out-
put. We assume that the MIMO channel has finite impulse
response (FIR) with maximum memory order of q.

For notational convenience, define the channel impulse
response matrix as

H[n]
�=



h11(n) · · · h1m(n)

...
...

...
hp1(n) · · · hpm(n)


 (2)

and define the MIMO output signal vector, input signal

vector, and noise vector as

�x[n] �=



x1(n)
...

xp(n)


 , �s [n] �=



s1(n)
...

sm(n)


 ,

�w[n] �=



w1(n)

...
wp(n)


 ,

(3)

respectively. The input-output relationship for the linear
MIMO system is given by

�x[n] =
q∑

k=0
H[k]�s [n− k] + �w[n]. (4)

We can define the MIMO channel transfer function as

H(z)
�=

q∑
i=0

H[i]z−i. (5)

For convenience of algorithm derivation, the convolu-
tional relationship (4) can also be written as

x[n] = Hs[n] +w[n], (6)

where the stacked signal vectors are defined as

x[n]
�=



�x[n]
...

�x[n− L]


 , s[n]

�=




�s [n]
...

�s [n− L− q]


 ,

w[n]
�=



�w[n]
...

�w[n− L]




(7)

and the channel convolution matrix H is an (L + 1)p × (L +
q + 1)m block Toeplitz matrix

H
�=




H[0] · · · H[q] 0 · · · 0

0 H[0] · · · H[q]
. . .

...
...

. . .
. . .

. . .
. . . 0

0 · · · 0 H[0] · · · H[q]


 . (8)

We will present a method to estimate the channel impulse re-
sponse {H[k]}qk=0 from the fourth-order cumulants of out-
put signal x[n].

The discussion throughout this paper is based on several
key assumptions. Here, we provide a list of these assumptions
for later reference.

(A1) Independent source signals {si(n)} are stationary, tem-
porally i.i.d. processes with zero-means and nonzero
fourth-order kurtoses {γi} .

(A2) Channel noises {wi(n)} are zero-mean stationary
Gaussian processes. They are mutually independent,
and are also independent of input signals.
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(A3) The number of input signals is no more than the num-
ber of channel outputs, that is, p ≥ m.

(A4) Matrix H[0] only consists of nonzero columns.
(A5) There exists a nonzero z0 (including ∞), such that

H(z0) has full column rank.

The first three assumptions (A1), (A2), and (A3) are com-
monly used in higher-order methods. Assumption (A4) can
be made without loss of generality since all-zero column
corresponding to user si(n) can be removed by renaming
s̃i(n) = si(n− τ) for some delay τ, as indicated in [24]. Note
that assumption (A5) is the channel identifiability condition
(see [33]) required in our channel estimation algorithm. This
condition, though stronger than that proposed in [24], is
less restrictive than the irreducibility condition required by
second-order methods and the requirements of some other
higher-order methods [22, 26, 27].

2.2. Cumulantmatrix construction

As in [33], fourth-order cumulant matrix Cl[k], associated
with the lth channel output signal xl(n− k), is defined as

Cl[k]
�= cum

(
x[n], x[n]H, xl(n− k), x∗l (n− k)

)
, (9)

where (·)∗ and (·)H represent complex conjugate and con-
jugate transpose, respectively. Matrix Cl[k] has the same di-
mension as the covariance matrix of x[n]. Based on assump-
tions (A1), (A2) and the properties of cumulants [34], the
noise contribution to this matrix is zero and we have

Cl[k] = HΛl[k]HH, (10)

in which

Λl[k] = diag
(
0, . . . , 0︸ ︷︷ ︸
k blocks

, Dl[0], . . . , Dl[q], 0, . . . , 0︸ ︷︷ ︸
(L−k) blocks

)
,

Dl[ j] = diag
(
γ1
∣∣hl1( j)∣∣2, . . . , γm∣∣hlm( j)∣∣2), j = 0, . . . , q.

(11)

We will describe a matrix pencil algorithm for MIMO chan-
nel estimation using a collection of these cumulant matrices.

3. CHANNEL ESTIMATION FROMMATRIX PENCIL

This section outlines the basic principle of the proposedmul-
tiuser cumulant matrix pencil (MCMP) channel estimation
algorithm. It first describes thematrix pencil formation using
a set of cumulant matrices {Cl[k]}. Then, it gives key equa-
tions for channel identification that involves finding nontriv-
ial generalized eigenvectors of the cumulant matrix pencil.

3.1. Cumulantmatrix pencil

Our approach is motivated in part by [30, 31], where a ma-
trix pencil, formed from output autocorrelation matrices at
different time delays, was used to extract source signals that
are nonstationary with colored power spectra. Here, we use
cumulant matrices {Cl[k]} associated with the same time

delay k, but different spatial indices l. Following our study
on single-user system [32], the matrix pencil is constructed
from linear combinations of these cumulant matrices.

Equations (10) and (11) describe the general form of cu-
mulant matrix Cl[k] for given parameters {k, l, L}. Here, we
consider the special case of

k = q, L = 2q. (12)

Under this condition, the cumulantmatrix can be specifically
represented as (see [33])

Cl[q] = HsΛl[q]HH
s , (13)

with

Hs =




H[q] 0 · · · 0
... H[q]

. . .
...

H[0]
. . .

. . . 0

0 H[0]
. . . H[q]

...
. . .

. . .
...

0 · · · 0 H[0]



,

Λl[q] = diag
(
Dl[0], . . . , Dl[q]

)
.

(14)

Notice that Hs is a convolution matrix with block Toeplitz
structure, and can be a tall matrix with dimension (L+1)p×
(L + 1− q)m, given that p ≥ m.

Then, we define a cumulant matrix pencil {S1, S2} in
which

Si
�=

p∑
l=1

wilCl[q] = HsΓiHH
s , i = 1, 2, (15)

Γi = diag
(
Σi[0], . . . ,Σi[q]

)
. (16)

Two sets of weighting factors {wil} are i.i.d. random numbers
with uniform distribution within interval (0, 1). From (13)
and (15), we have

Σi[ j] = diag


γ1

p∑
l=1

wil

∣∣hl1( j)∣∣2, . . . , γm
p∑

l=1
wil

∣∣hlm( j)∣∣2

,

j = 0, . . . , q.
(17)

It can be verified that Σ1[ j] and Σ2[ j] are nonsingular if and
only if H[ j] has no all-zero column. On the other hand, if
matrix H[ j] has an all-zero column corresponding to input
signal su(n), then both Σ1[ j] and Σ2[ j] have a zero element
at the uth diagonal entry. This property will be used to single
out trivial solutions of our channel estimation algorithm.

3.2. Channel identification viamatrix pencil

We consider the generalized eigenvalue problem

S1vi = λiS2vi, (18)
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or equivalently

Hs
(
Γ1 − λiΓ2

)
HH

s vi = 0. (19)

It has a total of (L + 1)p generalized eigenvectors {vi} with
corresponding generalized eigenvalues {λi}. For MIMO sys-
tems, our matrix pencil algorithm requires that Hs have full
column rank. As shown in [33], this requirement can be sat-
isfied under assumption (A5). Given the full column rank
matrixHs, every generalized eigenvector vi should satisfy



Σ1[0]− λiΣ2[0] 0

. . .
0 Σ1[q]− λiΣ2[q]


HH

s vi = 0. (20)

We will show that the MIMO channel impulse response can
be identified by finding the proper solutions {λi, vi} of (20).
For clarity, three different classes of generalized eigenvectors
are discussed separately.

3.2.1 Trivial eigenvectors

A trivial solution of the generalized eigenvalue problem (18)
is given by

S1vi = S2vi = 0. (21)

Thus, λi can be of any complex value. Such a solution can
occur in two cases.

First, the full row rank matrix HH
s has a nonempty

nullspace with a dimension of (L + 1)p − (L + 1− q)m. Any
vector in this nullspace will give HH

s vi = 0. In addition,
other trivial solutions may exist depending on the MIMO
channel impulse response. Since an all-zero column in H[ j]
( j = 0, . . . , q) will lead to the singularity of Σ1[ j] and Σ2[ j],
there is a one-to-one mapping between an all-zero column
in H[ j] and a trivial generalized eigenvector vi such that
HH

s vi �= 0, but Γ1HH
s vi = 0 and Γ2HH

s vi = 0.
All these trivial eigenvectors provide no information

about the channel and thus will be discarded. They can be
singled out based on the following two properties:

(1) vHi S1vi = 0 and ‖S1vi‖ = 0.
(2) vHi Cl[q]vi = 0 and ‖Cl[q]vi‖ = 0, for l = 1, . . . , p.

Here, ‖ · ‖ represents the Euclidean norm of a vector.

3.2.2 Nontrivial eigenvectors of distinct eigenvalues

Nontrivial eigenvectors of distinct eigenvalues are the most
useful ones because they possess the desired properties for
channel estimation. When an eigenvalue is said to be dis-
tinct, it does not have any multiplicity and has only one cor-
responding eigenvector. It can be seen from (20) that, if λi is a
distinct eigenvalue, then there is only one j ( j ∈ {0, . . . , q}),
such that λi is also a unique eigenvalue of matrix pencil
{Σ1[ j],Σ2[ j]}. In other words, there exists a vector �a such
that

Σ1[ j]�a = λiΣ2[ j]�a. (22)

Because both Σ1[ j] and Σ2[ j] are diagonal matrices de-
fined by (17), λi is given by

λi =
∑p

l=1w1l
∣∣hlu( j)∣∣2∑p

l=1w2l
∣∣hlu( j)∣∣2 , u ∈ {1, 2, . . . ,m}. (23)

This implies that the uth element, corresponding to input
signal su(n), is the only zero diagonal element of (Σ1[ j] −
λiΣ2[ j]).Meanwhile, the diagonal elements of

Σ1[�]− λiΣ2[�], � �= j (24)

are nonzero except for trivial cases discussed above. Conse-
quently, the generalized eigenvector vi corresponding to λi
must satisfy

HH
s vi = αie

j
u, (25)

where αi is an unknown scaling factor and e
j
u represents the

( jm+u)th canonical vector in the identity matrix (i.e., e
j
u has

1 in the ( jm + u)th entry and zeros elsewhere).
Therefore, by multiplication, we have

S1vi = αiHse
j
u = αih

j
u, (26)

where h
j
u represents the ( jm + u)th column of Hs and αi ab-

sorbs all scaling factors. Similarly,

Cl[q]vi = αih
j
u, l = 1, . . . , p. (27)

Apparently, vector S1vi (or Cl[q]vi) provides an estimate of
the channel impulse response for input su(n).

3.2.3 Nontrivial eigenvectors of repeated eigenvalues

It should be noted that the proposed MCMP algorithm will
fail if the cumulant matrix pencil {S1, S2} has nontrivial re-
peated eigenvalues. Let λi represent a repeated eigenvalue
with the corresponding eigenspace denoted by Vi. We will
have

HH
s Vi = ΛPUi (28)

in which Λ is a diagonal matrix, P is a permutation matrix,
andUi is a unitary matrix. In this case, channel estimates can
not be directly extracted from S1Vi because of the unknown
mixture matrix Ui.

3.3. Discussions

From the above analysis, MCMP channel estimation algo-
rithm requires that all nontrivial generalized eigenvalues be
unique for the cumulant matrix pencil under consideration.
When we adopt random weighting, it is with probability
one that all nontrivial generalized eigenvalues are distinct, as
in (23).

Equation (26) indicates that each nontrivial eigenvector
can only provide an estimate of one user channel and we
do not know which user it belongs to. Thus, the remaining
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problem is to ensure that each active user channel can be es-
timated. Since both Σ1[0] and Σ2[0] are nonsingular under
assumption (A4), matrix pencil {Σ1[0],Σ2[0]} should have
m distinct nontrivial eigenvalues. Consequently, the corre-
sponding nontrivial eigenvectors of {S1, S2}will pick the first
m columns ofHs, which provide channel estimates of all user
channels.

Another important issue is to note that the MCMP algo-
rithm does not rely on the exact knowledge of channel order
q. Instead, it needs an approximate channel order q̂ such that
q̂ ≥ q. Suppose that we do not know the true channel order
q and use q̂ in the delay and length parameter setting (12) to
compute cumulant matrix Cl[q̂]. Equations (13), (14), (15),
(16), and (17) remain unchanged except that parameter q is
replaced by q̂, and the analysis in Section 3.2 is also valid. It is
now equivalent to estimate a new channel impulse response
{H[0], . . . , H[q̂]} in which {H[q+1], . . . , H[q̂]} are zero ma-
trices. The major difference lies in that

Γi = diag
(
Σi[0], . . . ,Σi[q], 0, . . . , 0︸ ︷︷ ︸

(q̂−q) blocks

)
, i = 1, 2. (29)

As a result, the number of trivial eigenvectors is increased,
but the nontrivial solutions are not affected.

4. ALGORITHM IMPLEMENTATION AND CHANNEL
TAGGING

This section focuses on a detailed procedure to implement
the MCMP channel estimation algorithm and describes how
to separate the estimates of different user channels.

4.1. Generalized eigendecomposition

First, cumulant matrices {Cl[q]} are estimated from the
channel output signals to form a matrix pencil {S1, S2}. As
shown above, symmetric matrices S1 and S2 are positive
semidefinite and share a common nullspace. This means that
{S1, S2} is a symmetric, singular matrix pencil.

The QZ algorithm, such as the one used in MATLAB
function eig(A,B), can be a standard method for solv-
ing small- to moderate-dimensional generalized eigenvalue
problems. However, as pointed in [35], the QZ algorithm is
generally unreliable when handling a singular matrix pencil.
In [36], Cao specifically addressed the generalized eigenvalue
problem of a symmetric matrix pencil {A,B} (regular or sin-
gular), in which one of the matrices is positive (or negative)
semidefinite. The Fix-Heiberger reduction was generalized to
deflate the infinite and the singular structure from {A,B}. By
applying this deflation method, it was shown that the Kro-
necker canonical form of {A,B} is very special and the gen-
eralized eigendecomposition of {A,B} can be considerably
simplified.

4.2. Eigenvector selection

The matrix pencil {S1, S2} has (L+1)p generalized eigenvec-
tors overall. When none of H[n] (n = 0, . . . , q) has an all-
zero column, the number of nontrivial eigenvectors reaches
the maximum of (L+ 1− q)m. Our goal here is to determine

these nontrivial eigenvectors. The selecting procedures are
proposed as follows.

(i) Normalize all generalized eigenvectors. For the ith nor-
malized eigenvector vi, find Cl[q] corresponding to

li = arg max
l=1,...,p

vHi Cl[q]vi. (30)

(ii) Compute

fli = vHi Cli[q]vi, (31)

for i = 1, . . . , (L + 1)p.
(iii) Let � denote the set of index i for nontrivial eigenvec-

tors. Since fli for trivial eigenvectors are very small, set
� consists of indices corresponding to (L + 1 − q)m
largest fli . Although it is possible that a small num-
ber of trivial eigenvectors may be wrongly included,
they will be discarded in the channel tagging step
(Section 4.3).

(iv) Channel estimates can be obtained as shown in (26)
and (27). For better estimation performance, we com-
pute

�yi = Cli[q]vi = βih
j
u, i ∈ �, (32)

where βi is a scaling factor and h
j
u represents the ( jm+

u)th column ofHs.

Regarding the last step, the block Toeplitz structure ofHs

determines that channel parameters are located in the mid-
dle of vector �yi with zero entries at one end or both ends. In
other words, the estimation result �yi includes unknown delay
ambiguity and scaling ambiguity βi.

4.3. Channel tagging

Since different �yi carry channel information for different
users, we need to classify all {�yi} into m groups, each cor-
responding to one user. This is known as channel tagging.

To construct a proper classification criterion, we first de-
fine a distance measure between two vectors �yi1 and �yi2 . If
they correspond to the same user, without loss of generality,
they can be written as

�yi1 = βi1h
j1
u , �yi2 = βi2h

j2
u , i1, i2 ∈ �, j1 < j2. (33)

It is clear that h
j1
u and h

j2
u belong to different column blocks

of matrix Hs. Moreover, when �yi2 is circularly up shifted by

( j2− j1)p elements, the resulting vector �y ( j2− j1)
i2 is exactly the

same as �yi1 except for a scalar difference. In this case, the nor-
malized cross-correlation between �yi1 and �y

( j2− j1)
i2 reaches the

maximum value. Based on this property, we define a cross-
correlation matrix R�y to measure the similarity between ev-
ery pair of �yi1 and �yi2 . We normalize each vector �yi into �yi.
The (i1, i2)th entry of R�y is given as

[
R�y
]
i1 ,i2
= max

n=0,...,L

∣∣∣�yHi1 ·�y (n)
i2

∣∣∣, i1, i2 ∈ �, (34)
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where�yi2 is circularly up shifted by np elements to form�y (n)
i2 .

Matrix R�y provides an effective distance measure for channel
tagging.

We then apply the simple hierarchical dimensionality re-
duction (HDR) approach to classify {�yi} intom groups. HDR
method was also adopted in [31] for signal grouping. Ini-
tially, we have (L + 1 − q)m groups and each of them has
only one vector �yi. In every iteration, two most correlated
groups are merged together. For any two groups, the group
correlation is defined as the median of cross-correlation val-
ues [R�y]i1,i2 of any two vectors taken from each of these two
groups, respectively. The merging procedure is continued
until onlym groups are left.

After classification, every user group may have several �yi
providing channel estimates for the same user. The final esti-
mation result is selected as the vector with maximum norm.
By doing this, the results obtained from wrongly selected
trivial eigenvectors will be discarded.

4.4. Summary

To summarize, the MCMP channel estimation algorithm
contains the following major steps.

(1) Estimate cumulant matrices {Cl[q]} for l = 1, . . . , p.
(2) Construct matrix pencil {S1, S2}, and solve all general-

ized eigenvectors {vi} for i = 1, . . . , (L + 1)p.
(3) Determine set � for nontrivial generalized eigenvec-

tors, and compute {�yi | i ∈ �}.
(4) Compute cross-correlation matrix R�y and apply HDR

method for channel tagging.
(5) Select final estimation results from each user group.

5. SIMULATIONS

In this section, we present several simulation examples to
demonstrate the feasibility and performance of the pro-
posed MCMP channel estimation algorithm. For compari-
son, the simulation results of two existingMIMO channel es-
timation algorithms, namely the MIMO Cumulant Subspace
(MIMOCS-MP) algorithm [33] and the iterative Constant
Modulus Algorithm (IT-CMA) based approach [26], are also
included.

In our simulation setup, channel inputs are mutually
independent, i.i.d. QPSK signals. Additive channel noise is
complex white Gaussian with zero mean, and its variance
is determined by the averaged signal-to-noise ratio (SNR)
over all channel outputs. We consider 2-input/2-output FIR
MIMO channels, in which each subchannel is a random
realization of COST207 typical urban (TU) propagation
model [37] for GSM system. In addition to the examples
where exact channel order q is used, some results illustrat-
ing the performance under channel order overestimation are
also provided.

For MCMP algorithm, we set {k = q, L = 2q} as in (12)
and solve (2q + 1)p generalized eigenvectors of matrix pen-
cil {S1, S2}. MIMOCS-MP algorithm chooses the delay and
length parameters as {k1 = q, k2 = 2q − 1, L = 3q − 1}. It
needs to perform singular value decompositions of a (3q2p×

3qp) rectangular matrix and a (q+1)p× (q+1)p square ma-
trix. Obviously, the implementation of MCMP algorithm is
less costly than the MIMOCS-MP algorithm. On the other
hand, IT-CMA algorithm involves adaptation of MIMO-
CMA equalizer parameters and linear filtering operation to
recover the input signals. The low-computational complex-
ity of IT-CMA algorithm is proportional to the data length.

As a performance measure, we use the normalized mean
square error (NMSE) criterion. For a given subchannel
hi j(n), define

NMSEi j
�= E



∑q

n=0
∣∣hi j(n)− ρj ĥi j(n)

∣∣2∑q
n=0

∣∣hi j(n)∣∣2

 (35)

in which ĥi j(n) is the estimated channel impulse response
and ρj is used to compensate the scalar ambiguity associ-
ated with the estimation results for the jth user. The overall
NMSE (ONMSE) is obtained by averaging over all subchan-
nels

ONMSE
�= 1

pm

p∑
i=1

m∑
j=1

NMSEi j . (36)

In our simulations, all results are based on 100 Monte Carlo
runs.

Example 1. We first consider a channel model CH1 with its
impulse response given by

H[0] =
[
0.5822− 0.4495i −0.4889− 0.1731i

0.3071− 0.0295i 0.0056 + 1.6768i

]
,

H[1] =
[
0.3368 + 0.1992i 0.0812− 0.1652i

−0.0878 + 0.1669i −0.0215 + 0.0973i

]
.

(37)

Assume that channel order q is known. We select the length
of MIMO-CMA equalizer to be Le = 4 and the adaptation
stepsize µ = 0.0002.

Figure 1 illustrates the performance of these three algo-
rithms at different SNR levels. Comparison is carried out for
data lengths of 4000 and 8000 samples, respectively. In both
cases, MCMP algorithm outperforms MIMOCS-MP and IT-
CMA at various SNR levels. Figure 2 shows the compara-
tive results for various data lengths when SNR is fixed at
10 dB and 20dB, respectively. These results confirm the ob-
servation made from Figure 1. It is seen that MCMP algo-
rithm demonstrates its performance advantage over IT-CMA
and MIMOCS-MP algorithms, especially with shorter data
lengths and at lower SNR levels.

Example 2. Next, we study the performance of the three algo-
rithms when channel order is not exactly known. Recall that
both MCMP algorithm and IT-CMA algorithm only need
an approximate channel order q̂ such that q̂ ≥ q, while the
subspace decomposition based MIMOCS-MP algorithm re-
quires the exact knowledge of the channel order to guarantee
the uniqueness of estimation results.
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Figure 1: CH1: Performance comparison of three algorithms at dif-
ferent SNR levels, dashed lines for 4000 samples, and solid lines for
8000 samples.
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Figure 2: CH1: Performance comparison of three algorithms with
different data lengths, dashed lines for SNR = 10dB, and solid lines
for SNR = 20dB.

We test these algorithms on channel CH1 using 8000 data
samples. In Figure 3, the dashed lines represent estimation
results when true channel order q is known, and the solid
lines represent estimation results when the channel order is
overestimated as q̂ = q + 1. Clearly, both MCMP and IT-
CMA algorithms introduce mild performance degradation,
while MIMOCS-MP algorithm shows much severe perfor-
mance loss. This example illustrates that MCMP algorithm
is less sensitive to channel order overestimation.
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Figure 3: CH1: Performance comparison of three algorithms under
channel order overestimation, data length is 8000 samples, dashed
lines for q̂ = q, and solid lines for q̂ = q + 1.

Example 3. Here, we consider another channel model CH2,
in which subchannels h11(z) and h21(z) share a common zero
z = −0.9252−0.3794i on the unit circle. TheMIMO channel
impulse response is given by

H[0] =
[
0.021440 + 0.548955i −0.260932 + 0.108733i

0.168106− 0.273989i −0.402841− 0.640907i

]
,

H[1] =
[−0.310738 + 0.829142i −0.050598− 0.224913i

0.114620− 0.268211i 0.123198− 0.141783i

]
,

H[2] =
[−0.231945 + 0.243287i −0.096203 + 0.098883i

−0.104259− 0.127584i 0.121224− 0.249428i

]
.

(38)

Note that IT-CMA algorithm requires H(z) to be of full col-
umn rank for |z| = 1 when a doubly infinite length equalizer
is used. Clearly, channel CH2 violates the identifiability con-
dition of IT-CMA algorithm, but it is still identifiable by the
proposed MCMP algorithm.

Figure 4 shows the comparative results of the MCMP al-
gorithm and the IT-CMA algorithm at different SNR lev-
els. Assume that channel order q is known. The length of
MIMO-CMA equalizer is selected as Le = 10. We tested dif-
ferent adaptation stepsizes for fast and good convergence of
IT-CMA algorithm, and chose µ = 0.0032 for data length
of 4000 samples and µ = 0.0016 for data length of 8000
samples. It is observed that the performance of IT-CMA
tends to stagnate, while MCMP can evidently improve its
performance as SNR increases or data record length be-
comes longer. For the class of noninvertible channels as
CH2, global convergence of MIMO-CMA equalizer is not
guaranteed and the equalizer parameters may be trapped
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Figure 4: CH2: Performance comparison of MCMP with IT-CMA
at different SNR levels, dashed lines for 4000 samples, and solid lines
for 8000 samples.
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Figure 5: Random channel test: Averaged ONMSE performance,
data length is 8000 samples.

at local minima. When the recovered input signal from
equalizer is unreliable, it in turn affects the accuracy of
channel estimation in IT-CMA algorithm. This example
illustrates the advantage of the MCMP algorithm in the
sense that it allows a less restrictive channel identifiability
condition.

Example 4. All three examples above are based on a fixed
channel test in which the same channel model is used in
each Monte Carlo run. To investigate the robustness of the
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Figure 6: Random channel test: Estimation error versus Monte
Carlo runs, data length is 8000 samples, SNR = 20dB.

three algorithms to various channel conditions, we employ
the following random channel test. We first randomly gen-
erate ten FIR MIMO channel models in the same way used
to obtain CH1 and CH2. Then, ten Monte Carlo runs are
performed for each random channel model. The ONMSE
is obtained by averaging over 100 runs corresponding to
these ten random channel models. Here, all subchannels
have channel order q = 1 which is assumed to be known.
The parameters of these three algorithms are chosen as in
Example 1.

As illustrated in Figure 5, the proposedMCMP algorithm
demonstrates better averaged performance than the other
two algorithms in this random channel test, and the averaged
performance of IT-CMA and MIMOCS-MP are very close.
Next, in Figure 6, the results are shown versus Monte Carlo
runs when data length is 8000 samples and SNR is 20 dB. It
can be seen that, in most cases, MCMP algorithm generates
more reliable estimates than IT-CMA andMIMOCS-MP. On
the other hand, there do exist some “bad” TU channels, for
example, Monte Carlo runs 70 to 90, for which all three al-
gorithms perform poorly.

6. CONCLUSIONS

A newmatrix pencil algorithm is developed for the blind esti-
mation of FIR MIMO systems from fourth-order cumulants
of themultiple channel outputs. It is shown that an unknown
MIMO channel impulse responses can be identified by find-
ing nontrivial generalized eigenvectors of a cumulant matrix
pencil. The proposed new method requires a weaker chan-
nel identifiability condition than some existing methods and
does not rely on the exact knowledge of the channel order.
Numerical simulation examples are given to demonstrate its
consistent performance.
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