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SIPEX-G is a fast-converging, robust, gradient-based PCA algorithm that has been recently proposed by the authors. Its superior
performance in synthetic and real data compared with its benchmark counterparts makes it a viable alternative in applications
where subspacemethods are employed. Blindmultiuser detection is one such area, where subspacemethods, recently developed by
researchers, have proven effective. In this paper, the SIPEX-G algorithm is presented in detail, convergence proofs are derived, and
the performance is demonstrated in standard subspace problems. These subspace problems include direction of arrival estimation
for incoming signals impinging on a linear array of sensors, nonstationary random process subspace tracking, and adaptive blind
multiuser detection.
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1. INTRODUCTION

Principal-component analysis (PCA) is a fundamental statis-
tical technique that has established its significance in signal
processing through numerous successful applications includ-
ing, but not limited to, feature extraction, signal estimation,
detection, speech separation, linear discriminant analysis, di-
rection of arrival estimation, and subspace filtering [1, 2, 3,
4, 5]. There are many algorithms that have been proposed for
solving the PCA problem both off-line and on-line; specifi-
cally, Oja’s rule [6] ignited an interest among researchers for
on-line PCA algorithms. Sanger’s rule [7], Rubner-Tavan al-
gorithm [8, 9], and APEX [2] are immediate extensions to
Oja’s update rule. These conventional topologies and their

associated learning algorithms have been successfully ap-
plied to many problems of signal processing, yet they have
shortcomings in speed of convergence and estimation accu-
racy mainly because they are gradient-based approaches that
depend heavily on the deflation procedure. The eigenvec-
tors, when using procedures of this type, are prevented from
converging simultaneously. In fact, by definition, it obliges
them to converge sequentially. Although the more advanced
methods, APEX and Rubner-Tavan algorithms, achieve de-
flation using a lateral network of weights in the output layer,
the convergence of theminor components (or principal com-
ponents depending on the sign on the gradient) is far from
satisfactory, especially when the dimensionality grows large.
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There are also well-known fast-converging rules for PCA, like
the natural power method and the fixed-point rule [5, 10].
However, they still use the deflation scheme to determine
the intermediate eigenvectors after the principal component
has converged, which prevents the algorithms from converg-
ing simultaneously to all the components. Xu’s LMSER algo-
rithm uses subspace techniques and a diagonal amplification
matrix to extract the principal components simultaneously
[11]. Although LMSER introduces a great improvement over
the traditional methods in terms of speed and accuracy, it
does not constrain the search space for the PCA weight ma-
trix to the set of orthonormal matrices, and therefore, must
search the entire space when trying to orthonormalize the
estimated eigenvectors. Our SIPEX-G algorithm (simulta-
neous principal-component extraction—gradient-based ap-
proach), on the other hand, employs Givens rotations as an
orthonormal parameterization of the PCAweightmatrix and
uses a robust and consistent estimate of the output variances
(based on the input vector’s covariance estimate) in order to
converge quickly and accurately to the eigenvectors of the un-
derlying covariance matrix [12, 13].

There has been considerable interest and recent research
in the field of multiuser detection [14], specifically, adaptive
multiuser detection [15, 16, 17, 18, 19, 20, 21, 22]. Within
this framework, subspace methods for code divisionmultiple
access (CDMA) channel estimation and for multiuser detec-
tion have also been investigated [18, 19, 20, 21, 22, 23]. Blind
multiuser detection is useful for inter symbol interference
(ISI) suppression in CDMA uplinks as well as in downlinks,
where the mobile receiver has knowledge of its own spread-
ing sequence only. The gain in the uplink is relatively small as
the base stations usually have access to all the spreading se-
quences in their cells. Group-blindmethodsmay, in this case,
be helpful in decreasing the interference from the users with
unknown spreading sequences if there are any [19]. As in any
subspace-based approach, the performance of the PCA algo-
rithm, that is employed, has a considerable impact on the
overall success of the solution.

In this paper, we present a complete derivation of the
SIPEX-G algorithm and provide a proof demonstrating that
the combination of the proposed cost function and topology
form a system in which all of the stationary points are solu-
tions to the PCA problem. We also demonstrate the perfor-
mance of SIPEX-G on a number of signal processing appli-
cations including nonstationary subspace tracking, direction
of arrival estimation, and blind multiuser detection.

2. THE COST FUNCTION, THE TOPOLOGY,
AND THE SIPEX-G ALGORITHM

It is well known that the directions of the principal compo-
nents are given by the eigenvectors of the covariance ma-
trix of the input data, ordered according to their corre-
sponding eigenvalues in descending order of magnitude [24].
Thus, PCA is nothingmore than a coordinate transformation
on the data, where, in the new coordinate system, the axes
are aligned with the directions of maximal variation. This

immediately points out that the search for the weights of
a principal component network can be restricted to the set
of orthonormal matrices since every orthonormal transfor-
mation corresponds to an axis-rotation in the input vec-
tor space. Consider the principal component network with
y = Rx, where x ∈ Rn×1 and y ∈ Rn×1 are the input and
output vectors, respectively, and R ∈ D ⊂ Rn×n is the PCA
weightmatrix which is restricted to the subsetD of orthonor-
mal matrices. The cost function in (1) could be maximized
(or minimized) in order to determine the principal (or mi-
nor) components of the input data whose covariance matrix
is given by Σx. Considering the case where (1) is maximized,
the scalar gains γs are chosen in descending order (ascending
if (1) is minimized) such that γ1 > γ2 > · · · > γn−1 > 0.
Thus, the cost function is just the weighted sum of the first
(n − 1) output variances. In the subsequent discussions, we
assume that the input data x is zero-mean, without loss of
generality,

J =
n−1∑
s=1

γsVar
(
ys
)
. (1)

The utility of this cost function, when used together with
the proposed orthonormal network topology, is established
by the following theorem. This theorem states that when
our objective is to determine the complete set of principal
components, any stationary point of this cost-topology pair
yields the desired solution although they might not be in de-
scending or ascending order. However, as we will see in the
sequel, if necessary, this ordering could be achieved at no ad-
ditional computational cost since the algorithm already pro-
vides everything necessary to determine the ordering of the
eigenvectors.

Theorem 1. For the constrained PCA network where R is an
orthonormal matrix, the function J in (1) has a stationary
point if and only if all the rows of R consist of all the eigen-
vectors of Σx.

Proof. See the appendix.

Corollary 1. There are totally n! stationary points of J of which
(n− 1)! are local maxima, (n− 1)! are local minima, and (n−
2)(n− 1)! are saddle points.

Proof. This follows easily from the ideas in the proof of
Theorem 1. The (n−1)! local maxima correspond to all pos-
sible permutations of the (n− 1) maximum eigenvectors be-
ing placed in the first (n−1) rows of R. Similarly, the (n−1)!
local minima correspond to all possible permutations of the
(n−1) minimum eigenvectors being placed in the last (n−1)
rows of R. All other permutations of the eigenvectors in R,
which amount to (n− 2)(n− 1)!, are saddle points.

Theorem 1 practically states that we can adapt a rotation
matrix (in batch mode or on a sample-by-sample basis) in
order to obtain all the principal components of the input
data at the output of this linear network. As a consequence,
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the rows of the PCA weight matrix R will give us the desired
eigenvectors of the input covariance matrix. It is also possible
to include in the cost function given in (1) only the variances
of the first m outputs. Global maximization of this new cost
function will result in the convergence of the first m rows of
the rotationmatrix to the firstm principal components. Oth-
erwise, if the summation in (1) does not go up to n − 1 due
to Corollary 1, the firstm rows of R will correspond to some
collection of m eigenvectors depending on which local max-
imum is attained. The gains γi come into play at this point.
By careful assignment of the scale factors to the outputs, it is
possible to force the solution towards the global maximum.
This procedure, however, is beyond the scope of this paper.
In the following, we will concentrate only on the case where
all the eigenvectors are to be determined and their order is
not important.

Now, we focus on finding a suitable parameterization
for the orthonormal PCA matrix. Every orthonormal ma-
trix can be considered a rotation matrix, thus, they can be
parameterized in terms of Givens rotation angles, each of
which define a rotation in a single (two-dimensional) plane
of the high-dimensional vector space. Then, these individ-
ual rotations can be cascaded together to span the whole
set of orthonormal matrices. Every rotation matrix has a
unique set of Givens rotation angles that characterize it. In
n-dimensions, a Givens rotation matrix in the plane, formed
by the pth and qth axes, is denoted by Rpq and is given by
an identity matrix whose four entries at the intersection of
pth and qth rows with pth and qth columns are modified as
follows: the (p, p)th and (q, q)th entries are cos θpq, and the
(p, q)th and (q, p)th entries are − sin θpq and sin θpq, respec-
tively [5]. The complete rotation matrix is then formed from
these sparse matrices according to

R =
n−1∏
p=1

n∏
q=p+1

Rpq. (2)

The multiplication order can be always from the left or
always from the right. It is not crucial to the generality of this
formula as long as the same order is maintained when tak-
ing the derivative of the matrix with respect to each rotation
angle. To summarize, our objective is to solve the following
unconstrained optimization problem parameterized in terms
of the Givens rotation angles.

Problem 1. Let θpq, p = 1, . . . , n − 1, q = p + 1, . . . , n be the
Givens rotation angles that constitute our parameter vector
Θ. The cost function is explicitly given by

J(Θ) =
n−1∑
s=1

γsVar
(
ys
) = n−1∑

s=1
γs

n∑
i=1

n∑
j=1

RsiRs jΣx,i j , (3)

where Rs j is the (s, j)th entry of the orthonormal matrix
R, which is constructed using the Givens rotation angles as
shown in (2), and Σx,i j is the (i, j)th entry of the input covari-
ance matrix. Since all stationary points of this cost function

yield the desired eigenvectors, minimization or maximiza-
tion of (3) may be employed during optimization.

The Givens angles provide a suitable representation for
the PCA weight matrix in that it guarantees that the search is
limited to the set of orthonormalmatrices. The cost function,
ideally, provides an effective means of forcing the weight ma-
trix towards the desired eigenvectors. In practice, however,
we neither have access to the actual input covariance ma-
trix nor to a parametric expression of the output variances
in terms of the Givens angles. Therefore, the proposed al-
gorithm utilizes a robust and consistent nonparametric esti-
mator for the cost function. To this end, the following well-
known recursive sample-estimate for the input covariance
matrix is employed:

Σ̂x(k) = αΣ̂x(k − 1) + (1− α)x(k)xT(k). (4)

In this expression, the notation Σ̂x(k) is used to distinguish
the sample-estimate of the input covariance matrix at time k
from its true value Σx. The adjustable parameter α ∈ [0, 1) is
the forgetting factor and x(k) is the kth input vector sample.
Note that the recursion in (4) can be used for both wide sense
stationary (WSS) and nonstationary input signals. If the in-
put is known to be WSS, the following recursive estimator,
which is unbiased and consistent, may be utilized:

Σ̂x(k) = k − 1
k

Σ̂x(k − 1) +
1
k
x(k)xT(k). (5)

Using this estimate for the covariance matrix for WSS data
will improve the performance of the estimate, and therefore,
the algorithm. In both recursions, the covariance estimate
Σ̂x(k) can be initialized using the first N > n samples using
the unbiased sample estimate (for WSS data) of the covari-
ance matrix (recall that we assumed x is zero mean)

Σ̂x(0) = 1
N

N∑
l=1

x(l)xT(l). (6)

The approach presented above, which uses the input co-
variance matrix estimate and the current values of the PCA
weight matrix to estimate the output variances, assures a ro-
bust estimate of the cost function. More importantly, the es-
timate of the gradient of this cost function is robust which
leads to a smooth and fast convergence to the desired so-
lution. If, instead, the output variances are estimated di-
rectly from the output samples using either a batch of out-
put values or only the most recent output value, as in the
traditional approach to PCA estimation, we would risk los-
ing these advantageous properties; in fact, simulations with
different schemes in estimating the output variances have
demonstrated that the proposed approach provides the best
convergence results both in terms of convergence speed and
accuracy.

Although there are a variety of optimization procedures
that could be employed in order to maximize the cost func-
tion in (3), in this paper, we use the simple gradient ascent
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approach. We know from many applications in signal pro-
cessing and communications that gradient-based algorithms
are successful in on-line adaptation schemes because of
their ability to handle nonstationary signals as well as time-
varying models. Below, we briefly describe the SIPEX-G al-
gorithm which uses gradient ascent optimization.

Algorithm 1. Simultaneous principal-component extraction
using the gradient approach (SIPEX-G)

(1) initialize Givens angles (randomly or to all zeros so that
the initial rotation matrix is the identity matrix);

(2) initialize the estimate of the input covariance matrix us-
ing (6);

(3) for non-WSS signals and/or time-varying environments,
update the covariance estimate using (4). If the input is
WSS and the environment is time-invariant use (5);

(4) calculate the gradient of the cost function in (3) with re-
spect to the Givens angles (substituting the input covari-
ance with its most current sample-estimate). The gradi-
ent is

∂J

∂θpq
=

n−1∑
s=1

n∑
i=1

n∑
j=1

(
Rsi

∂Rs j

∂θpq
+

∂Rsi

∂θpq
Rs j

)
Σ̂x,i j ; (7)

(5) update the Givens angles using gradient ascent/descent

Θ(k + 1) = Θ(k) + η
∂J

∂Θ
, (8)

where η is an adjustable step size;
(6) go back to step 3 and continue as long as input samples

arrive.

A key concern in many adaptive algorithms is the com-
putational complexity. It is clear that if the multiplications in
(2) are performed from the left, the first output is only af-
fected from the Givens angles with indices θ1q, q = 2, . . . , n,
the second is affected by all the angles θ1q, q = 1, . . . , n and
θ2q, q = 3, . . . , n, and so on. Thus, if we wish to extract the
first m principal components, we only need to adapt the an-
gles θi j , i = 1, . . . ,m, j = i + 1, . . . , n, which makes a total
of mn − m(m + 1)/2 parameters, which is less than the mn
parameters required in many PCA algorithms. The trade-off
is that the sin or cos of all these parameters must be eval-
uated, which increasescomputational complexity. This could
be somewhat alleviated, however, by means of a lookup table.
In addition, the necessary matrix and vector multiplications
in the algorithm must be performed at each iteration, which
amount to O(mn2) operations. Specifically, the gradient in
(7) has a complexity of O(n3), which is more than the min-
imum computational complexity that a fully stochastic PCA
algorithm can achieve, which is O(n2). Although SIPEX-G
has a higher complexity, it has superior convergence proper-
ties due to the fact that the search is restricted to the set of
orthonormal matrices only; this will also guarantee simulta-
neous convergence of all principal components.

Another crucial issue in all adaptive learning algorithms
is stability. In gradient-based algorithms, the stability and

speed of convergence are coupled and are controlled by the
step size. For initial fast convergence, we usually require
a large step size; however, increasing the step size without
bound leads to algorithmic instability. We address the prob-
lem of selecting a stable step size for SIPEX-G when max-
imizing the cost function in (3) using (8) in the following
theorem.

Theorem 2. The following upper bound on the step size of
SIPEX-G guarantees stable convergence to the global maximum
of (3) using the steepest ascent optimization approach. Never-
theless, larger step sizes might be stable as well:

η ≤ 1∑n−1
p=1
∑n

q=p+1
(− γpλp − γqλq + γpλq + γqλp

) , (9)

where λj is the jth largest eigenvalue of the input covariance
matrix.

Proof. See the appendix.

We have previously studied the performance of the
SIPEX-G algorithm and how it compares to several bench-
mark algorithms, including Sanger’s rule [7], APEX [2], and
LMSER [11], in two previous publications [12, 13]. Exten-
sive Monte Carlo simulations, performed for this purpose,
demonstrated the superior performance of SIPEX-G both
in terms of convergence speed and final accuracy in esti-
mating the eigenvectors of the input covariance matrix. The
case studies for these simulations included synthetic Gaus-
sian data, recorded violin time-series analysis, and adaptive
filter training (Wiener solution) using PCA. From these sim-
ulations, the LMSER algorithm proved to be the strongest
competitor. For this reason, the proposed algorithm is only
compared to LMSER in the simulations that follow.

3. NONSTATIONARY SUBSPACE TRACKING
WITH SIPEX-G AND LMSER

In order to demonstrate the superior speed and accuracy of
SIPEX-G in subspace tracking, we present in this section a
synthetic nonstationary scenario where three colored ran-
dom time series, having varying covariance matrices were
concatenated. The composite time series is then presented to
SIPEX-G, which used a step size of 0.002 and a forgetting
factor of 0.999, to estimate the three principal components.
The scalar gains of SIPEX-G were set to [1, 2, 3]. As expected,
the speed of convergence and accuracy depend mainly on the
forgetting factor.

The tracking results for this case study are depicted in
Figure 1, where the three eigenvalues of the nonstation-
ary covariance matrix take three different values during the
course of time, to wit, the actual changes to each eigenvalue
is a sum of step functions. The three asterisks, that occur at
a time of 5000 samples, represent the constant true values of
each of the three eigenvalues hitherto (from time 0 to 5000).
Likewise, for the asterisks at time 10000 and 17000 samples
represent the true eigenvalues for the preceding stationary
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Figure 1: SIPEX-G tracking the eigenvalues of the covariance ma-
trix of a 3-dimensional nonstationary random process. The refer-
ence eigenvalues indicated by (∗) on the plot are determined using
the MATLAB eig function.

segments. Clearly, SIPEX-G is able to track the changes in
the subspace structure of the input signal fast and with ac-
ceptable accuracy.

As a second result, we present a comparison of the per-
formances of SIPEX-G and LMSER on the same experimen-
tal setup. The same composite time series, having varying
eigenspreads, is now embedded in a 4-dimensional space. We
use both SIPEX-G and LMSER to estimate all four princi-
pal components. In the tracking results presented in Figure 2,
SIPEX-G uses a constant step size of 0.005 and LMSER uses
the maximum step size of 0.001 to ensure stability in all sta-
tionary regions. The scalar gains of both algorithms were
again set to [1, 2, 3, 4]. The angles between the four estimated
and actual eigenvectors of the nonstationary covariance ma-
trix are shown (in degrees) to reduce to the desired value of
zero, almost accurately for SIPEX-G, in particular. The sud-
den jumps in the angles within the third regime are due to the
switching between reference eigenvectors along the gradient
trajectory; these are not of much concern.

The convergence results of SIPEX presented in Figure 1
exhibits the expected transition behavior after each abrupt
change in the input covariance matrix. In Figure 2, how-
ever, the first abrupt change seems to be smoothly absorbed
by SIPEX. On the other hand, LMSER, which was slow
to converge during the first regime, converges to the solu-
tion rapidly after the first abrupt change. These observations
should not be generalized. Notice that SIPEX still experiences
the transition period after the second abrupt change, and
LMSER is still slow to converge. The behavior of these two
algorithms during the first transition can be explained by the
fact that the first abrupt change does not instigate a large de-
viation in the eigenvectors and the state of both algorithms
are, therefore, already close to their optimal solutions for the
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Figure 2: Comparison of (a) SIPEX-G and (b) LMSER tracking
the eigenvectors of the nonstationary covariance matrix of a 4-
dimensional random process. The angle between estimated and ac-
tual eigenvectors are presented in degrees. The reference eigenvec-
tors are evaluated using the MATLAB eig function. Sudden changes
are introduced in the covariance matrix at times of 5000 and 10000
samples, which are indicated by asterisks in the plot.

second regime. Since SIPEX is faster to converge in general, it
acts quickly and recovers from the transition fast (still there
is a short transition phase; notice the small bump in the an-
gle errors immediately following the change). LMSER seems
to converge faster because the change results in an optimal
solution that is closer to the current state of this algorithm
compared to the optimal solution of the first regime; there-
fore, LMSER speeds up.

These two experimental results, obtained using nonsta-
tionary covariance matrices, demonstrate the fast and accu-
rate convergence of SIPEX-G as well as its ability to track
changes in a nonstationary environment. Figure 1 demon-
strates that the eigenvalues of the changing covariancematrix
are tracked, and Figure 2 demonstrates that the eigenvectors
(which are more crucial to the multiuser detection applica-
tion) are also tracked.

4. APPLICATION OF SIPEX-G TO COMPLEX-VALUED
SIGNALS

Applications requiring the PCA of complex-valued signals
often arise in signal processing. In fact, multiuser detec-
tion in digital communications is one of such applications
whenmodulation schemes with complex-valued symbols are
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employed. Another application is the direction of arrival es-
timation; this problem deals with the estimation of multiple
source directions when signals from these sources impinge
on an array of antennas. Once the source directions are esti-
mated, this information could be used to improve the signal
quality for a specific user by reorienting the antennas or by
algorithmically processing the signal.

Direction of arrival estimation

Subspace-based methods for estimating the direction of ar-
rival (DOA) of signals impinging on an array of sensors
have been researched extensively. State-space method [25],
ESPRIT [26], MUSIC (multiple signal classification) [27],
and Min-Norm [28] are examples of these approaches to the
DOA problem. These methods all require the eigendecom-
position of the covariance matrix of the signal, yet the al-
ternative SWEDE [29] achieves subspace estimation without
eigendecomposition. In this section, we focus on the MU-
SIC algorithm, which basically uses Sanger’s rule [7] for the
eigendecomposition task. We then replace Sanger’s rule with
our SIPEX-G algorithm.

TheDOAproblem is formulated as follows. A linear array
of n sensors receives a mixture of m source signals plus an
additive complex Gaussian noise whose variance is smaller
than those of the signals,

x(k) = D(Φ)s(k) + v(k), (10)

where D(Φ) = [
d(ϕ1) · · · d(ϕm)

]
is the n × m steering

matrix with Φ denoting the vector of direction angles of the
sources [27, 29]. The random vectors x(k), s(k), and v(k) are
n×1,m×1, and n×1 complex Gaussian distributed random
vectors, respectively. Using this formulation, the covariance
matrix of x, the received signal vector at the sensors, can be
expressed as

Σx = E
[
x(k)xH(k)

] = D(Φ)ΣsD(Φ)H + σ2I (11)

assuming uncorrelated, equal-power noise at each sensor. In
order to solve the complex eigenvectors of Σx, we define

Σc =
[
Re
[
Σx
] − Im

[
Σx
]

Im
[
Σx
]

Re
[
Σx
]
]
, ec =

[
Re
[
ex
]

Im
[
ex
]
]
, (12)

where Σc is a real matrix that is twice the number of rows
and columns of Σx, and ec is a single eigenvector of Σc corre-
sponding to the eigenvector ex of Σx. The matrix Σc can be
computed from the samples by

Σc = E
[
xcxcT

]
, xc =

[
Re[x] − Im[x]
Im[x] Re[x]

]
. (13)

When the number of sources is known, the task of DOA esti-
mation reduces to finding the n-mminor components of the
covariance matrix Σx and determining the m minima of the
cost function

f (φ) = d(φ)H
(
WvWv

H)d(φ), (14)
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Figure 3: Actual and estimated DOA for a 2-source 3-sensor case
with 20dB SNR.

where Wv =
[
em+1 · · · en

]
is the matrix formed by the

eigenvectors corresponding to the minor components. This
is called the MUSIC algorithm for DOA estimation.

When we apply SIPEX-G with gains [1, 2, 3, 4, 5, 6] and
step size 0.01 to the MUSIC algorithm outlined above for a
2-source 3-sensor case with an signal-to-noise ratio (SNR)
of approximately 20 dB, we obtain the result presented in
Figure 3. The PCA problem for this case study is 2n = 6 di-
mensional, and there are three eigenvalues, each of multiplic-
ity two. In this simulation, the two minima of the function in
(14) are determined by simply evaluating it over the φ values
in the interval [0, π].

Notice that, in order to apply the SIPEX-G algorithm,
which was originally designed to extract real-valued eigen-
vectors from a real-valued symmetric covariance matrix, to
the complex-valued DOA problem, we have introduced the
modifications outlined in (12) and (13). As a direct conse-
quence of the additional degrees of freedom introduced by
the imaginary parts of the data, each n-dimensional PCA
problem in the complex domain becomes a 2n-dimensional
problem in real values.

5. APPLICATION OF SIPEX-G TO BLINDMULTIUSER
DETECTION

In this section, we present results from the application of
SIPEX-G to adaptive blindmultiuser detection in DS-CDMA
communication systems. For this purpose, we adopt the syn-
chronous signal model provided by Wang and Poor in [22].
For the sake of having a self-contained text (as much as pos-
sible), we briefly describe this signal model below. Although
we use the synchronous signal model in this section for sim-
plicity, the extension of the application of SIPEX-G to the
asynchronous case is possible (at the expense of increasing
the PCA subspace dimensionality). The necessary steps to
achieve this have already been clearly described by Wang et
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al. [19, 20]. Therefore, we do not consider the asynchronous
case explicitly here.

We consider a baseband digital direct sequence CDMA
network of K users. In the synchronous scheme, the received
signal can be expressed as r(t) = S(t) + σn(t), where n(t) is
zero-mean unit-variance white Gaussian noise and S(t) is the
superposition of the data signals of the K users active in the
system. We have

sk(t) =
N−1∑
j=0

βkj ψ
(
t − jTc

)
,

S(t) =
K∑
k=1

Ak

M∑
i=−M

bk[i]sk(t − iT),

(15)

where ψ(t) is the chip waveform with support [0, Tc], bk[i] is
the i.i.d. equiprobable bit sequence of user k, Ak is the chan-
nel gain for user k’s signal, βkj , j = 0, . . . , N−1 is the signature
sequence (also known as the spreading sequence) for user k,
and T is the bit duration and, by definition, it is T = NTc. If
we collect the signature sequence of the kth user in a vector
sk and normalize its norm to unity, and if we collect all the
samples (at fractions of the chip duration Tc) during a time
interval of T seconds (called the bit duration) in a vector r,
we get the following vector equation:

r =
K∑
k=1

Akbksk + σn, (16)

where sk =
[
βk0 · · · βkN−1

]T
/
√
N and n is a zero-mean ran-

dom process having an identity (IN ) covariance matrix. We
assume that the signature waveform vectors of different users
are linearly independent. Defining A = diag(A2

1, . . . , A
2
K ) and

S = [s1 · · · sK
]
, the covariance matrix of the random vec-

tor r is found to be

Σr = E
[
r · rT] = SAST + σ2IN . (17)

The covariance matrix can be decomposed into its signal and
noise subspaces as

Σr = UΛUT =
[
Us Un

][Λs 0
0 Λn

][
UT

s

UT
n

]
, (18)

where the eigenvalues and their corresponding eigenvectors
are in descending order (notice that the intrinsic assumption
in this approach is that the noise power is smaller than the
smallest signal power). The signal subspace isK-dimensional
in the N-dimensional complete space (assuming we get one
sample for every chip duration). Ideally, the signal-space
eigenvectors of the covariance matrix are the spreading se-
quences of all the users, as is evident from [17]. In the blind
detection scheme, we assume that the receiver has knowl-
edge of the signature waveform of only one user. For the kth
user, it can be shown that the minimum mean square error
(MMSE) receiver is given by [22]

b̂k[i] = wT(k)r[i], (19)

where r[i] is the received signal vector of dimension N at the
ith symbol duration [22] and

w(k) = UsΛ
−1
s UT

s sk[
sTkUsΛ

−1
s UT

s sk
] . (20)

The task is to estimate theK-dimensional signal subspace
Us. In the simulations, we use the SIPEX-G algorithm on the
samples r[i] of the received signal vector. For the spreading
sequences, we utilize BPSK random signature sequences of
length N = 7. There are three active users in the system and
each transmits a 60000-length BPSK symbol sequence (syn-
chronously). The step size for SIPEX-G is held constant at
0.002. In order to show the convergence of the detectors to
their optimal values, we use two measures: the angle between
the estimated and optimal detector coefficients (evaluated by
taking the arccos of the direction cosine between these two
vectors), and the signal-to-interference ratio (SIR) between
the desired user’s signal and the combined multiple access
interference (MAI) and channel noise defined in [16]. The
SIR for the jth user is defined as

SIR j =
A2

j

(
wT

j s j
)2

N0
∥∥w j

∥∥2 +∑K
k=1
k �= j

A2
k

(
wT

j sk
)2 . (21)

First, we show the convergence of the receivers com-
puted using the estimated eigendecomposition of the signal
covariance matrix to their optimal values (evaluated using
the MATLAB eig function). Notice in Figure 4a that the re-
ceivers of all users converge to their corresponding optimal
values and in Figure 4b, the maximum theoretical SIR possi-
ble for each user is achieved in less than 2000 samples. Only
one update was performed for each sample; however, if time
and computational bandwidth permits, multiple updates per
sample could be performed to allow convergence to the solu-
tion with an even smaller number of symbols.

Finally, we depict the bit error rate (BER) versus SNR
plots for all three users in the above adaptive blind multiuser
detection scenario, where SIPEX-G is used to determine the
optimal blind MMSE receivers for the users. The BER curves
shown in Figure 5 exhibit perfect match with the theoreti-
cal expectations, which are superimposed on each plot. In
Figure 5a, the numerically estimated BER is smaller than its
theoretical expectation at large SNR values because of the
limited number of symbols to estimate such small probabili-
ties.

In this section, we have considered the application of
SIPEX-G to adaptive blind multiuser detection in CDMA
communications. We have demonstrated that, since the sig-
nal model permits the use of subspace approaches and since
SIPEX-G is a fast, robust subspace tracking PCA algorithm,
its utilization in the blind multiuser detection problem yields
very good results. Although our multiuser detection example
did not involve complex-valued modulation schemes, the al-
gorithm could be applied to these cases with ease following
the modifications outlined in the DOA example of the previ-
ous section.
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Figure 4: SIPEX-G in blind multiuser detection. (a) The angle (in
degrees) between the estimated and true optimal receiver gain vec-
tors. (b) The theoretical maximum and actual SIR performances
obtained by the estimated optimal detectors for all users versus the
number of symbols.

6. CONCLUSIONS

PCA is an important statistical methodology that finds appli-
cations in the solutions of many important practical prob-
lems of engineering including signal processing and com-
munication. In this paper, we have presented a new, fast,

6420−2−4−6−8−10−12
SNR in dB

10−5

10−4

10−3

10−2

10−1

100

P
ro
ba
bi
lit
y
of

er
ro
r

BER for user 1

Theoretical
Estimated

(a)

6420−2−4−6−8−10−12
SNR in dB

10−2

10−1

100

P
ro
ba
bi
lit
y
of

er
ro
r

BER for user 2

Theoretical
Estimated

(b)

6420−2−4−6−8−10−12
SNR in dB

10−2

10−1

100

P
ro
ba
bi
lit
y
of

er
ro
r

BER for user 3

Theoretical
Estimated

(c)

Figure 5: The estimated 60000 symbols and theoretical (∗) BER
versus SNR curves for all users using detectors determined by the
SIPEX-G algorithm.
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and robust PCA algorithm, where the topology is based on
Givens rotations to guarantee orthonormality of the esti-
mated PCA weight matrix at each iteration step. The cost
function is parameterized in terms of the weight matrix and
the input covariance matrix, which is estimated recursively
from the input samples, to guarantee robustness and accu-
racy of the final eigenvector estimates.

We have previously established the superior performance
of SIPEX-G by comparing with benchmark PCA algorithms
such as Sanger’s rule, APEX, and LMSER in a variety of prob-
lems including both synthetic and real data. In this paper, we
have demonstrated the superiority of SIPEX-G over LMSER
in subspace tracking when the covariance matrix of the ran-
dom process is nonstationary. In addition, we have demon-
strated the application of SIPEX-G to complex-valued PCA
through the use of a direction of arrival estimation example.

The SIPEX-G algorithmwas also tested on the blindmul-
tiuser detection problem in DS-CDMA communication sys-
tems using the synchronous signal model with a subspace ap-
proach. The simulation results indicated that SIPEX-G was
successful in determining the optimal blind MMSE receivers
accurately using a very small number of samples. In practical
applications, the data efficiency of an adaptive algorithm is
extremely important. Therefore, SIPEX-G is a valuable alter-
native to existing blind multiuser detection algorithms as it
efficiently utilizes the samples to determine the optimal de-
tector coefficients.

Further study might focus on investigating the perfor-
mance of SIPEX-G on the asynchronous case although we
believe that the results will demonstrate similar successful
performance both in terms of SIR and BER. In addition,
fixed-point versions of SIPEX-G could be derived, resulting
in improved convergence speed.

APPENDIX

Proof of Theorem 1. In accordance with the conditions stated
in the theorem, suppose that y = Rx, whereR is an orthonor-
mal matrix. Let Σx be the covariance matrix of the random
vector x. Let Σx = QxΛxQx be the eigendecomposition of
this covariance matrix, where Qx is an orthonormal matrix
consisting of the eigenvectors ordered in accordance with the
ordering of the eigenvalues in the diagonal matrixΛx. Notice
that we can express an arbitrary orthonormal matrix R as the
product R = RQT

x , where R is also an orthonormal matrix.
Consider the following parameterization of the cost function
J in terms of R:

J
(
R
) = n−1∑

s=1
γs
[
RΣxRT

]
ss
=

n−1∑
s=1

γs
[
RΛxR

T
]
ss
. (A.1)

In general, if δR is free to take any (small) value to repre-
sent perturbations to any allowed direction, we can write the
following for the value of the cost function at the perturbed
point:

J
(
R + δR

) = n−1∑
s=1

γs
[(
R + δR

)
Λx
(
R + δR

)T]
ss
. (A.2)

Expanding the product of parentheses and dropping the
quadratic term on the perturbation in (A.2) and subtract-
ing both sides of (A.1) from both sides of (A.2), we obtain
the increment in J as

J
(
R + δR

)− J
(
R
) ≈ 2

n−1∑
s=1

γs
[
RΛxδR

T
]
ss
. (A.3)

Notice that the constraint of orthonormality of R and R+δR
translates to the condition (R+δR)T(R+δR) = I, which after
dropping the quadratic term once again, becomes

R
T
δR + δR

T
R ≈ 0. (A.4)

In addition, the orthonormality constraint on R and R + δR
dictates that they have entries whose absolute values are
smaller than or equal to 1. Thus, for R values, where R �= P
(P is a permutation matrix which is allowed to take both ±1
values at its nonzero entries), there is no problem consider-
ing perturbations in (+) and (−) directions, that is, R + δR
and R − δR. Even if R has some, but not all, rows that are
of the form eTi =

[
0 · · · 1 · · · 0

]
, there still exists valid

±δR choices, which allow us to perturb R in both directions
without violating the orthonormality condition. In this sit-
uation, however, the additional constraint |(R ± δR)i j| ≤ 1
must be considered in the choice. Once we have determined
a suitable ±δRmatrix, we see that

J
(
R + δR

)− J
(
R
) ≈ 2

n−1∑
s=1

γs
[
RΛxδR

T
]
ss
,

J
(
R− δR

)− J
(
R
) ≈ 2

n−1∑
s=1

γs
[
RΛx

(
− δR

T
)]

ss

= −(J(R + δR
)− J

(
R
))
.

(A.5)

Therefore, at any point where R �= P, the cost function J has
no stationary points.

Now, specifically consider the case

R =
[
Pn−1 0
0 ±1

]
, (A.6)

where Pn−1 is an (n − 1) × (n − 1) permutation matrix as
described above with possible negative entries. We can show
that the cost function J has stationary points at these values
of the rotation matrix. Consider

∆J � J
(
R + δR

)− J
(
R
) = 2

n−1∑
s=1

γs
[
RΛxδR

T
]
ss

= · · · = 2
n−1∑
s=1

n∑
j=1

γsλjrs jδrs j

(A.7)

with rs j and δrs j denoting the entries of R and δR, respec-
tively. Notice that, for the specific choice of (A.6), rs j are
mostly zeros. In fact, only the entries rs js = ±1, for s =
1, . . . , n− 1. In addition, due to the constraint |(R± δR)i j| ≤
1, the corresponding perturbation entries are δrs j0 = 0, for
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s = 1, . . . , n−1. Therefore, in the last expression of (A.7), for
all terms in the double summation, either rs j = 0, j �= js or
δrs j = 0, j = js leading to ∆J = 0, therefore, points of the
form in (A.6) are stationary points. Similarly, we can show
that all points of the form R = P are stationary points.

Alternatively, we could show that these points are sta-
tionary points by evaluating the gradient by brute force and
showing its equivalence to zero. Consider the following ex-
plicit form of the cost function J in terms of rs j :

J
(
R
) = n−1∑

s=1
γs
[
RΛxR

T
]
ss
= · · · =

n−1∑
s=1

γs

n∑
j=1

λjr
2
s j . (A.8)

We represent the orthonormal matrix R in terms of the
Givens rotations according to

R =
n−1∏
p=1

n∏
q=p+1

Rpq
(
θpq
) = R12R13 · · ·Rn−1,n. (A.9)

Recall that we have

Rpq(θ) �




1 0 0 0 0 0 0

0
. . . 0 0 0 0 0

0 0 cos θ 0 − sin θ 0 0
0 0 0 1 0 0 0
0 0 sin θ 0 cos θ 0 0

0 0 0 0 0
. . . 0

0 0 0 0 0 0 1



,

R′ pq(θ) �




0 0 0 0 0 0 0

0
. . . 0 0 0 0 0

0 0 − sin θ 0 − cos θ 0 0
0 0 0 0 0 0 0
0 0 cos θ 0 − sin θ 0 0

0 0 0 0 0
. . . 0

0 0 0 0 0 0 0



,

(A.10)

where the terms with the angle parameter appear at the in-
tersection of pth and qth rows and columns. From this con-
figuration, we see the following fact: R = P ⇔ θpq = kπ/2,
for all p, q where k is some integer. Letting R = R(1)RklR(2),
R
′ � ∂R/∂θkl = R(1)R′klR(2), where R′kl � ∂Rkl/∂θkl, the

matrix R(1) is the product of matrices preceding Rpq, and
R(2) is the product of matrices following Rpq in the definition
given in (A.9). They are both independent of θpq. Assume
that θkl = (odd)π/2, then we have

Rkl =




1 0 0 0 0 0 0

0
. . . 0 0 0 0 0

0 0 0 0 ±1 0 0
0 0 0 1 0 0 0
0 0 ±1 0 0 0 0

0 0 0 0 0
. . . 0

0 0 0 0 0 0 1



,

R′ pq(θ) �




0 0 0 0 0 0 0

0
. . . 0 0 0 0 0

0 0 ±1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 ±1 0 0

0 0 0 0 0
. . . 0

0 0 0 0 0 0 0



.

(A.11)

When all Givens angles are multiples of π/2, R(1) = P(1) and
R(2) = P(2) are also permutation matrices (with ±1 entries).
And, of course, we have R = P, so

P = P(1)RklP(2) = P(1) ·




P2
1
...

±P2
l

...

±P2
k

...

P2
n




,

P′ = P(1)R′klP(2) = P(1) ·




0
...

±P2
k

...

±P2
l

...

0




.

(A.12)

Notice that, in P, the rows k and l are interchanged for P(2).
Since P(1) �= (Rkl)T and P(1) �= (R′kl)T (i.e., not the inverse
permutation of both), the elementwise product of P and P′

yields a zero matrix. This result is clearly seen for all rows
except for the kth and lth rows since P′ has all zero entries
everywhere except for these two rows. Without loss of gener-
ality, we assume that P(1) = In is the n × n identity matrix.
We can do this because P(1) applies the same permutation in
both P and P′. At the kth row of P, we have ±P2

l which is
the lth row of P(2). At the kth row of P′, we have ±P2

k which
is the kth row of P(2). Clearly, the element wise product of
P and P′ is also zero at the kth and lth rows since the ele-
ment wise product of ±P2

l and ±P2
k is certainly zero. Hence,

for θkl = (odd)π/2, the element wise product of R and R
′
is a

zero matrix. Consequently, the gradient of the cost function
vanishes. Similarly, we can show for θkl = (even)π/2 that the
gradient vanishes at R = P. Therefore, for all R = P, where P
is a permutation matrix (with ±1 entries), the cost function
J has a stationary point.

Therefore, this two-part proof shows that the cost func-
tion J(R) in (1), where y = Rx and R is an orthonormal ma-
trix, has stationary points if and only if R = PQT

x , where P is
a permutation matrix with ±1 entries.
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Proof of Theorem 2. Let R = RQT
x , where R is also an or-

thonormal matrix and Qx is the eigenvector matrix ordered
in a descending manner. Then, like in (3), we can write the
cost function as

J
(
R
) = n−1∑

s=1

n∑
j=1

γsλjr
2
s j , (A.13)

where rs j is the (s, j)th entry of R. Consider also the paramet-
ric expression r(Θ) of R in terms of the Givens angles vec-
tor (assuming that we rearrange the entries of R into vector
form). Then, we can write the first- and second-order deriva-
tives of J with respect to a given angle θpq as

∂J

∂θpq
= ∂J

∂r
∂r

∂θpq
,

∂2J

∂θ
2
pq

=
(

∂r

∂θpq

)T
∂2J

∂r2

(
∂r

∂θpq

)
+
∂J

∂r
∂2r

∂θ
2
pq

,

∂2J

∂θrs∂θpq
=
(

∂r

∂θrs

)T
∂2J

∂r2

(
∂r

∂θpq

)
+
∂J

∂r
∂2r

∂θrs∂θpq
.

(A.14)

We easily see that for the (a, b)th and (c, d)th, entries of R
(indices not equal),

∂J

∂rab
= 2γaλbrab,

∂2J

∂rcd∂rab
= 0,

∂2J

∂r2ab
= 2γaλb.

(A.15)
In addition, we have

∂R

∂θpq
= R

(1)
R
′pq

R
(2)
,

∂2R

∂θ
2
pq

= R
(1)
R
′′pq

R
(2)
. (A.16)

We know that SIPEX-G would converge in a stable fashion
to the global maximum if the step size satisfies η ≤ 2/|λmax|,
where λmax is the maximum eigenvalue (in terms of abso-
lute value) of the Hessian of the cost function with respect
to the Givens angles evaluated at the global maximum. Since
it is very difficult to determine the eigenvalues of the Hes-
sian matrix, we use the trace instead. Therefore, the (loose)
upper bound for the step size to guarantee stability becomes

η ≤ 2/| trace(∂2J/∂Θ2
)|. The trace of the Hessian of the cost

function with respect to the Givens angles is given by

trace

(
∂2J

∂Θ
2

)

=
n−1∑
p=1

n∑
q=p+1

∂2J

∂θ
2
pq

=
n−1∑
p=1

n∑
q=p+1


( ∂R

∂θpq

)T
∂2J

∂R
2

(
∂R

∂θpq

)
+

∂J

∂R
∂2R

∂θ
2
pq


.
(A.17)

Evaluating this at the global maximum yields (at this point

R = I and all Givens angles are 0)

∣∣∣∣∣∣ trace

 ∂2J

∂Θ
2

∣∣∣∣∣∣
Θ=0



∣∣∣∣∣∣

= 2
n−1∑
p=1

n∑
q=p+1

[− γpλp − γqλq + γpλq + γqλp
]
.

(A.18)

Thus, the result in Theorem 2 is obtained. Notice that this
result can be generalized to any local maxima or minima of
the proposed cost function by selecting the eigenvalues cor-
responding to that solution.

ACKNOWLEDGMENT

This work was partially supported by the National Science
Foundation (NSF) grant ECS-9900394.

REFERENCES

[1] R. O. Duda and P. E. Hart, Pattern Classification and Scene
Analysis, John Wiley & Sons, New York, NY, USA, 1973.

[2] S. Y. Kung, K. I. Diamantaras, and J. S. Taur, “Adaptive prin-
cipal component extraction (APEX) and applications,” IEEE
Trans. Signal Processing, vol. 42, no. 5, pp. 1202–1217, 1994.

[3] J. Mao and A. K. Jain, “Artificial neural networks for feature
extraction and multivariate data projection,” IEEE Transac-
tions on Neural Networks, vol. 6, no. 2, pp. 296–317, 1995.

[4] Y. Cao and M. Moody, “Multichannel speech separation by
eigendecomposition and its application to co-talker interfer-
ence removal,” IEEE Trans. Speech, and Audio Processing, vol.
5, no. 3, pp. 209–219, 1997.

[5] G. Golub and C. Van Loan, Matrix Computation, John Hop-
kins University Press, Baltimore, Md, USA, 1993.

[6] E. Oja, Subspace Methods of Pattern Recognition, John Wiley
& Sons, New York, NY, USA, 1983.

[7] T. D. Sanger, “Optimal unsupervised learning in a single-layer
linear feedforward neural network,” Neural Networks, vol. 2,
no. 6, pp. 459–473, 1989.

[8] J. Rubner and K. Schulten, “Development of feature detectors
by self-organization,” Biological Cybernetics, vol. 62, pp. 193–
199, 1990.

[9] J. Rubner and P. Tavan, “A self-organizing network for
principal-component analysis,” Europhysics Letters, vol. 10,
no. 7, pp. 693–698, 1989.

[10] Y. N. Rao and J. C. Principe, “A fast, on-line algorithm for
PCA and its convergence characteristics,” in Proc. NNSP X,
vol. 1, pp. 299–307, Sydney, Australia, 2000.

[11] L. Xu, “Least mean square error reconstruction principle for
self-organizing neural-nets,” Neural Networks, vol. 6, no. 5,
pp. 627–648, 1993.

[12] D. Erdogmus, Y. N. Rao, J. C. Principe, J. Zhao, and K. E.
Hild II, “Simultaneous extraction of principal components
using Givens rotations and output variances,” in Proc. IEEE
Int. Conf. Acoustics, Speech, Signal Processing, vol. 1, pp. 1069–
1072, Orlando, Fla, USA, May 2002.

[13] D. Erdogmus, Y. N. Rao, J. C. Principe, O. Fontenla-Romero,
and L. Vielva, “An efficient, robust, and fast converging prin-
cipal components extraction algorithm: SIPEX-G,” in Proc.
EUSIPCO ’02, vol. 2, pp. 335–338, Toulouse, France, Septem-
ber 2002.
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