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We propose a new intelligent audio watermarking method based on the characteristics of the HAS and the techniques of neural
networks in the DCT domain. The method makes the watermark imperceptible by using the audio masking characteristics of the
HAS. Moreover, the method exploits a neural network for memorizing the relationships between the original audio signals and
the watermarked audio signals. Therefore, the method is capable of extracting watermarks without original audio signals. Finally,
the experimental results are also included to illustrate that the method significantly possesses robustness to be immune against
common attacks for the copyright protection of digital audio.
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1. INTRODUCTION

The maturity of networking and data-compression tech-
niques promotes an efficient distribution for digital prod-
ucts. However, illegal reproduction and distribution of dig-
ital audio products become much easier by using the digi-
tal technology with lossless data duplication. Hence, the ille-
gal reproduction and distribution of music become a very
serious problem in protecting the copyright of music [1].
Recently, the approach of digital watermarking has been ef-
fectively employed to protect intellectual property of dig-
ital products including audio, image, and video products
[2, 3, 4, 5, 6, 7, 8].

The techniques of conventional cryptography protect the
content from anyone without private decrypted keys. They
are actually useful in protecting an audio from being inter-
cepted during data transmission [1]. However, the encryp-
tion data (cipher-text) must be decrypted for the access to
the original audio data (plain-text). In contrast to the con-
ventional cryptography, the watermarking straightforwardly
accesses encryption data (watermarked data) as original data.
Moreover, a watermark is designed for residing permanently
in the original audio data after repeated reproduction and

redistribution. Furthermore, the watermark cannot be re-
moved from the audio data by the intended counterfeiters.
Consequently, the watermark technique could be applied to
establish the ownership of digital audio for copyright pro-
tection and authentication. An audio watermarking method
has been proposed in [4] to effectively protect the copyright
of audio. However, Swanson’s method requires the original
audio for the watermark extraction. This kind of watermark-
ing methods fails to identify the owner copyright of audio
due to the ambiguity of ownerships. More specifically, a pi-
rate inserts his (or her) counterfeit watermark into the wa-
termarked data, and then extract the counterfeit watermark
from contested data. This problem is also referred to as the
deadlock problem in [4]. Therefore, on the basis of the char-
acteristics of the human auditory system (HAS) and the tech-
niques of neural networks, this paper presents a new audio
watermarking method without the original audio for the wa-
termark extraction.

In order to achieve the copyright protection, the pro-
posed method needs to meet the following requirements
[5]:

(i) the watermark should be inaudible to human ears;
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(ii) watermark detection should be done without referenc-
ing the original audio signals;

(iii) the watermark should be undetectable without prior
knowledge of the embedded watermark sequence;

(iv) the watermark is directly embedded in the audio sig-
nals, not in a header of the audio;

(v) the watermark is robust to resist common signal-
processing manipulations such as filtering, compres-
sion, filtering with compression, and so on.

Section 2 introduces basic concepts for the frequency-
masking used in the MPEG-I Psychoacoustic model 1.
Section 3 states the watermark-embedding algorithm on the
discrete cosine transformation (DCT) domain. Section 4 de-
scribes the watermark-extraction algorithm on the DCT do-
main. Section 5 exhibits the experimental results illustrating
that the proposed method is capable of protecting the own-
ership of audio from attacks. A brief conclusion is available
in Section 6.

2. FREQUENCY-MASKING

Frequency-masking refers to masking between frequency au-
dio components [4]. If two signals, which occur simulta-
neously, are close together in frequency, the lower-power
(fainter) frequency components may be inaudible in the
presence of the higher-power (louder) frequency compo-
nents. The masking threshold of a mask is determined by
the frequency, sound pressure level (SPL), and tonal-like or
noise-like characteristics of both the mask and the masked
signal [9]. When the SPL of the broadband noise is larger
than the SPL of the tonal, the broadband noise can easily
mask the tonal. Moreover, higher-power frequency signals
are masked more easily. Note that the frequency-masking
model defined in ISO-MPEG I Audio Psychoacoustic model
1 for layer I is exploited in the proposed method to obtain
the spectral characteristics of a watermark based on the in-
audible information of the HAS [10, 11, 12].

An algorithm for the calculation of the frequency-
masking in the MPEG-I Psychoacoustic model 1 is de-
scribed in Algorithm 1. For convenience, the algorithm is
named determining-frequency-masking-threshold (DFMT)
algorithm. More details on the DFMT algorithm can be ob-
tained from [4].

As a result, Figure 1 shows a portion of an audio with
44.1 kHz sampling rate, which is expressed by the power
spectrum. Frequency samples and masking values are repre-
sented by the solid line and dash line, respectively. The dash
line, the frequency-masking threshold, is denoted by LTg in
this paper.

3. WATERMARK EMBEDDING

Let an audio X = (x1, . . . , xN ) withN PCM (pulse-code mod-
ulation) samples be segmented into φ = �N/256� blocks.
Each block includes 256 samples. Accordingly, a set of blocks
Ψ can be defined by

Ψ = {s1, . . . , si, . . . , sφ}, (1)

Step 1: Calculation of the power spectrum

Step 2: Determination of the threshold in quiet (absolute
threshold)

Step 3: Finding the tonal and nontonal components of the
audio

Step 4: Decimation of tonal and nontonal masking components

Step 5: Calculation of the individual masking thresholds

Step 6: Determination of the global masking threshold

Algorithm 1: Algorithm of the frequency-masking.
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Figure 1: Original spectrum and frequency-masking threshold LTg.

where si = (si(0), . . . , si(k), . . . , si(255)) and si(k) denotes the
kth sample of the ith block. In order to secure information
related to the watermark against attacks, we use a pseudo-
random number generator (PRNG) to determine a set of tar-
get blocks ϕ selected from Ψ [13]. This ϕ can be represented
by

ϕ = {sρj | j = 1, . . . , p × q and ρj ∈ {0, . . . , φ− 1}} (2)

when p × q blocks are selected. Note that p and q will be
further defined in the following subsection. A scheme for the
PRNG is expressed by

r = PRNG(z), (3)

where r is a random number and z denotes a seed of the
PRNG. This ρj can be calculated by

ρj = rmodφ. (4)

In this paper, a binary stamp image with size p × q is
taken as a watermark. The stamp image can be represented
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Figure 2: The structure of watermark embedding used in the pro-
posed method.

by a sequence in a row-major fashion and expressed by

Hp,q =
(
σ11, . . . , σ1q, σ21, . . . , σ2q, . . . , σik, . . . , σp1, . . . , σpq

)
= (w1, . . . , wj , . . . , wpq

)
,

(5)

where Hp,q is a (p × q)-bits binary sequence, σik ∈ {0, 1},
1 ≤ i ≤ p, and 1 ≤ k ≤ q. Moreover, σik stands for a pixel at
position (i, k) in the binary image. For convenience,Hp,q can
be denoted by w = (w1, w2, . . . , wpq) as a vector with p × q
components where wj = 2σik − 1, j = (i − 1) × q + k, and
1 ≤ j ≤ p × q. Consequently, we have wj ∈ {−1, 1} for each
j. More specifically, wj is −1 if a pixel of the binary stamp
image is black (σik = 0) and wj is 1 if a pixel of the binary
stamp image is white (σik = 1).

The structure of the watermark embedding is depicted
in Figure 2, which consists of four components: DCT, water-
mark embedding, inverse DCT (IDCT), and neural network
(NN). This sρj can be DCT transformed to be the DCT trans-
formed block Sρj

via using

Sρj
(l) =

256∑
n=1

�(n)sρj (n) cos
π(2n− 1)(l − 1)

512
, (6)

where 1 ≤ l ≤ 256, sρj (n) denotes the nth PCM sample in the
block sρj on the time domain, Sρj

(l) is the lth DCT coefficient
(frequency value) in Sρj

, and

�(n) =


1
256

, if n = 1,√
2
256

, if 2 ≤ n ≤ 256.

(7)

Using (6) and (7), a set of the DCT transformed blocks Φ,
associated with ϕ can be obtained and represented by

Φ = {Sρj | j = 1, . . . , p × q and ρj ∈ {0, . . . , φ − 1}}. (8)

During the watermark-embedding process, a watermark
w is embedded into Φ by hiding wj into Sρj

( j0) for each j

where j0 is a fixed index of each DCT transformed block and
j0 ∈ {100, . . . , 200}. This fixed index, j0, is determined by an
algorithm as described in Algorithm 2. Note that the mid-
dle band in one block contains DCT coefficients with indices
from 100 to 200.

Step 1: For each si ∈ Ψ, using the DFMT algorithm to obtain Si
and the global masking threshold LTgi where
i = 1, 2, . . . , φ

Step 2: Set each acc( j) to 0 for j = 100, . . . , 200

Step 3: For each Si ( j), acc( j)=acc( j)+1 if
[LTgi( j)−Si( j)− α]>0, α is a constant

Step 4: j0 = argmax100≤ j≤200{acc( j)}
Step 5: Output j0

Algorithm 2: The algorithm of determining j0.

204196188180172164156148140132124116108100
Index

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Fr
eq
u
en
cy

Figure 3: The frequency of each positive difference (LTgi( j) −
Si ( j)− α > 0) as a function of indices j where 100 ≤ j ≤ 200.

The main purpose of the algorithm is to select an index
j0 such that the differences LTgi( j0) − Si( j0) of most blocks
at index j0 are greater than 0. Different j0 may be chosen for
distinct audio signals. An example of a test audio signal, a
curve shown in Figure 3 plots the frequency of each positive
difference (only considering LTgi( j) − Si( j) − α > 0) as a
function of indices j where 100 ≤ j ≤ 200. From Figure 3,
the highest frequency occurs at index 183, thus we choose
j0 = 183.

After j0 is determined for an audio signal, each wj is em-
bedded into Sρj

( j0) via the modification to Sρj
( j0) during the

watermark-embedding process. The formula of the modifi-
cation to Sρj

( j0) can be defined by

Ŝρj
(
j0
) = Sρj

(
j0
)
+Mj, (9)

where wj ∈ {−1, 1}, Mj = wj × α, and α = 200. Ap-
propriate values for α can balance imperceptible (inaudi-
ble) and robust capabilities of our watermarking method.
Lower α makes watermarks imperceptible. However, it re-
duces the robustness of the watermarks on resisting attacks
or signal manipulations. In contrast, higher α makes the
watermarks robust. However, it leads the watermarks to be
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Figure 4: The architecture of a neural network used in the process of watermark embedding.

perceptible. Here, Ŝρj indicates a watermarked-and-DCT-
transformed audio block. For each j, a set of watermarked-
and-DCT-transformed audio blocks Φ̂ can be calculated by
(9) and denoted by

Φ̂ = {Ŝρj | j = 1, . . . , p × q and ρj ∈ {0, . . . , φ − 1}}. (10)

Each Ŝρj can be transformed by IDCT to obtain ŝρ j , called
a watermarked audio block. Then, a set of watermarked au-
dio blocks ϕ̂ can be obtained, and ϕ̂ is denoted by

ϕ̂ = {ŝρ j | j = 1, . . . , p × q and ρj ∈ {0, . . . , φ − 1}}. (11)

Consequently, the watermarked audio can be obtained and
represented by

Ψ̂ = {ŝ1, . . . , ŝi, . . . , ŝφ} (12)

or

X̂ = (x̂1, . . . , x̂k, . . . , x̂N), (13)

where each ŝi and each x̂k may be altered.
Figure 4 shows the architecture of NN, called a 9-9-1

multilayer perceptron. Namely, the NN comprises an input
layer with 9 nodes, a hidden layer with 9 nodes, and an
output layer with a single node [14]. In addition, the back-
propagation algorithm is adopted for training the NN over a
set of training patterns Γ that is specified by

Γ = {(Aj,Bj
) | j = 1, 2, . . . , p × q

}
, (14)

where |Γ| is p × q. Moreover, an input vector Aj for the NN
can be represented by

Aj =
(
Sρj
(
j0 − 4

)
, . . . , Sρj

(
j0 − 1

)
, Ŝρj

(
j0
)
,

Sρj
(
j0 + 1

)
, . . . , Sρj

(
j0 + 4

))
,

(15)

and the desired output Bj corresponding to the input vec-
tor Aj is Sρj

( j0). The dependence of the performance of the
NN on the number of hidden nodes can be found in [14]. In
this case, the performance of using more than 9 nodes in the
hidden layer of the NN is not improved significantly. As the
training process for the NN is completed, a set of synaptic
weightsW , characterizing the behavior of the trained neural
network (TNN), can be obtained and represented by

W = {W1
uv | u = 1, 2, . . . , 9, v = 1, 2, . . . , 9

}
∪ {W2

uv | u = 1, v = 1, 2, . . . , 9
}
.

(16)

Accordingly, the TNN performs a mapping from the space in
which Aj is defined to the space in which Bj is defined. In
other words, the TNN can memorize the relationship (map-
ping) between the watermarked audio and the original audio.

4. WATERMARK EXTRACTION

One of the merits of the proposed watermarking method
is to extract the watermark without the original audio. The
TNN, obtained from the watermark embedding, can mem-
orize the relationships between an original audio and the
corresponding watermarked audio. Listed below are the pa-
rameters which are required in the watermark extraction and
which have to be secured by the owner of the watermark or
the original audio.

(i) All synaptic weights of the TNN,W .
(ii) The seed z for the PRNG.
(iii) The embedding index j0 for each block.
(iv) The number of the bits p × q of the watermark w.

Figure 5 shows the structure of watermark extraction in
the method, which is composed of two components: DCT
and TNN. First, the watermarked blocks in Ψ̂ are selected by
using (3) and (4) to construct ϕ̂. Each watermarked audio
block ŝρ j in ϕ̂ can be transformed by (17), and then, we have
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Ŝρ j
DCT

Watermarked
block
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Figure 5: The structure of watermark extraction for the use of the
TNN.

the watermarked-and-DCT-transformed audio block Ŝρj ,

Ŝρj (l) =
256∑
n=1

�(n)ŝρ j (n) cos
π(2n− 1)(l − 1)

512
, (17)

where ŝρ j (n) denotes the nth PCM sample in the water-
marked audio block ŝρ j , and 1 ≤ l ≤ 256. Accordingly, a set

of watermarked-and-DCT-transformed audio blocks Φ̂ can
be obtained before the procedure of estimating the original
audio.

During the watermark-extraction process, the TNN is
employed to estimate the original audio. Let an input vector
for the TNN be expressed by(

Ŝρj
(
j0 − 4

)
, . . . , Ŝρj

(
j0 − 1

)
, Ŝρj

(
j0
)
,

Ŝρj
(
j0 + 1

)
, . . . , Ŝρj

(
j0 + 4

))
,

(18)

which is selected from Ŝρj in Φ̂ that may be further distorted
by attacks or manipulations of signal processing. In addition,
S′ρj ( j0) denotes the physical output for the TNN when (18)
is fed into the TNN. Figure 6 shows the input pattern and
the corresponding physical output for the TNN. An extracted
watermark can be represented by

w′ = (w′1, . . . , w′j , . . . , w′pq). (19)

Using (9), simple algebraic operations, the watermarked
sample Ŝρj ( j0), and the corresponding physical output
(estimated sample) S′ρj ( j0) for the TNN, the jth bit of the
extracted watermark w′j can be estimated by

w′j =
1, if

[
Ŝρj
(
j0
)− S′ρj

(
j0
)]

> 0,

−1, else.
(20)

Note that the estimated sample S′ρj ( j0) will be equal to the
original sample Sρj ( j0) if no estimated errors occur for the
TNN. In fact, it is impossible for the TNN to perform the
exact mapping in many applications [14]. The extracted wa-
termark can be reconstructed into a binary stamp image ac-
cording to (20). The corresponding pixel of the binary stamp
image (watermark) is black if w′j = −1. Otherwise, the pixel
of the binary image is white if w′j = 1.

5. EXPERIMENTAL RESULTS

In this experiment, two binary stamp images with size 64×64
(i.e., p = q = 64), displayed in Figure 7, are taken as the

 

S′ρj ( j0)

The physical output

Trained
neural
network

The inputs for TNN
(watermarked-and-DCT-transformed samples)
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extracted.

(a) (b)

Figure 7: Two proof (original) watermarks with size 64× 64.

proof (original) watermark w = (w1, w2, . . . , w4096). Three
tested audio (excerpts) with 44.1 kHz sampling rate, as de-
picted in Figures 8a, 8c, and 8e, are used for examining
the performance of our watermarking method. During the
watermark-embedding process, w is embedded into an au-
dio X (Ψ) to obtain the watermarked audio X ′ (Ψ′). In the
case under consideration, Figure 7a is embedded into the
first and the second original audio separately. Their water-
marked versions are depicted in Figures 8b and 8d, respec-
tively. Figure 7b is embedded into the third audio, and its wa-
termarked audio is depicted in Figure 8f. To observe Figure 8,
these three watermarked audio are almost similar to their
original versions. Therefore, the proposed method remark-
ably possesses imperceptible capability for making water-
marks inaudible. More specifically, imperceptible capability
of the method is granted by frequency-masking and the al-
gorithm, as described in Table 2, of selecting an index j0.

In order to evaluate the performance of watermarking
methods, one quantitative index, that is employed to mea-
sure the quality of an extracted watermark, is defined by

DR
(
w,w′

) = w′wT

p × q
, (21)

where w is a vector that denotes an original watermark (a
binary stamp image) and w′ is a vector that stands for an



Audio Watermarking Based on HAS and Neural Networks in DCT Domain 257

(a)

(b)

(c)

(d)

(e)

(f)

Figure 8: (a), (c), and (e) show the first, the second, and the third
original audio (X), respectively. (b), (d), and (f) show their cor-
responding watermarked audio (X̂) with α = 200 and j0 = 183,
respectively.

extracted watermark. Note that DR indicates the similarity
between w and w′. The vector w′ is more similar to w if DR
is closer to 1.

In this experiment, the method is investigated for the
memorized, adaptive (generalized), and robust capabilities.
The memorized capability of the method is evaluated by

Table 1: The DR values and the number of correct pixels in w′filter,m
form = 16, 18, 20, and 22 when these three audio are examined.

The first audio is examined

m DR # of correct pixels in w′filter,m

16 0.248535 2557

18 0.929199 3951

20 0.961426 4017

22 0.963379 4021

The second audio is examined

m DR # of correct pixels in w′filter,m

16 0.641602 3362

18 0.995117 4086

20 0.998535 4093

22 0.998535 4093

The third audio is examined

m DR # of correct pixels in w′filter,m

16 −0.025391 1996

18 0.934082 3961

20 0.962891 4020

22 0.965820 4026

Table 2: The DR values and the number of correct pixels in w′MF,l

for l = 5, 7, 9, and 11 when these three audio are examined.

The first audio is examined

l DR # of correct pixels in w′MF,l

5 0.813477 3714

7 0.817383 3722

9 0.817383 3722

11 0.770996 3627

The second audio is examined

l DR # of correct pixels in w′MF,l

5 0.744141 3572

7 0.771484 3628

9 0.732422 3548

11 0.679688 3440

The third audio is examined

l DR # of correct pixels in w′MF,l

5 0.836426 3761

7 0.847168 3783

9 0.830078 3748

11 0.817383 3722
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(a) (b) (c)

Figure 9: (a), (b), and (c) are estimated watermarks that are extracted from Figures 8b, 8d, and 8f, respectively, in the case of attack free.

taking the training audio as the testing audio. On the other
hand, the adaptive and robust capabilities of the method
can be simultaneously assessed by taking the distorted-and-
watermarked audio as the testing audio. A watermarked au-
dio is called the distorted-and-watermarked audio if the wa-
termarked audio is further degraded by signal-processing
manipulations such as filtering, MP3 compression/decom-
pression (ISO/MPEG-I audio layer III), and multiple manip-
ulations (filtering and MP3 compression/decompression).

5.1. Attack free

Let Γ denote a set of training patterns constructed by us-
ing a pair of the original audio X and watermarked au-
dio X̂ (Ψ̂) that is not distorted by signal-processing ma-
nipulations. After the watermark-embedding process of the
method is completed, a set of synaptic weights W can be
identified to characterize the TNN. We collect the input vec-
tors in Γ to form a set of the testing patterns Υ = {Aj |
j = 1, 2, . . . , p × q}. That is, the set of test patterns is the
same as the set of the input vectors in the training patterns.
Hence, only memorized capability of the method is exam-
ined in this case. During the watermark-extraction process,
the set of the testing patterns is fed into the TNN to esti-
mate the original samples. Then, w′ can be extracted. Note
that w′ stands for (w′1, w

′
2, . . . , w

′
4096), and the length of X̂

is the same as that of X . Three estimated watermarks (w′)
for these three audio are shown in Figure 9. Their DR values
of the extracted watermarks are 0.963, 0.999, and 0.966, re-
spectively. These three DR values are very close to 1. Besides
the measure of using quantitative index DR, Figure 9 is fur-
ther compared with Figure 7 via the measure of using visual
perception. Here, Figure 9 is very similar to Figure 7. More
specifically, in Figure 9, these three Chinese words can be
recognized clearly. Manifestly, the method possesses a well-
memorized capability so as to extract watermarks without
the information of the original audio. In addition to the as-
sessment of the memorized capability of the method, Sec-
tions 5.2, 5.3, and 5.4, we further exhibit the adaptive and
robust capabilities of the method against five common audio
manipulations.

5.2. Robustness to filtering

Let X̂filter,m (Ψ̂filter,m) be represented as a filtered-and-
watermarked audio. Namely, a watermarked audio X̂ is fur-

ther filtered by a filter with the cutting-off frequency in
m kHz. Note that the behavior of the filter is to pass the fre-
quency below m kHz. In this test, there are four different
filtered-and-watermarked audio X̂filter,m for m = 16, 18, 20,
and 22. The adaptive and robust capabilities of the method
under the case of filtering attack are examined by extract-
ing the watermark from the filtered-and-watermarked au-
dio X̂filter,m. First, the watermarked blocks in Ψ̂filter,m are se-
lected by using (3) and (4) to construct ϕ̂filter,m. Let Υfilter,m

stand for a set of testing patterns obtained from the water-
marked audio ϕ̂filter,m. Then, Υfilter,m is fed into the TNN, and
the estimated watermark w′filter,m is obtained by using (20).
Table 1 shows the results of evaluating the robust perfor-
mance of the method for assisting the filtering attacks. Us-
ing the measure of the visual perception, the similarity be-
tween w and w′filter,m is exhibited in Figure 10 for each m.
However, the method breaks down in two cases of examin-
ing the first and the third audio when m is less than or equal
to 16.

A class of nonlinear filters is called median filters (MFs)
that have been employed to efficiently restore the signals
(audio and images) corrupted by impulse or salt-peppers
noises [15, 16]. We denote X̂MF,l (Ψ̂MF,l) as an MF-and-
watermarked audio if a watermarked audio X̂ is further fil-
tered by an MF with window length l. Four distinct cases,
for l = 5, 7, 9, and 11, are examined in this experiment. By
the similar procedure used in the case of filtering, the esti-
mated watermark w′MF,l can be obtained by using (20) for
each l. Table 2 exhibits the results of assessing the robust per-
formance of the method for assisting the MF attacks. In ad-
dition, Figure 11 displays the similarity between w and w′MF,l
for each l.

Observing Figures 10 and 11, these three Chinese words
can be specifically identified in most cases under con-
sideration. Consequently, the proposed method manifestly
possesses the adaptive and robust capabilities against two
kinds of filtering attacks above.

5.3. Robustness toMP3 compression/decompression

The adaptive and robust capabilities against the compres-
sion/decompression attack are tested by usingMP3 compres-
sion/decompression. Let X̂MP3,m (Ψ̂MP3,m) represent an MP3-
and-watermarked audio. That is, a watermarked audio X̂
is further manipulated by MP3 compression/decompression
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 10: (a), (b), (c), and (d) show four estimated watermarks w′filter,m, extracted from four filtered-and-watermarked audio X̂filter,m, for
m = 16, 18, 20, and 22, respectively, in the case of testing the first audio. (e), (f), (g), and (h) show four estimated watermarks in the case of
testing the second audio. (i), (j), (k), and (l) exhibit four estimated watermarks in the case of testing the third audio.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 11: (a), (b), (c), and (d) show four estimated watermarks w′MF,l , extracted from four MF-and-watermarked audio X̂MF,l for l = 5, 7, 9,
and 11, respectively, in the case of testing the first audio. (e), (f), (g), and (h) show four estimated watermarks in the case of testing the
second audio. (i), (j), (k), and (l) exhibit four estimated watermarks in the case of testing the third audio.

with a compression rate of m kbps. Four cases, for m =
64, 96, 128, and 160, are investigated in this experiment. Us-
ing the similar way stated in Section 5.2, a set of testing
patterns, denoted by ΥMP3,m, is obtained from the water-
marked audio ϕ̂MP3,m. Then, ΥMP3,m is fed into the TNN,
and the estimated watermark w′MP3,m is obtained by us-
ing (20). Table 3 shows the results of investigating the ro-
bust performance of the method for assisting the MP3 at-
tacks. To assess the similarity between w and w′MP3,m from
Figure 12, these three Chinese words can be patently rec-
ognized. However, the method breaks down in the case of

examining the third audio when m is less than or equal to
64.

5.4. Robustness tomultiple attacks

First, a watermarked audio is filtered by a filter, and
then, the filtered-and-watermarked audio is further manip-
ulated by the MP3 compression/decompression. Let X̂Filter,m1

MP3,m2

(Ψ̂Filter,m1
MP3,m2

) be referred to as a watermarked audio X̂ that is
further manipulated by a filter with cutting-off frequency
in m1 kHz and MP3 compression/decompression with
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 12: (a), (b), (c), and (d) show four estimated watermarks w′MP3,m, extracted from four MP3-and-watermarked audio X̂MP3,m for
m = 64, 96, 128, and 160, respectively, in the case of testing the first audio. (e), (f), (g), and (h) show four estimated watermarks in the case
of testing the second audio. (i), (j), (k), and (l) exhibit four estimated watermarks in the case of testing the third audio.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 13: (a), (b), (c), and (d) show four estimated watermarks w′m1 ,m2
, extracted from X̂Filter,m1

MP3,m2
for (m1,m2) = (18, 96), (18, 128), (20, 96),

and (20, 128), respectively, in the case of testing the first audio. (e), (f), (g), and (h) show four estimated watermarks in the case of testing
the second audio. (i), (j), (k), and (l) exhibit four estimated watermarks in the case of testing the third audio.

a compression rate of m2 kbps. Four different cases, for
(m1,m2) = (18, 96), (18, 128), (20, 96), and (20, 128), are ex-
amined in this experiment. Using a similar way as stated in
Section 5.2, a set of testing patterns, denoted by Υ̂Filter,m1

MP3,m2
,

can be obtained from the watermarked audio ϕ̂Filter,m1
MP3,m2

. Then,

Υ̂Filter,m1
MP3,m2

is fed into the TNN and the estimated watermark
w′m1 ,m2

is obtained by using (20). Table 4 shows the results of
assessing the robust performance of the method for assisting
the filtering-and-MP3 attacks. The similarity between w and
w′m1 ,m2

is exhibited in Figure 13 for the assessment of using
the visual perception.

Another kind of multiple attacks is referred to as an MF-
and-MP3 attack if the filter, used in the case of the filtering-
and-MP3 attack, is replaced by an MF. Let X̂MF,l

MP3,m (Ψ̂MF,l
MP3,m)

stand for a watermarked audio X̂ that is further manipulated
by an MF with window length l and then by MP3 compres-
sion/decompression with a compression rate ofm kbps. Four
cases, for (l,m) = (7, 96), (7, 128), (9, 96), and (9, 128), are
investigated in this experiment. Table 5 shows the results of
assessing the robust performance of the method for assisting
the filtering-and-MP3 attacks. Figure 14 displays the similar-
ity between w and w′l,m. In these two multiple-attacks cases,
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 14: (a), (b), (c), and (d) show four estimated watermarks w′l,m, extracted from X̂MF,l
MP3,m, respectively, for (l,m) = (7, 96), (7, 128),

(9, 96), and (9, 128) in the case of testing the first audio. (e), (f), (g), and (h) show four estimated watermarks in the case of testing the
second audio. (i), (j), (k), and (l) exhibit four estimated watermarks in the case of testing the third audio.

Table 3: The DR values and the number of correct pixels in w′MP3,m

for m = 64, 96, 128, and 160 when these three audio are ex-
amined.

The first audio is examined

m DR # of correct pixels in w′MP3,m

64 0.242676 2545

96 0.958008 4010

128 0.964844 4024

160 0.964355 4023

The second audio is examined

m DR # of correct pixels in w′MP3,m

64 −0.297363 1439

96 0.952637 3999

128 0.968262 4031

160 0.993164 4082

The third audio is examined

m DR # of correct pixels in w′MP3,m

64 −0.434570 1158

96 0.939941 3973

128 0.949707 3993

160 0.959473 4013

these three Chinese words can be discerned clearly in Figures
13 and 14.

The results above illustrate that the proposedmethod sig-

Table 4: The DR values and the number of correct pixels in w′m1 ,m2

for (m1,m2) = (18, 96), (18, 128), (20, 96), and (20, 128) when these
three audio are examined.

The first audio is examined

(m1,m2) DR # of correct pixels in w′m1 ,m2

(18, 96) 0.890625 3872

(18, 128) 0.910156 3912

(20, 96) 0.938477 3970

(20, 128) 0.956543 4007

The second audio is examined

(m1,m2) DR # of correct pixels in w′m1 ,m2

(18, 96) 0.945801 3985

(18, 128) 0.955566 4005

(20, 96) 0.954590 4003

(20, 128) 0.969238 4033

The third audio is examined

(m1,m2) DR # of correct pixels in w′m1 ,m2

(18, 96) 0.887207 3865

(18, 128) 0.902344 3896

(20, 96) 0.930176 3953

(20, 128) 0.943359 3980

nificantly possesses the adaptive and robust capabilities to ef-
fectively resist these five common attacks for protecting the
copyright of digital audio.
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Table 5: The DR values and the number of correct pixels in w′l,m
for (l,m) = (7, 96), (7, 128), (9, 96), and (9, 128) when these three
audio are examined.

The first audio is examined

(l,m) DR # of correct pixels in w′l,m

(7, 96) 0.800293 3687

(7, 128) 0.799316 3685

(9, 96) 0.800293 3687

(9, 128) 0.799316 3685

The second audio is examined

(l,m) DR # of correct pixels in w′l,m

(7, 96) 0.744629 3573

(7, 128) 0.747559 3579

(9, 96) 0.713867 3510

(9, 128) 0.707520 3497

The third audio is examined

(l,m) DR # of correct pixels in w′l,m

(7, 96) 0.822266 3732

(7, 128) 0.841797 3772

(9, 96) 0.822266 3732

(9, 128) 0.797363 3681

6. CONCLUSIONS

In this paper, the techniques of neural networks have suc-
cessfully been incorporated into audio watermarking to de-
velop a novel watermarking for digital audio. The proposed
method has effectively employed an NN for memorizing
the relationships between the original audio and the water-
marked audio. Because the NN possesses the memorized and
the adaptive (generalization) capabilities, the method can ex-
tract watermarks without original audio in contrast to the
other proposed methods, such as a scheme proposed in [4],
requiring the original audio for the watermark extraction.
Moreover, the method makes the watermark imperceptible
via exploiting the audio-masking characteristics of the HAS.
Finally, the experimental results are exhibited to illustrate
that the method significantly possesses robustness to be im-
mune against common attacks for the copyright protection
of digital audio.

ACKNOWLEDGMENTS

Tsai and Yu, wish to acknowledge their gratitude to the Na-
tional Science Council (NSC), Taiwan, for its partial financial
support, with Grant number NSC 89-2218-E-150-010 and
NSC 89-2218-E-194-010, respectively. Gratitude is extended
to the anonymous reviewers for their valuable comments and
professional contributions to the improvement of this work.

REFERENCES

[1] W. Bender, D. Gruhl, N. Morimoto, and A. Lu, “Techniques
for data hiding,” IBM Systems Journal, vol. 35, no. 3-4, pp.
313–336, 1996.

[2] X.-G. Xia, C. G. Boncelet, and G. R. Arce, “A multiresolu-
tion watermark for digital images,” in Proc. IEEE International
Conference on Image Processing, vol. 1, pp. 548–551, Santa Bar-
bara, Calif, USA, July 1997.

[3] F. Hartung and M. Kutter, “Multimedia watermarking tech-
niques,” Proceedings of the IEEE, vol. 87, no. 7, pp. 1079–1107,
1999.

[4] M. D. Swanson, B. Zhu, A. Tewfik, and L. Boney, “Robust
audio watermarking using perceptual masking,” Signal Pro-
cessing, vol. 66, no. 3, pp. 337–355, 1998.

[5] M. D. Swanson,M. Kobayashi, and A. H. Tewfik, “Multimedia
data-embedding and watermarking technologies,” Proceed-
ings of the IEEE, vol. 86, no. 6, pp. 1064–1087, 1998.

[6] W. Zeng and B. Liu, “On resolving rightful ownerships of
digital images by invisible watermarks,” in Proc. IEEE Inter-
national Conference on Image Processing, vol. 1, pp. 552–555,
Santa Barbara, Calif, USA, July 1997.

[7] P.-T. Yu, H.-H. Tsai, and J.-S. Lin, “Digital watermarking
based on neural networks for color images,” Signal Process-
ing, vol. 81, no. 3, pp. 663–671, 2001.

[8] I. J. Cox, J. Kilian, F. T. Leighton, and T. Shamoon, “Se-
cure spread spectrum watermarking for multimedia,” IEEE
Trans. Image Processing, vol. 6, no. 12, pp. 1673–1687, 1997.

[9] P. Noll, “Wideband speech and audio coding,” IEEE Commu-
nication Magazine, vol. 26, no. 11, pp. 34–44, 1993.

[10] ISO/IEC IS 11172 (MPEG), “Information technology—
coding of moving pictures and associated audio for digital
storage up to about 1.5Mbits/s,” 1993.

[11] P. Noll, “MPEG digital audio coding,” IEEE Signal Processing
Magazine, vol. 145, pp. 59–81, November 1997.

[12] D. Pan, “A tutorial on mpeg audio compression,” IEEE Mul-
timedia Journal, vol. 2, no. 2, pp. 60–74, 1995.

[13] A. Shamir, “On the generation of cryptographically strong
pseudo-random sequences,” in 8th International Colloquium
on Automata, Languages, and Programming, vol. 62 of Lecture
Notes in Computer Science, Spring-Verlag, Berlin, 1981.

[14] S. Haykin, Neural Networks: A Comprehensive Foundation,
Macmillan College Publishing Company, New York, NY, USA,
1995.

[15] I. Pitas and A. N. Venetsanopoulos, Nonlinear Digital Filters—
Principles and Applications, Kluwer Academic, Boston, Mass,
USA, 1990.

[16] P.-T. Yu and R.-C. Chen, “Fuzzy stack filters—their defini-
tions, fundamental properties, and application in image pro-
cessing,” IEEE Trans. Image Processing, vol. 5, no. 6, pp. 838–
854, 1996.

Hung-Hsu Tasi received the B.S. and
M.S. degrees in applied mathematics from
the National Chung Hsing University,
Taichung, Taiwan, in 1986 and 1988, respec-
tively, and the Ph.D. degree in computer sci-
ence and information engineering fromNa-
tional Chung Cheng University, Chiayi, Tai-
wan, in 1999. He has been with the Depart-
ment of Information Management at Na-
tional Huwei Institute of Technology, Yun-
lin, Taiwan, where he is currently an Associate Professor. His re-
search interests include soft computing, digital watermarking, in-
telligent filter design, data mining, and web programming.



Audio Watermarking Based on HAS and Neural Networks in DCT Domain 263

Ji-Shiung Cheng received the B.S. degree
in computer science and engineering from
Tatung University, Taipei, Taiwan, in 1998,
and the M.S. degree in computer science
and information engineering fromNational
Chung Cheng University, Chiayi, Taiwan, in
2000. He currently serves in the AIPTEK In-
ternational, Inc. His research interests in-
clude neural networks, fuzzy systems, and
digital watermarking.

Pao-Ta Yu received the B.S. degree in math-
ematics from the National Taiwan Normal
University, Taipei, Taiwan, in 1979, the M.S.
degree in computer science from the Na-
tional Taiwan University, Taipei, Taiwan, in
1985, and the Ph.D. degree in electrical
engineering from Purdue University, West
Lafayette, Indiana, in 1989. Since 1990, he
has been with the Department of Computer
Science and Information Engineering at the
National Chung Cheng University, Chiayi, Taiwan, where he is cur-
rently a Professor. His research interests include neural networks
and fuzzy systems, nonlinear filter design, intelligent networks,
XML technology, and e-learning.


	1. INTRODUCTION
	2. FREQUENCY-MASKING
	3. WATERMARK EMBEDDING
	4. WATERMARK EXTRACTION
	5. EXPERIMENTAL RESULTS
	5.1. Attack free
	5.2. Robustness to filtering
	5.3. Robustness to MP3 compression/decompression
	5.4. Robustness to multiple attacks

	6. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

